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Deep learning-based automated
segmentation and quantification
of the dural sac cross-sectional
area in lumbar spine MRI
George Ghobrial1* and Christian Roth2*
1Clinic for Diagnostic and Interventional Radiology and Neuroradiology, Klinikum Bremerhaven
Reinkenheide, Bremerhaven, Germany, 2Clinic for Diagnostic and Interventional Neuroradiology,
Klinikum Bremen-Mitte/Bremen-Ost, Bremen, Germany

Introduction: Lumbar spine magnetic resonance imaging (MRI) plays a critical role
in diagnosing and planning treatment for spinal conditions such as degenerative disc
disease, spinal canal stenosis, anddischerniation.Measuring thecross-sectional area
of the dural sac (DSCA) is a key factor in evaluating the severity of spinal canal
narrowing. Traditionally, radiologists perform this measurement manually, which is
both time-consuming and susceptible to errors. Advances in deep learning,
particularly convolutional neural networks (CNNs) like the U-Net architecture,
have demonstrated significant potential in the analysis of medical images. This
study evaluates the efficacy of deep learning models for automating DSCA
measurements in lumbar spine MRIs to enhance diagnostic precision and alleviate
the workload of radiologists.
Methods: For algorithm development and assessment, we utilized two extensive,
anonymized online datasets: the “Lumbar Spine MRI Dataset” and the SPIDER-
MRI dataset. The combined dataset comprised 683 lumbar spine MRI scans
for training and testing, with an additional 50 scans reserved for external
validation. We implemented and assessed three deep learning models—U-Net,
Attention U-Net, and MultiResUNet—using 5-fold cross-validation. The models
were trained on T1-weighted axial MRI images and evaluated on metrics such
as accuracy, precision, recall, F1-score, and mean absolute error (MAE).
Results: All models exhibited a high correlation between predicted and actual
DSCA values. The MultiResUNet model achieved superior results, with a
Pearson correlation coefficient of 0.9917 and an MAE of 23.7032 mm2 on the
primary dataset. This high precision and reliability were consistent in external
validation, where the MultiResUNet model attained an accuracy of 99.95%, a
recall of 0.9989, and an F1-score of 0.9393. Bland-Altman analysis revealed
that most discrepancies between predicted and actual DSCA values fell within
the limits of agreement, further affirming the robustness of these models.
Discussion: This study demonstrates that deep learning models, particularly
MultiResUNet, offer high accuracy and reliability in the automated segmentation
and calculation of DSCA in lumbar spine MRIs. These models hold significant
potential for improving diagnostic accuracy and reducing the workload of
radiologists. Despite some limitations, such as the restricted dataset size and
reliance on T1-weighted images, this study provides valuable insights into the
application of deep learning in medical imaging. Future research should include
larger, more diverse datasets and additional image weightings to further validate
and enhance the generalizability and clinical utility of these models.

KEYWORDS

deep learning, lumbar spine MRI, dural sac cross-sectional area (DSCA), medical image

segmentation, MultiResUNet, automated diagnosis, spinal canal stenosis, radiological
assessment
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fradi.2025.1503625&domain=pdf&date_stamp=2020-03-12
mailto:dr_zoza@hotmail.com
mailto:christian.roth@me.com
https://doi.org/10.3389/fradi.2025.1503625
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fradi.2025.1503625/full
https://www.frontiersin.org/articles/10.3389/fradi.2025.1503625/full
https://www.frontiersin.org/articles/10.3389/fradi.2025.1503625/full
https://www.frontiersin.org/articles/10.3389/fradi.2025.1503625/full
https://www.frontiersin.org/journals/radiology
https://doi.org/10.3389/fradi.2025.1503625
https://www.frontiersin.org/journals/radiology
https://www.frontiersin.org/


Ghobrial and Roth 10.3389/fradi.2025.1503625
1 Introduction

Low back pain (LBP) is a pervasive condition globally,

significantly impacting individuals and healthcare systems.

Classified into axial lumbosacral pain, radicular pain, and referred

pain (1, 2), it affects the lumbar spine and sacrum, manifests

along dermatomal patterns, or spreads to non-dermatomal areas.

LBP is a leading cause of disability and medical consultation (3,

4), with an annual prevalence of 10%–30% and a lifetime

prevalence of 65%–80% (5). It is categorized into acute (<6

weeks), subacute (6–12 weeks), and chronic (>12 weeks) phases (3,

6). Despite many cases resolving within six weeks, 10%–40%

persist, requiring differentiated management strategies (3).

Initial management of acute and subacute LBP focuses on

ruling out serious underlying conditions (“red flags”) and

encouraging activity (2, 3, 5). Chronic LBP, affecting a significant

proportion of patients, necessitates a multidisciplinary approach

integrating medical, psychological, and physical therapies (7).

Imaging, particularly MRI, plays a crucial role in diagnosing and

planning treatment for various spinal pathologies such as

degenerative disc diseases, spinal stenosis, and herniated discs

(8). MRI offers superior soft tissue contrast without ionizing

radiation, making it the preferred modality for detailed spinal

assessments (9).

Evaluating the severity of spinal canal stenosis and related

symptoms relies heavily on the measurement of the cross-

sectional area of the dural sac (DSCA) (10). Historically, this

measurement has been performed manually by radiologists,

which is not only time-consuming but also subject to variability

and errors (11). Consistent and accurate DSCA measurement is

essential for effective diagnosis and treatment planning,

highlighting the need for automated solutions. Deep learning

(DL), especially Convolutional Neural Networks (CNNs), has

demonstrated substantial potential in the analysis of medical

images, including tasks like segmentation, classification, and

detection (12). The U-Net model, a widely recognized CNN

architecture, has achieved success in numerous biomedical

segmentation tasks, including the segmentation of cells, organs,

and tumors (13). The 3D U-Net architecture has been

successfully adapted for volumetric medical image segmentation,

demonstrating state-of-the-art performance in various

applications, including brain tumor and spinal structure

segmentation, with superior Dice similarity coefficients and

enhanced segmentation accuracy (14–16). Studies have

highlighted the importance of architectural modifications, such as

dilated convolutions and advanced decoder designs, in addressing

the unique challenges of 3D imaging (15, 17). Furthermore,

efforts like the “nnU-Net” framework emphasize rigorous

validation and adaptability of U-Net models to diverse datasets,

achieving consistent results in clinical applications (15, 17).

