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Background: The use of wearable sensor technology (e. g., accelerometers) for tracking

human physical activity have allowed for measurement of actual activity performance of

the upper limb (UL) in daily life. Data extracted from accelerometers can be used to

quantify multiple variables measuring different aspects of UL performance in one or both

limbs. A limitation is that several variables are needed to understand the complexity of

UL performance in daily life.

Purpose: To identify categories of UL performance in daily life in adults with and without

neurological UL deficits.

Methods: This study analyzed data extracted from bimanual, wrist-worn triaxial

accelerometers from adults from three previous cohorts (N = 211), two samples of

persons with stroke and one sample from neurologically intact adult controls. Data used

in these analyses were UL performance variables calculated from accelerometer data,

associated clinical measures, and participant characteristics. A total of twelve cluster

solutions (3-, 4-, or 5-clusters based with 12, 9, 7, or 5 input variables) were calculated

to systematically evaluate the most parsimonious solution. Quality metrics and principal

component analysis of each solution were calculated to arrive at a locally-optimal solution

with respect to number of input variables and number of clusters.

Results: Across different numbers of input variables, two principal components

consistently explained the most variance. Across the models with differing numbers of UL

input performance variables, a 5-cluster solution explained the most overall total variance

(79%) and had the best model-fit.

Conclusion: The present study identified 5 categories of UL performance formed

from 5 UL performance variables in cohorts with and without neurological UL deficits.

Further validation of both the number of UL performance variables and categories will be

required on a larger, more heterogeneous sample. Following validation, these categories

may be used as outcomes in UL stroke research and implemented into rehabilitation

clinical practice.
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INTRODUCTION

The use of wearable sensor technology (e.g., accelerometers)
for tracking human movement has allowed for efficient
measurement of activity of the upper limb (UL) in daily life (1–
6). Accelerometry has become an established, valid and reliable
methodology to directly measure performance of UL activity in
daily life in neurologically intact adults (7, 8) and adults with
stroke (9–13). Per the World Health Organization International
Classification of Functioning, Disability and Health (ICF) model
(14), activity performance, defined as what a person does in the
unstructured, free-living environment, is a different but related
construct to the capacity for activity (i.e., functional capacity),
which is measured by standardized assessments in the structured
clinical or laboratory setting. Clinicians and researchers typically
assess a person’s functional capacity for activity in the structured
clinic or laboratory environments with standardized assessments.
However, people seek out rehabilitation services because they
want to be able to perform better in their daily lives (15), and
improvements in UL capacity seen in the clinic do not necessarily
translate to improvements in UL performance in daily life
(13, 16–19). Therefore, assessment of UL activity performance
in an individual’s unstructured, free-living environment is
critical to evaluating effectiveness of rehabilitation services and
determining if the services provided have achieved the goal of
improving performance in daily life.

Data extracted from bilateral, wrist-worn accelerometers
can be used to quantify variables measuring different aspects
of UL performance in one or both limbs. These variables
collectively inform clinician scientists about the real-world
activity performance. The numerous variables calculated from
accelerometers measure different aspects of UL performance,
such as: (1) duration (7, 20); (2) magnitude (12, 21, 22); (3)
variability (12, 23); (4) symmetry or laterality (3, 7, 9); and (5)
quality of movement (6, 24–26). Each UL performance variable
conveys slightly different information about the collective nature
of UL use, with a single variable providing only part of the picture
(6). Furthermore, some variables are narrowly distributed in
neurologically-intact (adult controls) individuals (e.g., use ratio,
an index of duration of activity of one limb vs. the other), while
other variables are widely distributed (e.g., bilateral magnitude,
a measure of magnitude of bilateral UL activity) (3). Thus,
multiple variables quantifying different aspects of movement
along with heterogeneous distributions of those variables
can make it difficult to interpret UL performance data for
clinical decision-making.

One reason wearable sensor technology (e.g., accelerometry)
for measurement of UL performance has remained largely
confined to rehabilitation research with limited ventures
into clinical practice is because the current output from
accelerometers is not easily accessible for rehabilitation
professionals (4). A potential solution to the multi-variable
problem would be the formation of categories (or groups) of
UL performance in daily life. If there were natural groupings
that occur among multiple UL performance variables calculated
from accelerometry data (27), then these groupings could
help to facilitate clinical decision making and implementation

of UL performance data into routine rehabilitation care. In
other biomedical science fields, formation of categories which
encompass multi-dimensional measures have facilitated clinical
decision making for persons with health conditions such as,
spinal cord injury (28), heart failure (29, 30), and chronic
obstructive pulmonary disease (31).

The purpose of this study, therefore, was to identify categories
of UL performance in daily life in adults with and without stroke
using data from previously collected cohorts. Cluster analyses
were performed with variables of UL performance calculated
from 24 h accelerometer recordings from three cohorts, two
samples of persons with stroke and one from neurologically-
intact adult controls. We hypothesized that at least three
categories (low, medium, and high) of UL performance would
be identified across the UL performance variables quantified
by accelerometer data, spanning the possible ranges of UL
performance in daily life. We also anticipated that the emerging
categories would group individuals with similar ranges of the
performance variables and provide a simpler method to interpret
UL performance in daily life for clinicians and persons with
health conditions whom they treat.

