AUTHOR=Mannella Kailynn , Cudlip Alan C. , Holmes Michael W. R. TITLE=Adaptations in Muscular Strength for Individuals With Multiple Sclerosis Following Robotic Rehabilitation: A Scoping Review JOURNAL=Frontiers in Rehabilitation Sciences VOLUME=3 YEAR=2022 URL=https://www.frontiersin.org/journals/rehabilitation-sciences/articles/10.3389/fresc.2022.882614 DOI=10.3389/fresc.2022.882614 ISSN=2673-6861 ABSTRACT=

Muscular weakness and loss of motor function are common symptoms of multiple sclerosis. Robotic rehabilitation can improve sensorimotor function and motor control in this population. However, many studies using robotics for rehabilitation have overlooked changes in muscular strength, despite research demonstrating its utility in combating functional impairments. The purpose of this scoping review was to critically examine changes in muscular strength following robotic rehabilitation interventions for individuals with multiple sclerosis. A literature search of five databases was conducted and search terms included a combination of three primary terms: robotic rehabilitation/training, muscular strength, and multiple sclerosis. Thirty one articles were found, and following inclusion criteria, 5 remained for further investigation. Although muscular strength was not the primary targeted outcome of the training for any of the included articles, increases in muscular strength were present in most of the studies suggesting that robotic therapy with a resistive load can be an effective alternative to resistance training for increasing muscular strength. Outcome measures of isometric knee-extensor force (kg) (right: p < 0.05, left: p < 0.05), isometric knee flexion and extension torque (Nm) (p < 0.05), ankle dorsiflexion and plantarflexion torque (Nm) (all p < 0.05) and handgrip force (kg) (p < 0.05) all improved following a robotic training intervention. These adaptations occurred with sustained low resistive loads of hand grip or during gait training. This scoping review concludes that, despite a lack of studies focusing on strength, there is evidence robotics is a useful modality to improve muscular strength in combination with motor control and neuromotor improvements. A call for more studies to document changes in strength during robotic rehabilitation protocols is warranted.