Automated measurement systems based on deep learning hold

transformative potential beyond lumbar spine cases, extending

their applicability to various clinical domains. For instance, these

methods can streamline the analysis of brain, cardiac, and

abdominal imaging, where precise and consistent measurements

are critical for diagnosing complex conditions like tumors,
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arrhythmias, and organ-specific pathologies (18, 19). Despite the

potential, the application of DL models specifically for automated

DSCA measurement in lumbar spine MRIs remains

underexplored. Manual DSCA measurement not only demands

considerable time but also exhibits inter-radiologist variability,

affecting diagnostic accuracy (20). An automated, DL-based

approach could overcome these limitations by providing

consistent, objective measurements, thereby improving diagnostic

accuracy and aiding treatment planning. Furthermore, such a

method could alleviate the workload of radiologists, enabling

more efficient use of resources.

This research focuses on developing and evaluating DL

algorithms for the automated detection and quantification of

DSCA in axial T1-weighted lumbar spine MRI scans. By utilizing

publicly accessible MRI datasets, this study aims to train and

validate these models to determine their effectiveness in

automating DSCA measurement. The primary objective is to

advance the research on DL applications in medical imaging,

thereby enhancing efficiency and accuracy in the assessment

of spinal conditions and improving patient outcomes through

more informed treatment planning. By automating DSCA

measurement, this research seeks to evaluate a reliable tool that

can consistently deliver accurate results, supporting radiologists

and clinicians in diagnosing and treating spinal conditions. This

advancement not only has the potential to streamline clinical

workflows but also to standardize measurements, reducing

variability and improving overall patient care. The insights

gained from this study could pave the way for the development

of DL models for other clinically relevant features in spine MRI,

promoting broader applications in medical imaging and beyond.
2 Material and methods

2.1 Study design and ethical considerations

This study utilized two large, publicly available datasets from

other universities to develop the algorithm (21–23). Both datasets

were anonymized and made available for research purposes. The

“Lumbar Spine MRI Dataset” from Liverpool John Moores

University, England, encompasses 515 cases with symptomatic

back pain and various demographic characteristics. All

procedures conformed to the ethical standards of the United

Kingdom and the Kingdom of Jordan and complied with the

Declaration of Helsinki of 1964 and its later amendments. Data

were collected between September 2015 and July 2016 from

patients who visited the hospital with corresponding symptoms.

Written informed consent was obtained from each patient before

data collection. Personal identifiers were removed to anonymize

the data, including patient names, birthdates, and visit dates. The

MRI scans included axial views of the lower three lumbar

vertebrae and intervertebral discs, with most image slices having

a resolution of 320 × 320 pixels at 12 bits per pixel. T1-weighted

MRI images from this dataset were used.

The SPIDER MRI dataset from Radboud University Medical

Center Nijmegen included 218 patients. In total, 447 MRI series
frontiersin.org
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of the lumbar spine were retrospectively collected from patients

with a history of lower back pain. Institutional review board

approval was gained from the Radboud University Medical

Center (approval number: 2016–2275). Data were collected from

four different hospitals in the Netherlands, including a university

hospital, two regional hospitals, and an orthopedic hospital,

between January 2019 and March 2022. Axial T1 sequences

(voxel size: 3.30 × 0.59 × 0.59 mm) from this dataset were

included. A subset of 50 patients from the combined datasets

was used as an external validation set to evaluate the models

further, ensuring that these data were not used during model

training. Thus, a total of 683 data points were used for training

and testing, with an additional 50 data points for

external validation.
2.2 Study population and data sources

The dataset used comprised T1-weighted axial MRI scans,

along with manually segmented data to serve as the Ground

Truth. The images were standardized to a resolution of 320 × 320

pixels and normalized by scaling each pixel’s intensity by 255.0.

To binarize the segmented slices, pixels with an intensity value of

150/255 were set to 1.0, while all other pixels were set to 0.0. We

standardized the MRI scans to a uniform resolution and

normalized their intensities, ensuring a consistent intensity range

that facilitates reliable model convergence and performance

comparison. To produce clear and consistent binary

segmentation masks, pixels above an intensity threshold of 150/

255 were set to 1.0, distinctly separating the dural sac from

surrounding tissues. To ensure a comprehensive evaluation of the

models’ performance across various subsets of data, a 5-fold

cross-validation approach was employed (Figure 1). Employing a

5-fold cross-validation strategy allowed each dataset partition to

serve as a validation set once, reducing variance in model

evaluation and improving generalizability. This rigorous

approach provided a more stable and comprehensive assessment

of the model’s robustness, ensuring that the reported

performance metrics are both reliable and applicable to diverse

clinical scenarios. Each of the three deep learning architectures—

U-Net, Attention U-Net, and MultiResUNet—underwent training

and validation five times, with each fold serving once as the

validation set, while the other four folds constituted the

training set.
FIGURE 1

Diagram illustrating the 5-fold cross-validation process applied to a
dataset of 683 lumbar spine MRI scans. The dataset is divided into
five equal folds, each serving as the test set once while the
remaining four folds serve as the training set. This process is
repeated five times, ensuring each fold is used as the test set
once. Additionally, an external validation set consisting of 50
independent lumbar spine MRI scans is used to further assess the
model’s performance. The use of cross-validation and an
independent external dataset ensures robust model evaluation.
2.3 Segmentation

Ground truth for training and testing machine learning

algorithms for image segmentation was derived from annotated

images marking the dural sac (Region of Interest, ROI). The

manual delineation and refinement of the segmentation masks

were performed by the lead author (GG), a senior physician

radiologist with over 15 years of clinical experience in diagnostic
Frontiers in Radiology 03 frontiersin.org
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FIGURE 2