METHODS

This study analyzed accelerometer data from adults from three
previous cohorts, using the same accelerometry methodology
(32). Data used in these analyses were UL performance variables
calculated from accelerometer data over 1 day, associated clinical
capacity measures, and participant characteristics.

Participants
The three cohorts in this analysis include; (1) people with stroke
(stroke cohort 1, n = 57) from a prospective, observational,
longitudinal cohort tracking UL change over time (19); (2) people
with chronic stroke (stroke cohort 2, n = 78) who participated
in a clinical trial (33); and (3) a sample of neurologically-
intact adults (adult controls, n = 76) of similar age, race,
ethnicity, and socioeconomic status of persons in the clinical trial
(stroke cohort 2) (7). All participants provided signed informed
consent to participate in the individual studies. Inclusion and
exclusion criteria for each sample are described elsewhere [stroke
cohort 1 (19), stroke cohort 2 (33), and adult controls(7)]. In
general, persons in the stroke cohorts had documented ULmotor
impairments and diminished functional capacity as measured by
the Action Research Arm Test (ARAT) (34, 35) at the time of
the study enrollment. UL motor severity ranged from mild to
severe, as indicated by the National Institute of Health Stroke
Scale (NIHSS) (36) arm item scores of 1–4. Persons with stroke
had to be able to follow two-step commands to enroll, and were
enrolled even if they had other, mild, stroke-induced, non-motor
deficits such as hemispatial neglect, aphasia, or mild cognitive
impairment. Neurologically intact community-dwelling older
adults had to be willing to participate and be able to follow
two-step commands. Combining the three cohorts provided a
broad sampling of UL performance variables. With respect to
power analyses, there is no agreed upon sample required for a
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cluster analysis (37, 38), however the combined cohorts yield a
sample size of over 200 individuals, which was deemed sufficient
to proceed with a cluster analysis (39).

Data Collection
UL performance was captured using data from bilateral, wrist-
worn accelerometers (7, 8, 40–42). A single time point was chosen
for participants in each of the three cohorts. In stroke cohort 1
(assessments from 2 to 24 weeks post-stroke), data from the latest
assessment time point available between weeks 6 and 24 were
used in the analysis, since UL performance appears to stabilize
between 3 and 6 weeks post-stroke (19, 43). In stroke cohort 2
(assessments at baseline and weekly for 8 or more weeks), data
from the earliest available assessment time point was used in
the analysis. Data points later than the baseline (when baseline
was unavailable) were included because UL performance did not
change as a result of this treatment (18, 33). The adult control
cohort completed a single assessment in the cross-sectional study
and this time point was used (8).

Upper Limb Performance Variables
Participants wore the Actigraph GT3X-BT or GT9X-Link
accelerometers on both wrists for the three cohorts, withmethods
described previously (32). Briefly, tri-axial acceleration data are
sampled at 30Hz for 24 or more hours continuously. Once the
accelerometers were returned to the lab, data were uploaded,
visually inspected, and processed using Actilife 6 (Actigraph
Corp., Pensacola, FL) proprietary software. For most variables,
data were band-pass filtered (0.25 and 2.5Hz) and down sampled
into 1-s epochs with ActiLife proprietary software, where each
second is the sum of the 30Hz values in that second and
converted to activity counts (1 count = 0.001664 g). For a
few variables (see Table 1), calculations were done directly on
the 30Hz data (6, 24–26). Similar to previous work (7, 12,
19, 21, 43), accelerometry data was processed using custom
written software in MATLAB (Mathworks, Inc., Natick, MA)
to calculate UL performance variables which qualify various
aspects of UL activity in everyday life. Table 1 presents the 12 UL
performance variables included in the analysis along with their
description and the source of accelerometer data for calculation
(1 vs. 30Hz). The variables independently measure duration,
magnitude, variability, symmetry and quality ofmovement of one
or both ULs.

Analysis
All data were analyzed in R (version 4.0.1), an open source
statistical computing program. A k-means hypothesis-free
cluster analysis was used to determine categorizations of UL
performance indexed by accelerometer variables in samples
of persons with stroke and neurologically intact adults (adult
controls). A cluster analysis is a robust statistical algorithm
that groups similar objects into sub-groups called clusters (27,
44, 45), with identified clusters becoming the categories of UL
performance. The end point is a set of clusters where individuals
within each cluster are more similar to each other, on average,
than they are to other members of the other clusters formed
(44). A k-means method was chosen over other methods (e.g.,

hierarchical clustering or partial around the medeoid) to use an
iterative approach to qualitatively explore the effect of adding
more input variables and increasing the number of clusters on
the dataset used in the analysis (45, 46).

First, several steps were completed prior to the cluster analysis.
The dataset of UL performance variables were standardized
(using z-scores) as each variable is on a different measurement
scale (e.g., hours, counts, and ratios). Then, a Hopkins statistic
was calculated to determine if pursing a cluster analysis on
these data was appropriate. The Hopkins statistic ranges from
0 to 1, and values >0.5 indicate clusters exist in the dataset
(47). The distributions of all 12 UL performance variables and
pairwise spearman scatterplots of variables with both strong and
weak relationships were examined using the GGally package
(48). Distributions and scatterplots were used to understand the
relationships between UL performance variables in preparation
for additional analyses and for later simplification of the cluster
solutions that emerged.