Representation of the segmentation process using 3D slicer (version 5.2.2) (24). An intensity histogram is used to pre-mark a part of the DSCA on a
representative slice, and an AI-based automated algorithm fills in adjacent areas of the DSCA. This allows for precise segmentation of the region.
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radiology and neuroradiology, ensuring accurate and reliable

annotations. The annotation process involved segmenting the

dural sac on the slices using the 3D Slicer software (version

5.2.2) (24). For segmentation, the most representative axial slices

of the final three segments were chosen, specifically those closest

to the median height of the intervertebral disc. Lumbar

T1-weighted MRI DICOM images were processed and imported

into the 3D Slicer software (24). A combination of manual and

semi-automatic techniques was employed for segmenting the

dural sac. Initially, the central portions of the dural sac were

manually delineated, and local intensity histograms were utilized

to establish thresholds (Figure 2). These thresholds facilitated the

volumetric segmentation of the dural sac, extending to adjacent

slices, with subsequent manual refinements. Each patient’s

segmentation encompassed 3–8 slices of the lumbar region,

culminating in a final segmentation mask that served as the

ground truth (Figure 3).
2.4 Development of the AI-based algorithm

Three distinct architectures were implemented for the

automatic identification and computation of the dural sac cross-

sectional area. These architectures included the basic U-Net

model (Figure 4), an enhanced Attention U-Net variant, and a

MultiResUNet model. Supplementary Table S1 provides an
Frontiers in Radiology 04
overview, contrasting the key architectural and functional

differences between U-Net, Attention U-Net, and MultiResUNet.

The models were built using the Adam optimizer and a specially

designed weighted binary cross-entropy loss function. Following

a manual grid search, the weights for the positive and negative

classes were set at 20.0 and 1.0, respectively. The basic U-Net

model consisted of several layers, including convolutional layers,

max-pooling layers, and up-sampling layers, all activated with

ReLU functions. The Attention U-Net variant introduced

attention gates to emphasize important features during training,

thereby enhancing the model’s focus on specific image regions.

The MultiResUNet model incorporated multi-resolution analysis,

featuring a multi-resolution block with three convolutional layers

and ResPaths to capture detailed image information. Training for

each model was conducted with a batch size of 8 across 20

epochs. A ModelCheckpoint callback was employed to save the

optimal model based on validation loss.

The performance of the trained models was assessed by

calculating the mean absolute error (MAE) between the predicted

and actual areas. To illustrate model performance, scatter plots

and Bland-Altman plots were generated. For each model, a

representative image was selected to showcase the input image,

ground truth segmentation, and predicted segmentation, along

with the respective cross-sectional areas (in mm2). The function

calculate_area was utilized to determine the dural sac cross-

sectional area from the segmentation mask. This function
frontiersin.org
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FIGURE 3

Illustration of a segmentation mask from a segmentation process. This mask is used as the “Ground-Truth” for the algorithm to learn the actual DSCA
area and compare it with the algorithm’s prediction.

FIGURE 4

Schematic illustration of the U-Net architecture utilized for image segmentation. The model exhibits the characteristic U-shaped encoder-decoder
structure with symmetric contracting (encoding) and expansive (decoding) paths interconnected through skip connections. The encoding path
employs convolutional layers (Conv2D) followed by max-pooling layers (MaxPooling2D) to progressively reduce spatial dimensions while
increasing feature channel depth. Conversely, the decoding path applies transposed convolutional layers (Conv2DTranspose) coupled with skip
connections from corresponding encoding layers to reconstruct high-resolution segmentation masks.

Ghobrial and Roth 10.3389/fradi.2025.1503625
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required two inputs: the binary mask of the segmented image and

the pixel size in millimeters (derived from the DICOM volume

information). The function computed the total number of pixels

in the mask using np.sum and then multiplied this by the square

of the pixel size in millimeters to obtain the area in square

millimeters, with the final output being the calculated area in mm2.
2.5 Evaluation of the algorithm and
evaluation metrics

To assess the performance of the deep learning models, various

statistical metrics were computed. The models evaluated included a

standard U-Net, an Attention U-Net, and a MultiResUNet.

Performance metrics such as accuracy, precision, recall, and

F1-score were used to gain insights into the models’ capabilities.

These metrics evaluated the models’ precision in correctly

identifying positive instances, their recall in recognizing actual

positive instances, overall accuracy, and the harmonic mean of

precision and recall (F1-score). Specifically, accuracy was calculated

as the ratio of correct predictions (both positive and negative) to

the total number of predictions. Precision was defined as the ratio

of true positive predictions to the total of true and false positive

predictions. Recall was the ratio of true positive predictions to the

total of true positive and false negative predictions. The F1-score

was calculated as the harmonic mean of precision and recall,

providing a balanced assessment of model performance.

Beyond these fundamental metrics, the absolute error in

estimating the cross-sectional area of the dural sac in the segmented

images was evaluated by comparing the predicted segmentation area

with the ground truth. For each model, the mean absolute error

(MAE) was computed. The MAE provided a measure of the

average magnitude of errors, disregarding their direction.

Additionally, the correlation between the actual and predicted cross-

sectional areas of the dural sacs was examined using Pearson’s

correlation coefficient. This coefficient measured the linear

relationship between two datasets, with +1 indicating a perfect

positive correlation, −1 a perfect negative correlation, and 0 no

correlation. Furthermore, a Bland-Altman analysis was conducted to

evaluate the agreement between the actual and predicted areas. This

involved plotting the differences between the predicted and actual

areas against the mean of these values and calculating the mean

difference and limits of agreement (mean difference ± 1.96 standard

deviations). This statistical approach is widely used in medical

studies to compare two measurement methods.

The statistical evaluation provided a comprehensive

understanding of the models’ performance in terms of

segmentation accuracy, area estimation, and correlation with

actual data. This detailed analysis enabled reliable comparisons

between the U-Net, Attention U-Net, and MultiResUNet models.

An external dataset, not previously encountered by the models,

was also used for validation. The dataset underwent the same

preprocessing and binarization procedures as the main dataset.

Model performance on this external dataset was evaluated using

the same metrics. All analyses were conducted using Python

version 3.10, employing modules such as TensorFlow, Keras,
Frontiers in Radiology 06
NumPy, OpenCV, and Matplotlib. All model training and

evaluation were conducted on a workstation equipped with an

AMD Ryzen 9 5950X 16-Core Processor (Santa Clara, CA, USA)

and 64 GB of RAM, ensuring ample computational capacity for

handling large MRI datasets and iterative model experimentation.

The graphics processing was managed by an NVIDIA GeForce

RTX 3090 GPU (Santa Clara, CA, USA), which facilitated

efficient parallelization and accelerated training of our deep

learning models. Our software environment included Python

version 3.10 (64-bit, Wilmington, DE, USA) running on

Windows 10 (Redmond, WA, USA).
3 Results

3.1 Bland-Altman and correlation analysis

The automated process of segmenting and calculating the dural

sac cross-sectional area (DSCA) showed a strong correlation with

the actual DSCA across all the models tested. Pearson correlation

coefficients were observed to be 0.9323 for U-Net, 0.9687 for

Attention U-Net, and 0.9917 for MultiResUNet. These

coefficients reflect a very strong positive correlation between the

predicted and actual areas, underscoring the high accuracy of the

segmentation methods used (Figures 5–10). This demonstrates

the models’ robustness and reliability, confirming their capability

for accurate DSCA measurement. Among the models, the

MultiResUNet exhibited the highest correlation coefficient,

suggesting it may be more effective for DSCA segmentation and

calculation in this context. Additionally, the MultiResUNet’s

lower Mean Absolute Error (MAE) and Mean Squared Error

(MSE) values, both in initial and external validation phases,

indicate its superior accuracy in predicting DSCA.

The MAE is a critical metric for evaluating model performance,

representing the average absolute difference between predicted and

actual areas, with lower MAE values indicating better model

performance. The MAE values for our models were as follows:

23.7032 mm2 for MultiResUNet, 34.1307 mm2 for Attention

U-Net, and 36.6760 mm2 for U-Net. Figures 4, 7, 9 present the

Bland-Altman plots, with limits of agreement ranging from 7.4189

to 39.9874 mm2 for MultiResUNet, 4.2782 to 63.9832 mm2 for

Attention U-Net, and −6.8582 to 79.6779 mm2 for U-Net.

The mean difference, indicating the average discrepancy

between the predicted and actual DSCA values, was 36.4098 mm2

for U-Net, 34.1307 mm2 for Attention U-Net, and 23.7032 mm2

for MultiResUNet. These measurements, along with the limits of

agreement describing the range within which most differences

between predicted and actual DSCA lie, support the quantitative

evaluation of model accuracy and the identification of patterns in

prediction errors.
3.2 Accuracy analysis

In our study, three different convolutional network

architectures—U-Net, Attention U-Net, and MultiResUNet—were
frontiersin.org
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FIGURE 5

Bland-Altman plot showing the difference between predicted and actual DSCA areas against their mean. The red dashed line represents the mean
difference, with values indicated for the U-Net model. The blue dashed lines represent the limits of agreement, calculated as the mean
difference ± 1.96 times the standard deviation of the differences. The mean difference is 36.4098 mm2, with limits of agreement ranging from
−6.8582 to 79.6779 mm2.
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evaluated for their accuracy using a dataset of 683 lumbar spine

MRI scans. The evaluation was conducted using 5-fold cross-

validation to ensure model robustness and generalizability.

Additionally, external validation with 50 independent MRI scans

was performed to verify the results (Table 1).

The U-Net model exhibited impressive consistency in training

accuracy, with values tightly clustered around a mean of 99.77%.

Validation accuracy was similarly high, averaging 99.91%. The

lowest validation accuracy was 99.90% in the first fold, while the

highest was 99.93% in the third fold. The Attention U-Net,

known for its ability to highlight relevant features in images,

achieved an average training accuracy of 99.70% and an average

validation accuracy of 99.61%. Although these figures were

slightly lower than those of the U-Net model, the Attention

U-Net showed remarkable stability across different folds, with a

minimum validation accuracy of 98.87% in the third fold and a

maximum of 99.92% in the fourth fold.

The MultiResUNet, featuring a hybrid architecture with

multiple resolution paths to capture a variety of contextual

information, demonstrated an average training accuracy of

99.64% and an exceptional validation accuracy of 99.95%. This

underscores the efficiency of this architecture in processing

medical images. Accuracy across individual folds was remarkably
Frontiers in Radiology 07
stable, with the lowest validation accuracy of 99.94% in the

fifth fold.

In summary, all three models demonstrated high accuracy in

both training and validation, confirming their suitability for

analyzing lumbar spine MRI scans. However, the MultiResUNet

stood out, particularly due to its validation accuracy.

To comprehensively assess model performance, several metrics

were utilized, including accuracy, precision, recall, F1-score, and

mean absolute error (MAE) (Table 2). The MAE for this model

was 17.9487 mm2, highlighting its remarkable capability in

estimating the dural sac cross-sectional area. The U-Net model

achieved an accuracy of 0.9990, a recall of 0.9943, a precision of

0.7673, an F1-score of 0.8662, and an MAE of 46.5972 mm2.

When evaluated on the external validation dataset, the

MultiResUNet model continued to show excellent performance,

with an accuracy of 0.9995, a precision of 0.8862, a recall of

0.9989, and an F1-score of 0.9393. The MAE for this model was

20.7329 mm2, indicating a slight increase in error compared to

the main dataset but still demonstrating very good performance.

The Attention U-Net recorded an accuracy of 0.9989, a precision

of 0.7867, a recall of 0.9871, an F1-score of 0.8756, with an MAE

of 43.4768 mm2. The U-Net showed an accuracy of 0.9987, a

precision of 0.7545, a recall of 0.9912, an F1-score of 0.8553,
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FIGURE 6

Scatter plot depicting the relationship between actual and predicted DSCA areas. Each point represents a single image from the validation set
(identified using the best model from k-fold cross-validation with sklearn.model_selection in Python), showing results for the U-Net model.
Pearson’s correlation coefficient: 0.9323.
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with an MAE of 50.8731 mm2. Despite these differences in

performance, all models exhibited potential for clinical

application with additional training on larger datasets.

Figure 11 provides a visual example from the validation set for

each model, including three images: the input image, the ground

truth mask, and the predicted segmentation mask. The pixel size

is set to 0.6875 millimeters, based on volume information from

the main dataset. The calculate_area() function was used to

determine the dural sac cross-sectional area for each predicted

and actual mask, and the calculated areas are displayed in the

titles of the actual and predicted images. These visualizations

demonstrate the models’ effectiveness in segmenting the dural

sac region in the input images, with the predicted segmentation

masks closely matching the ground truth masks, particularly for

the MultiResUNet, which showed a high level of agreement with

the ground truth mask.
4 Discussion

This study focused on developing and evaluating deep learning

models for the automated segmentation and quantification of the

dural sac cross-sectional area (DSCA) in lumbar spine MRI

images. Three different model architectures were examined:

U-Net, Attention U-Net, and MultiResUNet. The aim was to

assess the accuracy and efficiency of these models in DSCA
Frontiers in Radiology 08
measurement, contributing to the automation and enhancement

of diagnostic processes in radiological practice.