Second, a principal component analysis (PCA) was conducted
using the factoextra package on datasets that included 12, 9, 7,
or 5 of the UL performance variables (49). Principal components
can be thought of as the underlying dimensions of the individual
UL performance variables (45). PCAs were calculated including
all 12 performance variables, then variables were systematically
eliminated to exclude the variables that are complex to calculate
(e.g., used 30 vs. 1Hz data) and the variables with less straight
forward clinical interpretation. Scree plots were examined for
each of the models (5, 7, 9, and 12 UL performance variables) to
determine how many principal components explained variance
in the UL performance variables. Further, we examined the
loadings of the input variables on each of the resulting PCs.

Third, different numbers of clusters were evaluated and the
solutions were calculated using the NbClust and clusertend
packages (50, 51). A k-means cluster analysis expects the number
of clusters to be specified prior to the analysis. Thus, we started
with 3-clusters as a reasonable solution to produce clusters of low,
medium and high UL performance. There are multiple statistical
methods for determinizing the optimal number of clusters. We
evaluated potential solutions using: (1) the elbow method (52),
(2) the silhouette method (53), and (3) the gap statistic (27).
Although there was no clear single “elbow” where adding clusters
led to diminishing returns in variance explained, these methods
indicated that 3-, 4-, and 5-cluster solutions were progressively
better explanations of the data (see section Results). Thus in the
interests of parsimony, we focused on these three different cluster
sizes in subsequent analyses.

A total of 12 cluster solutions (3-, 4-, or 5-clusters with 12, 9, 7,
and 5 input variables) were calculated to systematically eliminate
UL performance variables to create the most parsimonious
solution (50, 51). The most complex model was calculated
first (including all 12 performance variables) for a 3-, 4-, and
5-clusters. The second most complex model included 9 UL
performance variables, excluding the three variables calculated
from the 30Hz data that are proposed to measure quality of UL
activity (6, 24–26) (see Table 1). These variables were removed
because they are more complex to calculate, have not been
validated in clinical populations (22), and did not add relevant
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TABLE 1 | Upper limb performance variables.

Upper limb performance variable name Description Data

source

Included in

final solution

Duration

Hours of paretic/non-dominant limb activity (7, 8) Time, in hours, that the paretic/non-dominant limb is moving. 1Hz X

Hours of non-paretic/dominant limb activity (7, 8) Time, in hours, that the non-paretic/dominant limb is moving. 1Hz X

Isolated paretic/non-dominant limb activity (8) Time, in hours, that the paretic/non-dominant limb is moving, while the

non-paretic/dominant limb is still.

1 Hz

Isolated non-paretic/dominant limb activity (8) Time in hours that the non-paretic/dominant limb is moving, while the

paretic/non-dominant limb is still.

1 Hz

Magnitude

Median acceleration of paretic/non-dominant limb*

(3, 8, 21)

Magnitude of accelerations of the paretic/non-dominant limb, in activity

counts or gravitational units.

1Hz X

Bilateral magnitude* (3, 8, 21) Intensity, or magnitude of accelerations of movement across both arms, in

activity counts.

1Hz

Variability

Acceleration variability of paretic/non-dominant limb

activity* (12, 23)

Standard deviation of the magnitude of accelerations across the

paretic/non-dominant limb, reflecting the variability of paretic/non-dominant

limb movement, in activity counts.

1Hz X

Symmetry

Use ratio† (7, 9, 40) Ratio of hours of paretic/non-dominant limb movement, relative to hours of

non-paretic/dominant limb movement.

1Hz X

Magnitude ratio† (8, 12, 23) Ratio of the magnitude of paretic/non-dominant UL accelerations relative to

the magnitude of the non-paretic/dominant UL accelerations. This ratio

reflects the contribution of each limb to activity, expressed as a natural log.

1Hz

Quality of movement

Jerk asymmetry index (26) Ratio of the average jerk magnitude between the paretic/non-dominant limb

and the non-paretic/dominant limb. Higher jerk represents less smooth

movement, and an index of 0 represents similar smoothness of movement

in the paretic/non-dominant and non-paretic/dominant limbs. Values are

bounded between −1 and +1.

30Hz

Spectral arc length of paretic/non-dominant and

non-paretic/dominant limb (6, 24, 25)

A measure of movement smoothness that quantifies movement

intermittencies independent of the movement’s amplitude and duration.