The results demonstrate that all three models exhibited a high

correlation between the predicted and actual DSCA values. The

Pearson correlation coefficients were 0.9323 for the U-Net model,

0.9687 for the Attention U-Net, and 0.9917 for the

MultiResUNet. This indicates a strong positive correlation,

suggesting high segmentation accuracy. Notably, the

MultiResUNet model achieved the best results, surpassing both

the U-Net and Attention U-Net in terms of correlation. This

implies that MultiResUNet is the most suitable for DSCA

segmentation and calculation in this context. The Bland-Altman

analysis and the calculation of the Mean Absolute Error (MAE)

support these findings. The MultiResUNet model had the lowest

MAE of 23.7032 mm2, followed by 34.1307 mm2 for the

Attention U-Net and 36.6760 mm2 for the U-Net. These values

underscore the superior performance of the MultiResUNet model

in accurately predicting DSCA. The Bland-Altman plots showed

that most differences between predicted and actual DSCA values

were within the limits of agreement, further confirming the

models’ robustness and reliability. In addition to the high

correlation and low MAE, the MultiResUNet model also showed

outstanding performance in accuracy analysis. It achieved an

average training accuracy of 99.64% and a validation accuracy of

99.95%. These results exceeded those of the other two models,

highlighting the effectiveness of MultiResUNet in image

segmentation. External validation with an independent dataset of
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FIGURE 7

Bland-Altman plot showing the difference between predicted and actual DSCA areas against their mean. The red dashed line represents the mean
difference, with values indicated for the Attention U-Net model. The blue dashed lines represent the limits of agreement, calculated as the mean
difference ± 1.96 times the standard deviation of the differences. The mean difference is 34.1307 mm2, with limits of agreement ranging from
4.2782 to 63.9832 mm2.

FIGURE 8

Scatter plot depicting the relationship between actual and predicted DSCA areas. Each point represents a single image from the validation set
(identified using the best model from k-fold cross-validation with sklearn.model_selection in Python), showing results for the Attention U-Net
model. Pearson’s correlation coefficient: 0.9687.
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FIGURE 9

Bland-Altman plot showing the difference between predicted and actual DSCA areas against their mean. The red dashed line represents the mean
difference, with values indicated for the MultiRes U-Net model. The blue dashed lines represent the limits of agreement, calculated as the mean
difference ± 1.96 times the standard deviation of the differences. The mean difference is 23.7302’mm2, with limits of agreement ranging from
7.4189 to 39.9874’mm2.
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50 MRI scans confirmed the generalizability of the models. The

MultiResUNet model again demonstrated excellent accuracy of

99.95%, a high recall of 0.9989, and an F1-score of 0.9393. The

MAE was 20.7329 mm2, indicating a slightly higher error rate

compared to the main dataset but still showing very good

performance. Overall, the developed deep learning models,

particularly the MultiResUNet, exhibit high accuracy and

reliability in the automated segmentation and quantification of

DSCA in lumbar spine MRIs. These results highlight the

potential of such models to support radiological practice,

improving diagnostic accuracy and efficiency in assessing spinal

pathologies. Future research should aim to further refine these

models and apply them to larger and more diverse datasets to

confirm and expand their clinical applicability.

The findings of this study underscore the high performance of

deep learning models, especially MultiResUNet, in the automated

segmentation and quantification of DSCA in lumbar spine MRI

images. These results align with previous research highlighting

the potential of deep learning methods for medical image

analysis. Only a limited number of studies have investigated the

performance of AI architectures in assessing spinal canal stenosis

in MRI images. A study by Hallinan et al. evaluated a deep

learning architecture for the qualitative assessment of spinal

canal stenosis in four categories, ranging from normal to severe
Frontiers in Radiology 10
(25). Similarly, Bogdanovic et al. (2024) applied a deep learning

algorithm to quantify lumbar spinal canal stenosis, finding high

agreement between radiologists and the algorithm overall, which

was interpreted as nearly perfect (26). Some further studies have

also conducted qualitative assessments of spinal canal stenosis

using AI architectures, with results comparable to Hallinan et al.

or slightly worse (27, 28).

Recent studies have shown that U-Net-based deep learning

models achieve remarkable accuracy and precision in DSCA

measurement. The MultiResUNet demonstrated the best

performance among the tested models, with an accuracy of

0.9996 in the main dataset and 0.9995 in the external validation

dataset. This high accuracy and low MAE of 17.9487 mm2 and

20.7329 mm2, respectively, emphasize the superiority of this

model compared to other tested architectures (29). A comparable

study investigated the application of a 3D U-Net model for the

automated segmentation of the dural sac in CT myelograms

(CTM) of patients with lumbar spinal canal stenosis (LSS) (30).

The results demonstrated high accuracy and generalizability of

the developed model, with an average Dice coefficient (DCS) of

0.933 in the independent test and external validation datasets.

These findings confirm the effectiveness of deep learning models

in segmenting and quantitatively analyzing spinal structures.

Similarly, Sanja et al. (2024) validated a fully automated AI
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FIGURE 10

Scatter plot depicting the relationship between actual and predicted DSCA areas. Each point represents a single image from the validation set
(identified using the best model from k-fold cross-validation with sklearn.model_selection in Python), showing results for the MultiRes U-Net
model. Pearson’s correlation coefficient: 0.9917.

TABLE 1 Overview of training and validation accuracies of the three
models across all folds of the cross-validation.