30Hz

Longer spectral arc lengths are reflective of less smooth or less coordinated

movement in either the paretic/non-dominant or non-paretic/dominant limb

respectively

30Hz

*Variables that are quantified in activity counts, computed by the Actilife proprietary software such that 1 activity count = 0.001664 g.
†For persons with stroke, ratios are paretic to non-paretic, while for neurologically-intact adults, ratios are non-dominant to dominant.

information to the analysis. For the 7 and 5 input variablemodels,
the decision was made to maintain at least one performance
variable from each of the other four aspects of UL performance
(duration, magnitude, variability and symmetry) to capture the
dimensionality of UL performance in daily life. Variables that
were simpler to calculate (1 vs. 30Hz) and interpret were retained
over those that required more complex calculations and/or
are more difficult to interpret for ease of eventual integration
into rehabilitation clinics (4). For example, both the bilateral
magnitude and the median acceleration of the paretic/non-
dominant limb activity quantify the magnitude or intensity of
UL activity. These two variables are highly correlated to each
other and the loadings from the PCA indicate that these two
variables had moderate, positive loadings on PC1, primarily.
For the 5 variable solution, the median acceleration of the
paretic/non-dominant limb was selected to remain because it had

a higher contribution to PC1 than the bilateral magnitude and it
is a simpler variable to calculate and interpret.

Fourth, we examined model fit metrics for each of the 12
solutions calculated to avoid overfitting as additional variables
and clusters were added. The total variance explained by the
models were extracted for each of the cluster-variable solutions
(3-, 4-, or 5-clusters with 12, 9, 7, and 5 input variables). Models
that had a higher % of total explained variance were deemed to
have a better model-fit (45). Additionally, a multivariate analysis
of variance (MANOVA) was calculated to re-fit the cluster
classifications (3-, 4-, and 5-clusters) to the multi-dimensional
space of all the UL performance variables (5, 7, 9, and 12
variables). This allowed for the Akaiki information criterion
(AIC) to be extracted to compare the model-fit for each of the
cluster solutions with respect to the variables included (45). As
the AIC imposes a penalty for additional model parameters,
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TABLE 2 | Demographics and participant characteristics of the three cohorts.

Variable Stroke cohort 1

(n = 57)

Stroke cohort 2

(n = 78)

Adult controls

(n = 76)

Age, years 66.5 ± 8.8 59.7± 10.9 54.3 ± 11.3

Sex, female 42% (24) 35% (27) 51% (39)

Race

African American 40% (23) 47% (36) 59% (44)

Caucasian 58% (33) 51% (40) 41% (30)

Asian 2% (1) 1% (1) NA

Other 1% (1)

Time post-stroke, weeks 24 (6–24) 52 (21–960) NA

Hand dominance, right 82% (47) 88% (68) 82% (62)

Concordance* 42% (24) 51% (40) NA

Action research arm test† 22.46 ± 20.76 31.3 ± 11.9 NA

Values are Mean ± SD or Percentage (n) except for Time-post-stroke which are

median (range).

*Concordance is where dominant limb = paretic limb.
†Action Research Arm Test is a measure of UL functional capacity. Higher scores are

better, with a maximum total score of 57 indicating normal performance.

selecting the model with the lowest AIC value helps avoid
overfitting and improve generalizability.

Fifth, the means and ranges of the UL performance variables,
concordance, and UL capacity (e.g., ARAT score) were computed
for each cluster in the final solution. Given statistically significant
omnibus effects from the multivariate analyses described above,
univariate ANOVAs were computed to determine how the means
of the UL performance variables differed from each other across
the clusters (alpha = 0.05) (54, 55). Post-hoc comparisons (using
a Tukey HSD correction) of each cluster to other clusters for five
different performance variables were calculated (alpha = 0.05).
Additionally, we looked at how the input cohorts (stroke cohort
1, stroke cohort 2, adult controls) were distributed across the
cluster solutions.

Finally, coxcomb charts were created. Coxcomb charts are
a two-dimensional chart type designed to plot one or more
series of values over multiple quantitative variables. The 5
UL performance variables are divided into equally segmented
wedges on the radial chart. The area of each individual
wedge is proportional to the magnitude of the score on that
dimension. Coxcomb charts were created from the standardized
performance variables to provide a visual representation of the
UL performance variable scores in each cluster both at the group
and individual level.

RESULTS

A sample of 211 participants were included in the analyses.
Demographic and participant characteristics for the three cohorts
are provided in Table 2. UL capacity was measured by the ARAT
and indicated that both stroke cohorts were and had moderate
deficits in UL functional capacity.

The Hopkins statistic was H = 0.78, indicating that clusters
exist in the sample. Table 3 summarizes the range of solutions

evaluated including 12, 9, 7, and 5 UL performance variables
in either a 3-, 4-, or 5-cluster solutions. Across the different
numbers of input variables, two principal components explained
the majority of the variance, PC1 and PC2. There were similar
loadings of the input variables onto these principal components,
regardless of the number of variables entered. Interestingly,
adding more performance variables (e.g., 12 vs. 5) was associated
with both PC1 and PC2 explaining less of the total variance
(see the first column of Table 3). Thus, across different numbers
of input dimensions, the number of principal components was
relatively stable. PC1 and PC2 appeared to be explaining similar
variance in all models. We therefore proceeded with including
only 5 input variables. When including 5 UL performance
variables, the first principal component (PC1) explained the most
variance (76.4%) and was comprised of variables that all had
moderate to strong, positive loadings, including; paretic/non-
dominant hours, median acceleration of paretic/non-dominant
limb activity, acceleration variability of paretic/non-dominant
limb activity and the use ratio. The second principal component
(PC2) explained less variance (17.6%) and was comprised of
primarily the non-paretic/dominant hours, a single variable
that had a strong, negative loading. See Supplementary Table 1

for the loadings of all factors of PC1 and PC2 for the final
chosen solution.