Model Fold Training
accuracy

Validation
accuracy

U-Net 1 0,997624 0,999017

U-Net 2 0,997956 0,998985

U-Net 3 0,997260 0,999294

U-Net 4 0,997764 0,999098

U-Net 5 0,997936 0,999141

U-Net Average 0,997708 0,999107

Attention
U-Net

1 0,996513 0,996771

Attention
U-Net

2 0,996672 0,998759

Attention
U-Net

3 0,997646 0,988654

Attention
U-Net

4 0,997738 0,999182

Attention
U-Net

5 0,996648 0,996893

Attention
U-Net

Average 0,997043 0,996052

MultiResUNet 1 0,996392 0,999482

MultiResUNet 2 0,996659 0,999571

MultiResUNet 3 0,997004 0,999452

MultiResUNet 4 0,994499 0,999578

MultiResUNet 5 0,997246 0,999434

MultiResUNet Average 0,996360 0,999503
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model for quantitative measurements of the spinal canal in lumbar

spine MRIs (26). Their retrospective study with 100 clinical

patients showed that the AI model achieved human-level

accuracy in measuring the anteroposterior (AP) and mediolateral

(ML) diameters of the dural sac. The differences between the AI

model and radiologists were minimal and likely within a

clinically acceptable range (26). Our results align with those of

Sanja et al., particularly regarding the high accuracy of AI

models in segmenting and measuring DSCA. Both studies show

that AI models can perform consistent and precise measurements

comparable to human experts. In our study, the MultiResUNet

model demonstrated remarkable performance with a mean

absolute error (MAE) of 23.7032 mm2 in the main dataset and

20.7329 mm2 in the external validation dataset, underscoring the

high accuracy and reliability of this model. An important aspect

in Sanja et al.’s study was evaluating the AP and ML diameters

of the dural sac (26). The average measurements by AI models

and radiologists showed minimal differences, with mean absolute

errors for the AP diameter ranging from 0.59 mm to 0.75 mm

and for the ML diameter from 1.16 mm to 1.37 mm. These

differences fell within a submillimeter range and were clinically

insignificant (26). Similarly, our models achieved high

correlations between predicted and actual DSCA values, further

confirming the models’ robustness and accuracy. Regarding the

measurement of the dural sac’s cross-sectional area, Sanja et al.’s
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TABLE 2 Comparative performance metrics of the three segmentation models (U-Net, attention U-Net, multiResUNet) evaluated using 5-fold cross-
validation and external validation, including precision, recall, F1-score, and mean absolute error (MAE).

Model Dataset Precision Recall F1-Score MAE (mm2)
U-Net Main dataset 0.7673 0.9943 0.8662 46.5972

Attention U-Net Main dataset 0.7966 0.9903 0.8829 39.4140

MultiResUNet Main dataset 0.8966 0.9996 0.9453 17.9487

U-Net External validation 0.7545 0.9912 0.8553 50.8731

Attention U-Net External validation 0.7867 0.9871 0.8756 43.4768

MultiResUNet External validation 0.8862 0.9989 0.9393 20.7329

Ghobrial and Roth 10.3389/fradi.2025.1503625
results showed a slight overestimation by the AI model compared

to radiologists. This difference was about 13 mm2–15 mm2 and

was deemed clinically acceptable (26). Our study also found

overestimation, but with high accuracy in area measurement, and

the MultiResUNet achieved the best results. The MAE for the

main datasets was 17.9487 mm2, indicating high precision and

reliability. Another crucial point in Sanja et al.’s study was the

high inter-rater agreement in measuring the AP and ML

diameters and the dural sac’s cross-sectional area, demonstrated

by high intraclass correlation coefficients (ICC) (26). These

findings align with our observations that AI models can deliver

consistent and reproducible measurements comparable to those

of human experts. Sanja et al. emphasized the importance of the

generalizability of their AI model by including data from various

institutions and different MRI scanners (26). In our study, a

validation dataset was also used to test the models’

generalizability, resulting in similarly positive outcomes.

A recently published study examined the performance of an AI

architecture for evaluating various qualitative parameters in

degenerative lumbar spine diseases using axial T2-weighted MRI

images (31). This AI architecture, specifically trained for dural

sac segmentation, achieved a Dice coefficient of 0.93 in

evaluating an internal test dataset, which included 1.5T and 3T

MRI scans from a single institution. Interestingly, our results

closely match these findings. Our study demonstrates similar

performance, with the MultiResUNet model achieving

outstanding results. Compared to the mentioned studies, our

model also achieved high accuracy values, underscoring the

accuracy and reliability of dural sac segmentation. These results

confirm the suitability of deep learning models for accurately

segmenting medical images. A study from 2019 employed a

similar methodology to ours, using a DCNN architecture with a

U-Net model to segment axial T2-weighted MRI images of the

lumbar spinal canal (32). In this study, the Dice coefficients for

segmentations by the AI architecture and human readers ranged

between 0.83 and 0.84. These values are significantly lower than

those achieved by Bogdanovic et al. (26) and our accuracy

analyses. Additionally, the Dice coefficient between the two

human observers was 0.9, which is also lower than that observed

by Bogdanovic et al. (26).

Our findings align with previous studies that have observed a

tendency for AI-based segmentation models to slightly

overestimate DSCA (29). While this overestimation may be small,

it could potentially influence the clinical interpretation of

borderline cases, where accurate measurements are crucial for
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determining the severity of spinal stenosis or the need for

surgical intervention. For instance, a perceived increase in DSCA

might prompt more conservative management when, in reality,

more aggressive treatment could be warranted. However, the

actual clinical impact of such discrepancies needs further

investigation, including prospective studies that correlate

measured DSCA values with patient outcomes and decision-

making processes. Ultimately, clear communication of model

limitations, along with the incorporation of additional clinical

and imaging data, may help clinicians contextualize and

appropriately integrate AI-based measurements into their

diagnostic and treatment paradigms.

The application of AI-based segmentation in medical imaging,

particularly for spinal pathologies, has seen significant

advancements in recent years. While our study demonstrates the

superior performance of the MultiResUNet model, recent works

provide additional context to underscore its innovation and

clinical relevance. A study by Isensee et al. revisited the nnU-Net

architecture, emphasizing rigorous validation and adaptability

across diverse medical imaging tasks, including volumetric spine

imaging (17). While nnU-Net has achieved state-of-the-art

results, its extensive computational requirements pose practical

challenges, which our MultiResUNet addresses by delivering

comparable accuracy with a more resource-efficient architecture.

Similarly, studies like those by Yousef et al. on modified U-Net

architectures for brain imaging segmentation highlight the

importance of architectural innovations, such as attention

mechanisms and multi-resolution analysis, in achieving precise

results (14). Our MultiResUNet leverages these concepts, tailored

specifically for the complexities of DSCA segmentation in lumbar

MRI, showcasing its adaptability to spine-specific challenges. In

the domain of lumbar spine imaging, Fan et al. introduced a

deep learning model for CT myelogram segmentation, achieving

Dice coefficients of 0.933. Although these results are impressive,

they lack the external validation and diversity of imaging

conditions included in our study (30). Moreover, our focus on

T1-weighted MRI—a modality preferred for its superior soft

tissue contrast—enhances the applicability of our findings to

routine clinical workflows. Discrepancies in performance metrics

across studies may arise from differences in imaging modalities,

dataset characteristics, and segmentation goals. For example,

while studies like Hallinan et al. focused on stenosis

classification, our quantitative approach to DSCA measurement

addresses a critical diagnostic need with greater precision (25).