Across the models with differing numbers of UL performance
variables, a 5-cluster solution explained the most overall total
variance when compared to a 3- or 4-cluster solution as seen
in the middle portion of Table 3 and visually in Figures 1A,B

(including 5 performance variables). We then examined several
metrics to determine how many clusters were appropriate for
the 5-variable solution. Figure 1A supports that there are ≥

at least two clusters in this dataset and the flattened slope on
Figure 1A indicates that the reduction of within-cluster variance
is minimal and there are no further improvements after 5-clusters
for this dataset. We therefore explored a 3-, 4-, and 5- cluster
solutions. Figure 1B displays the effect of increasing numbers
of clusters on the total explained variance when including 5
UL performance variables and confirms that a 5-cluster solution
explains more total variance than the 3- or 4-cluster solutions.
Examining the AIC values seen in the last three columns of
Table 3, also confirmed that a 5-cluster solution produced the
best model fit compared to the 3- and 4-cluster solutions across
the different number of input variables (5, 7, 9, and 12 UL
performance variables). Although each solution was statistically
feasible, the chosen final solution was 5-clusters, from 5 UL
performance variables including: (1) hours of use of paretic/non-
dominant limb; (2) hours of use of non-paretic/dominant
limb; (3) median acceleration of paretic/non-dominant limb; (4)
acceleration variability of paretic/non-dominant limb activity;
and (5) use ratio. Figure 1C presents the location of the 5-clusters
across the two dimensional space. Dimension 1 (x-axis) is the
first principal component and dimension 2 (y-axis) is the second
principal component. The two clusters with the lowest overall
UL performance are represented by clusters numbered 1 and
2 with the highest in number 5. Figure 2 shows a scatterplot
matrix of how the 5 input variables relate to each other and to
the 5-clusters.
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TABLE 3 | Selection of clusters based on variance explained and model-fit.

Number of variables Variance explained by each PC Total variance by # of clusters AIC value by # of clusters

PC1 PC2 3 4 5 3 4 5

12 57.4% 13.1% 53% 58% 62% 2, 683.7 2, 442.2 2, 149.8

9 68.5% 16.5% 64% 69% 73% 1, 426.4 1, 114.7 879.2

7 75.6% 14.1% 70% 76% 79% 734.3 452.9 228.0

5 76.4% 17.6% 68% 75% 79% 475.6 229.1 44.7

Explained variance is presented in %. Values closer to 100% indicate greater variation explained.

AIC, Akaike’s Information Criterion. A lower AIC value indicates a better model when the clusters were used as predictor variables in multivariate ANOVAs based on the different outcome

variables (of 12, 9, 7, and 5 dimensions).

The means and ranges of each UL performance variable,
percentage concordant, and UL capacity for each of the 5-
clusters in the final solution are presented in Table 4. The clusters
are presented with the “lowest” overall UL performance within
the first column and the “highest” overall UL performance
in the last column. The 5-clusters become categories of UL
performance and are named based on a synthesis of information
from other publications that have described UL performance in
daily life (45, 56, 57) not on the underlying PCA dimensions.
The cluster names were chosen as intuitively as possible and
represent the overall amount of UL activity and integration
of the ULs into daily life activities (see Discussion for further
interpretation). We refer to these clusters/categories as: (1)
Minimal Activity/Rare Integration; (2) Minimal Activity/Limited
Integration; (3) Moderate Activity/Moderate Integration; (4)
Moderate Activity/Full Integration; and (5) High Activity/Full
Integration. The cluster with the lowest UL performance is the
Minimal Activity/Rare Integration, this cluster has the lowest
mean values on variables that quantify duration, magnitude and
variability of UL activity. People in this cluster use their non-
paretic UL ∼2.5 times more than their paretic UL and have
little to no magnitude or variability of their paretic UL activity
in daily life. People in the Minimal Activity/Limited Integration
cluster use both the paretic and non-paretic limb for more
overall hours than the Minimal Activity/Rare Integration cluster,
but the non-paretic limb is still active twice as much as the
paretic UL. Additionally, people in this cluster have slightly
higher mean values on performance variables that quantify
both the magnitude and variability of the paretic limb when
compared to the Minimal Activity/Rare Integration cluster. Both
of these clusters have little integration of the ULs into activity,
as suggested by a mean use ratio below 0.50 the Minimal
Activity/Rare Integration cluster and a mean use ratio just above
0.50 in the Minimal Activity/Limited Integration cluster. The
cluster with overall, moderate UL performance is the Moderate
Activity/Moderate Integration cluster. In this cluster, people have
more symmetrical UL use compared to the two lower clusters,
which is reflected in the in the use ratio (0.85) and the mean
values of both duration variables (4.5 vs. 5.3 h). People in this
cluster have moderate values on variables that quantify both the
magnitude and variability of paretic/non-dominant limb activity.
The two clusters with the highest overall UL performance are

the Moderate Activity/Full Integration and the High Activity/Full
Integration clusters. These clusters have progressively higher
mean values of variables quantifying duration, magnitude and
variability of UL activity with those in the High Activity/Full
Integration cluster having the highest mean values compared
to the other clusters. Both of these clusters however, have
similar mean values of the use ratio, which is approaching 1.0
indicating that people in these two clusters have relatively equal
contributions of both ULs. Interestingly, if only the use ratio
was used to examine these two clusters it could be assumed
that they are relatively equal, but the other variables show
they are not. The two clusters with the highest overall UL
performance also had the highest % of people with concordant
stroke. It is also noteworthy that participants within each of
the 5 clusters have wide, overlapping ranges of UL capacity, as
indicated by the mean and ranges of ARAT scores in the bottom
row of Table 4, consistent with the premise that UL capacity
and UL performance are different, but related constructs.
Figure 3 presents how the three included cohorts separated
into the 5-clusters. The two clusters with the lowest overall UL
performance (Minimal Activity/Rare Integration and Minimal
Activity/Limited Integration) are comprised of only persons from
the stroke cohorts. The cluster with moderate UL performance
(Moderate Activity/Moderate Integration) contains mostly people
with stroke but there are also a few neurologically intact adult
controls in this cluster too. The two clusters with the highest
overall UL performance (Moderate Activity/Full Integration and
High Activity/Full Integration) contains the neurologically intact
adult controls and some persons with stroke. Finally, there was
a statistically significant omnibus effect of cluster in each of
the univariate ANOVAs for the 5 UL performance variables (p-
values for each variable <0.001). Note that not all clusters were
statistically different from all other clusters in each variable,
based on post-hoc t-tests. However, this speaks to the multivariate
nature of the cluster analyses; across all dimensions, these clusters
group similar to observations together, but along any single
dimension there will likely be overlap in the neghiboring clusters.

Figure 4 presents the group and individual coxcomb charts for
each of the 5-clusters. The rows (A, B, C, D, E) are presented
in order of increasing overall UL performance, with group
data in the first column in dark gray and then individual
examples of people in that cluster in columns two and three
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FIGURE 1 | (A) Scree plot representing how the within-cluster variance changes as increasing numbers of clusters are formed with 5 UL performance variables.

(B) Line plot representing how the total explained variance changes with increasing numbers of clusters on dataset including 5 UL performance variables. The dashed

lines represent the total variance explained for a 3- (blue), 4- (red), or 5- (green) cluster solution. (C) Visual representation of the 5-clusters with 5 UL performance

variables across dimension 1 (x-axis) and dimension 2 (y-axis). The cluster number is presented in the location of the centroid of each cluster. The shape of the point

within the cluster represents the if a participant was from a stroke (triangle) or control (+ sign) cohort.
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FIGURE 2 | Scatterplot matrix of the 5 input variables as a function of the 5 different clusters. The diagonal shows density plots (i.e., the univariate distribution) of each

input variable as a function of the different clusters. The lower left panels show the bivariate distributions for each pair of variables with the point shapes and gray

scales corresponding to the different clusters (see legend). The upper right panels show the Spearman rank order correlations for each pair of variables (on the whole,

ignoring clusters). ***p < 0.001.

(A-E, numbered 2 and 3 respectively) in light gray. Each of
the 5 standardized UL performance variables are represented
by wedges within the plot, and the area of the wedge reflects
the standardized value on that single variable. Figures 4A,B
present the two clusters with the lowest overall UL performance
(Minimal Activity/Rare Integration andMinimal Activity/Limited
Integration), the wedges in these two clusters are small with
the exception of the non-paretic/D hours of use, indicating
that people in these two clusters use their non-paretic UL out
of proportion to their paretic UL. As you move down each
row fromMinimal Activity/Rare Integration (Figure 4A) to High
Activity/Full Integration (Figure 4E) one can see that the wedges
get larger and begin to fill more area of the radial plot, however
some variables are still out of proportion to the others as seen in
Figures 4C,D. By the final group plot in Figure 4E1, the wedges
for each variable span the largest area and almost form a perfect
circle, compared to the clusters with lower UL performance
(Figures 4A,B), indicating people in this cluster have the highest
values across all 5 performance variables.

DISCUSSION

In a large sample of persons with and without neurological
UL deficits, we used a k-means cluster analysis with multiple
UL performance variables, captured via accelerometry, to derive
a 5-cluster categorization that included 5 UL performance
variables. Two principal components explain most of the
variance in the input variables and 5-clusters explained the
most total variance and had the best model fit. In this 5-cluster
solution, two groups with what might be considered “normal”
UL performance (Moderate Activity/Full Integration and High
Activity/Full Integration) emerged, as indicated by the presence of
many neurologically intact adult controls in those categories. One
category in the middle had moderate UL performance (Moderate
Activity/Moderate Integration), while two categories had low,
overall UL performance (Minimal Activity/Rare Integration and
Minimal Activity/Limited Integration). The names of each of
the 5 categories were chosen for their overall UL activity and
integration, with the future goal that these categories could be
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TABLE 4 | Means (ranges) of UL performance and capacity variables by cluster.