Furthermore, the inclusion of architectural innovations, such as
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FIGURE 11

Visualization of an example from the main dataset (validation set, obtained through train_test_split from sklearn.model_selection in python) for each
model (U-Net, attention U-Net, and multiResUNet). Each example includes three images: the input image, the Ground-Truth mask, and the predicted
segmentation mask. The pixel size in millimeters is set based on the volume information in the main dataset. The DSCA is calculated for each predicted
and Ground-Truth mask using the calculate_area() function. The calculated areas are displayed in the titles of the Ground-Truth and
prediction images.
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attention mechanisms and multi-resolution paths, likely

contributed to the MultiResUNet’s ability to minimize mean

absolute errors (MAE) compared to simpler architectures.

Notably, emerging applications of deep learning in related

domains, such as brain and cardiac imaging, further highlight

the versatility of these technologies. For example, recent work on

U-Net variants for cardiac segmentation demonstrated that

multi-scale feature extraction significantly improved segmentation

accuracy in complex anatomical regions (33). These insights
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reinforce the potential of our MultiResUNet model to extend

beyond lumbar spine imaging, providing a scalable framework

for other anatomical regions.

Our study demonstrates that our deep learning models,

particularly the MultiResUNet, can perform accurate and reliable

dural sac segmentations, matching or exceeding the best results

reported in the literature. This highlights the importance of

further developing and validating such models to optimize their

application in clinical practice. Although several technical articles
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describe AI-based segmentations of the spinal canal and dural sac,

few studies use large datasets. Our study contributes to closing this

gap by providing detailed quantitative analyses and comparative

investigations of multiple models. In summary, the deep learning

models developed and validated in our study, especially the

MultiResUNet, show high performance and accuracy in

segmenting and measuring the dural sac’s cross-sectional area in

lumbar spine MRIs. These results align with findings from other

recent studies, emphasizing these models’ potential to improve

diagnostic accuracy and efficiency in clinical practice. Future

studies should aim to further validate these models’

generalizability and explore their integration into clinical routines.

A critical step towards clinical adoption involves integrating

the proposed solution seamlessly into existing radiology

workflows, including Picture Archiving and Communication

Systems (PACS) and electronic health record (EHR)

infrastructures. Differences in MRI acquisition protocols, scanner

types, and image quality across institutions may require site-

specific calibration and periodic retraining to ensure consistent

performance. Furthermore, clear interpretability of model outputs

and user-friendly interfaces are necessary to build clinician trust

and facilitate routine use. Addressing regulatory and compliance

requirements, particularly regarding patient data privacy and

device certification, will further influence the timeline and ease of

clinical implementation. Finally, establishing robust training

programs and providing clinical decision support tools will

assist radiologists and clinicians in effectively incorporating

automated quantification results into their diagnostic and

treatment workflows.

Unlike previous studies, the present study used a larger data

pool from two extensive online datasets (SPIDER MRI Dataset

and Lumbar Spine MRI Dataset), utilizing the largest currently

available dataset for automated DSCA measurement.

A significant strength of the present study is the use of deep

learning methods, which, unlike traditional semi-automated

approaches such as those used by El Mendili et al. (20), offer

higher scalability and accuracy. El Mendili et al. developed a

semi-automated algorithm for segmenting the dural sac in

cervical and thoracic MR images. Although they achieved high

accuracy, the present study demonstrated that deep learning

models, especially MultiResUNet, exhibit even higher precision

and lower errors (20).

The present work shows that deep learning models can

accurately measure DSCA and provide consistent and

reproducible results, reducing variability between different

observers and increasing efficiency in clinical practice. These

results are particularly relevant as manual segmentation of the

dural sac is time-consuming and can lead to inconsistent results.

Fan et al. highlighted that automatic segmentation is a reliable

method for quantifying DSCA, especially when assessing central

and lateral LSS. This method could thus improve diagnostic

accuracy and treatment planning by providing accurate and

consistent measurements (30). Further development is needed to

classify different stenosis types and forms using AI algorithms.

Overall, the results of this study and the literature evidence show

that deep learning models, particularly MultiResUNet, are a
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promising tool for automated DSCA measurement in lumbar

spine MRIs. These models could improve diagnostic accuracy,

reduce radiologists’ workload, and increase measurement

consistency and objectivity. Future studies should focus on

further validating these models with larger and more diverse

datasets and exploring their integration into clinical practice.
4.1 Strengths and limitations

The study has several limitations. First, the models were trained

and validated on a relatively limited dataset. To confirm the

generalizability of the method, future research should utilize

larger datasets from various institutions. Second, the method is

currently restricted to calculating DSCA in T1-weighted axial

MRI images of the lumbar spine. One key reason for focusing

exclusively on T1-weighted axial images is the availability and

consistency of these datasets, which ensured a stable training

environment and reduced variability arising from differing

acquisition parameters. T1-weighted images also provide robust

anatomical context, capturing essential tissue boundaries that

help delineate the dural sac’s morphology. However, we

acknowledge that T1-weighted scans may not exploit the high

fluid contrast and signal intensities offered by T2-weighted

sequences, potentially limiting the direct applicability of our

model to other clinical contexts or MRI protocols that use

alternative weightings. Incorporating T2-weighted images or

multi-sequence data in future investigations could improve the

generalizability of our approach, as well as enable domain

adaptation techniques to extend the model’s capabilities beyond

the T1-weighted domain. Ultimately, expanding the training

dataset to include various MRI contrast types will bolster the

model’s flexibility and utility across a wider range of clinical

imaging environments. Another limitation is the lack of

demographic data, which prevented a comprehensive analysis of

additional study variables that might influence model

performance. Future studies should include datasets with

complete demographic information to provide insights into these

effects. Additionally, this study focused exclusively on detecting

and quantifying DSCA. Further research is needed to explore the

clinical implications of using deep learning models for automated

DSCA measurement in other anatomical structures. Future

research should also include shape analysis alongside area

measurements, as spinal canal morphology might be as

important as canal area for stenosis assessment. Developing

diagnostic shape measures will thus be a focus of future research.