Variable name Minimal activity/

rare integration

(N = 29)

Minimal activity/

limited integration

(N = 41)

Moderate activity/

moderate integration

(N = 43)

Moderate activity/

full integration

(N = 57)

High activity/

full integration

(N = 41)

Duration

Paretic/ND Hrs 1.5 (0.0–2.8) 4.6 (2.1–8.0) 4.5 (1.9–6.5) 7.4 (5.2–9.1) 10.2 (8.6–15.5)

Non-paretic/D Hrs 4.1 (0.1–6.7) 8.4 (6.2–11.6) 5.3 (2.4–8.0) 8.0 (5.1–11.0) 10.7 (8.5–14.2)

Magnitude

Median acceleration paretic/ND (counts)* 0 (0–6) 5 (5–24) 25 (7–53) 47 (21–76) 61 (33–92)

Variability

Acceleration variability of paretic/ND (counts)* 27.3 (11.9–49.4) 34.8 (21.6–57.3) 58.9 (40.0–89.3) 75.9 (46.5–102.6) 80.3 (53.0–100.8)

Symmetry

Use ratio 0.38 (0.04–0.70) 0.55 (0.22–0.78) 0.85 (0.60–1.32) 0.94 (0.75–1.15) 0.96 (0.81–1.10)

Additional data about the clusters

Concordance† 38% (11) 39% (16) 50% (19/38) 70% (14/20) 57% (4/7)

Action research arm test‡ 18.5 (0–43) 27.8 (6–57) 45.3 (22–57) 48.4 (33–57) 44.1 (24–55)

*Data are reported in activity counts computed by the Actilife proprietary software, such that 1 activity count = 0.001664 gravitational units (g).
†Dominant limb = paretic limb, computed for persons in stroke. Percentage is expressed relative to only persons with stroke, not controls, in the upper three categories.
‡Action Research Arm Test is a measure of UL functional capacity. Higher scores are better, with a maximum total score of 57 indicating normal capacity.

FIGURE 3 | Bar plot of the counts of participants from each of the 3 cohorts that separated into the 5-clusters. The two clusters with the lowerst overall UL

performance are comprised of persons from the stroke cohorts only. The cluster with moderate UL performance contains primarily persons with stroke and a few

neurologically intact adult controls. The two clusters with the highest overall UL performance include primarily neurologically intact adult controls, as well as persons

with stroke.

evaluated for their application to other clinical populations, not
just persons with stroke.

The 5-category solution from 5 UL performance variables,
derived from this statistical analysis, leads to a clinically-logical
interpretation of UL performance in daily life. In this analysis
we purposefully included three cohorts of persons with and
without stroke in order to capture a wide range of the variables,

extracted from accelerometer data, that quantify different aspects
of UL performance in daily life. In Figure 3, the two categories
with the highest overall UL performance (Moderate Activity/Full
Integration and High Activity/Full Integration) contain most of
the neurologically intact adult controls indicating that people
without neurological impairments display a wide range of UL
activity that can be considered unimpaired or normal. This is
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FIGURE 4 | Coxcomb charts of the five clusters, illustrating the contribution of the UL performance variables on a standardized scale. The first column plots group

data, while the 2nd and 3rd columns plot individual participant examples. (A) Minimal Activity/Rare Integration cluster; (A1) group chart of people within this cluster;

(Continued)
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FIGURE 4 | (A2) is a person from stroke cohort 1, ARAT = 4; and (A3) is a person from stroke cohort 2, ARAT = 10. (B) Minimal Activity/Limited Integration cluster;

(B1) group chart of people within this cluster; (B2) a person from stroke cohort 2, ARAT = 10; and (B3) a person from stroke cohort 1, ARAT = 6. (C) Moderate

Activity/Moderate Integration cluster; (C1) group chart of people within this cluster; (C2) a person from stroke cohort 1, ARAT = 36; and (C3) a person from the adult

controls. (D) Moderate Activity/Full Integration cluster; (D1) group plot for this cluster; (D2) a person from stroke cohort 2, ARAT = 42; and (D3) a person from the adult

controls. (E) High Activity/Full Integration cluster; (E1) group chart of people within this cluster; (E2) a person from stroke cohort 1, ARAT = 55; and (E3) a person from

the adult controls.