Despite these limitations, our study makes a valuable

contribution to research on deep learning applications in medical

imaging. It shows that the presented U-Net-based models not

only achieve high accuracy and reliability in DSCA measurement

but also offer practical advantages that can enhance diagnostic

processes in clinical practice. There are several strengths that

underline its significance and relevance in medical imaging.

A primary advantage of this study is the high accuracy and

reliability demonstrated by the developed deep learning models,

particularly the MultiResUNet, in the automated segmentation
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and quantification of the dural sac cross-sectional area (DSCA)

in lumbar spine MRIs. This strong performance was evident in

both the primary dataset and an external validation dataset,

underscoring the robustness and clinical potential of these

models. A key strength of our approach lies in the diversity

of the patient datasets utilized, encompassing individuals

with varying spine characteristics and clinical presentations,

not limited solely to those with disc herniations. By including

multiple representative slices per patient, we captured a wide

range of dural sac anatomies and imaging conditions, enhancing

the model’s adaptability and robustness. This strategy, in turn,

strengthens the model’s potential for generalization, increasing

its clinical utility and facilitating its application across diverse

patient populations. Automating DSCA measurement could

significantly reduce radiologists’ workload and improve

diagnostic efficiency, a critical need given the aging population

and increasing demand for diagnostic imaging studies.

Additionally, the study’s focus on DSCA measurement in

T1-weighted axial MRI images of the lumbar spine offers several

benefits. These images provide high anatomical detail and

are less prone to artifacts compared to T2-weighted images.

The findings suggest that U-Net-based deep learning models

can achieve high accuracy and recall, indicating their suitability

for clinical applications. This study also adds to the broader

conversation about the application of deep learning models

in medical image analysis, confirming the versatility of U-Net

architectures, which have been successfully used in various

tasks such as cell segmentation, organ segmentation, and

tumor detection.

The clinical significance of automated dural sac area

measurement in lumbar MRI extends beyond mere technical

accuracy; it directly impacts how clinicians assess spinal canal

stenosis, plan interventions, and monitor disease progression.

Precise and reproducible measurement of the DSCA is

commonly used to help determine the severity of conditions such

as lumbar spinal canal stenosis, which remains a leading cause of

lower back pain and neurological deficits. Traditional manual or

semi-automatic measurement methods can be time-consuming

and subject to inter- and intra-observer variability, impeding

efficient workflow in busy clinical settings. By contrast, our deep

learning–based models offer a rapid, reliable, and fully automated

approach, thereby reducing the burden on radiologists and

enabling more consistent evaluations across different clinical

sites. Furthermore, automated DSCA measurement has potential

to assist in risk stratification and disease progression monitoring.

For example, smaller cross-sectional areas have been linked to

more pronounced neurological symptoms and may serve as an

indicator of surgical necessity. Integrating the proposed solution

into existing clinical workflows could enhance decision-making

by alerting clinicians to borderline or high-risk patients who

could benefit from earlier or more aggressive intervention.

Moreover, longitudinal tracking of DSCA through automated

solutions can help clinicians assess the effectiveness of treatments

—such as physical therapy, epidural injections, or surgical

decompression—over time. This aligns well with standardized

clinical guidelines that emphasize the importance of quantitative
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imaging markers, but which currently rely heavily on subjective

assessments or inconsistent manual measurements. When

compared to existing clinical guidelines or standardized

evaluation tools, our approach provides a novel paradigm by

leveraging end-to-end convolutional networks to segment the

dural sac in a fully automated fashion. This reduces subjective

bias, while the high DSC and low MAE suggest that the

predicted segmentations closely approximate the ground truth.

These strengths highlight the innovation of our framework,

which can be further expanded by integrating patient-specific

parameters—such as demographic data and comorbidities—to

improve predictive modeling and personalized care pathways.

Hence, our study not only demonstrates technological feasibility

but also paves the way for improved clinical management of

lumbar spine disorders, bridging the gap between cutting-edge

AI research and real-world patient benefit.
5 Conclusion

This research focused on developing and evaluating deep

learning models for the automated segmentation and

quantification of the dural sac cross-sectional area (DSCA) in

lumbar spine MRI images. The findings indicated that the

U-Net, Attention U-Net, and particularly the MultiResUNet

models, demonstrated high accuracy and reliability in measuring

DSCA. These models have the potential to enhance diagnostic

accuracy and alleviate the workload of radiologists, which is

increasingly critical in light of an aging population and the rising

demand for diagnostic imaging. Among the models, the

MultiResUNet showed the best performance, achieving a Pearson

correlation coefficient of 0.9917 and a mean absolute error

(MAE) of 23.7032 mm2 in the primary dataset. This high

precision and reliability confirm the MultiResUNet model’s

potential for clinical application. External validation with an

independent dataset of 50 MRI scans confirmed the models’

generalizability, with the MultiResUNet again showing

outstanding results. These findings align with other recent studies

and highlight the versatility and effectiveness of deep learning

models in medical image analysis.

However, our study also has some limitations that must be

considered. The models were trained and validated on a limited

dataset, and the generalizability of our method must be

confirmed using larger and more diverse datasets from different

institutions. The calculation of DSCA was restricted to

T1-weighted axial MRI images of the lumbar spine, although

T2-weighted images might provide a clearer delineation of the

dural sac. Future work should incorporate T2-weighted images to

further improve accuracy. Additionally, the absence of

demographic data limited our analysis, preventing a

comprehensive evaluation of the impact of demographic variables

on model performance. Future studies should use datasets with

complete demographic information and investigate the potential

clinical implications of automated DSCA measurement for other

anatomical structures. Future research should also include shape

analysis alongside area measurements, as spinal canal
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morphology may provide important diagnostic information.

Despite these limitations, our study makes a valuable

contribution to research on deep learning applications in medical

imaging. The presented U-Net-based models, particularly the

MultiResUNet, show high accuracy and reliability in DSCA

measurement and offer practical advantages that can improve

diagnostic processes in clinical practice. These results encourage

further exploration and integration of such models into clinical

routines to optimize diagnostic and treatment planning efficiency

and accuracy.
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