important because these people have integrated their ULs, as
indicated by the use ratio variable, but people in these categories
have different levels of overall UL activity, ranging frommoderate
to high UL activity. This is not unusual when we consider the
wide range of activities and behaviors of people (58–60). For
example, whenwalking performance is quantified by pedometers,
neurologically-intact adults walk symmetrically but present with
a wide range of variability in the total number of steps-per-
day that can all be considered “normal” walking performance
(58, 61–65). Based on the current results, it appears that people
without neurological UL impairments similarly display a wide
range of UL activity that can also be considered unimpaired or
normal. For example, two neurologically intact older adults may
have very different activities of daily living and leisure activities
(e.g., swimming vs. knitting) but would both be considered to
have “normal” UL performance. In other efforts to categorize
UL activity, some groups have found four categories (54, 55, 57),
and others have found six (56). These analyses however tended
to examine only the separation of UL activity of persons with
stroke. In this analysis, the goal was not to form categories to
differentiate between those who had a stroke and those who did
not. Instead, the goal was to categorize people based on their
overall UL use in daily life. In the 5-category solution here, we see
that the two categories with the lowest UL activity and integration
are comprised of only persons with stroke, but there are also
people with stroke in the three categories with the highest overall
UL performance too. This is a positive finding, showing that some
people with stroke use their ULs similarly to neurologically intact
adults. Persons with stroke who ended up in the two categories
with the highest overall UL performance have likely experienced
either full recovery of their ULs following their stroke, or have
figured out how to use the wide range of capacity that they have
to integrate their paretic limb and be active in daily life (19). An
example of this is shown in Figure 4E2 which is an individual
from stroke cohort 1 who ended up in the High Activity/Full
Integration category.

Categories of UL performance have tremendous research
and clinical potential. Within other biomedical science fields,
formation of categories which encompass multi-dimensional
measures have facilitated clinical decision making for persons
with health conditions (see section Introduction). Specific to
rehabilitation, categories of ambulation (based on the capacity
measure of walking speed) have been validated, shown to be
sensitive to change (66–68), used to set goals in clinical practice,
and have been used as a primary outcome in a Phase III clinical
trial (69). In that trial, the primary outcome was the percentage
of people who changed (leaped) to a higher ambulation
category after the intervention. The identified categories of
UL performance that emerged in this analysis could be useful

for future trials of persons with UL impairments following
subsequent, future validation studies. Categories that emerged
in this analysis have stratified participants into groupings with
similar overall UL performance, representing a profile of arm
activity in daily life (38, 55, 70). Individuals within each category
have similar ranges of each performance variable included (e.g.,
duration, magnitude, variability and symmetry) that formed the
5-clusters. Interestingly, in this analysis people with stroke within
each of the five clusters display a wide range of UL capacity
across the clusters. Additionally, more people in the two clusters
with highest overall UL performance have concordant stroke
compared to the three clusters with lower UL performance.
These findings are consistent with prior work indicating that
people with concordant stroke (dominant limb = paretic limb)
tend to have differences in the patterns of UL use (56, 71) and
experience better recovery (19). One can envision that these
categories could be used in future trials to analyze smaller
subsets of individuals based on their UL category and to better
understand how UL performance variables quantify change
during rehabilitation therapy.

From a clinical perspective, the categories that emerged
offer the future opportunity to transition measurement of UL
performance in daily life for persons receiving UL rehabilitation
away from the current confines of rehabilitation research labs,
and into standard of care (4, 72). The results of this analysis
are a first step in simplifying measurement of UL performance
in daily life by exploring the underlying structure in the set of
observed variables (73). A future option could be to offer a user-
friendly, software package to rehabilitation clinicians that would
calculate the 5 UL performance variables included in this analysis
from data extracted from bilateral wrist-worn accelerometers.
Based on a person’s values across the variables, a category of
UL performance could be determined and used to communicate
current UL performance and used to set goals for future UL
performance. Based on the aspects of movement (duration,
magnitude, variability, symmetry) selected to form the categories,
it is possible that these categories could be highly relevant for
many clinical conditions affecting UL performance in daily life,
not just those with stroke. Just as with mobility, there are plenty
of biological and psychological reasons why people could have
limited UL performance in daily life (58, 74, 75). Thus, the names
selected for each category might be applicable to other clinical
populations that have similar or different UL impairments and
capacity limitations, beyond the typical asymmetrical deficit
which is a major aspect of stroke UL movement (3).

Limitations
There are a few limitations to consider when interpreting
the results of this study. First, the three cohorts used in
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this analysis generated a sample of over 200 people with
stroke and neurologically intact adult controls. While our
sample size was large and had wide distributions of each UL
performance variable, validation on another large, independent
sample is needed for generalization and implementation into
clinical practice. Future studies, including people with other
clinical diagnoses beyond stroke are needed in order to
understand how the number of UL performance variables
and subsequently the number of clusters generalize to other
populations. Second, theModerate Activity/Moderate Integration
category is less straightforward to understand than the other
four categories that emerged in this analysis. This category
is comprised primarily of persons from both stroke cohorts,
however there are a few neurologically intact adult controls who
ended up in this category as well. Unfortunately, we do not
have enough information about other cognitive, socioeconomic,
physical, emotional or behavioral reasons why these few
people without neurological UL impairments ended up in this
category with reduced overall UL activity and integration. This
category specifically will need to be externally validated in a
larger sample.

Conclusions
The present study identified 5 categories of UL performance in
a combined cohort of neurologically impaired and unimpaired
adults. These categories can be formed with a minimum
of 5 UL performance variables, extracted from bilateral
wrist-worn accelerometers that span the possible ranges
of UL activity and integration. Further validation of both
the number of UL performance variables and categories
will be required on a larger, more heterogenous sample.
Following validation, these categories may be used as

outcomes in UL stroke research and implemented into
rehabilitation therapies.
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