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convolutional neural network
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University of Iowa, Iowa City, IA, United States, 3Department of Radiology, University of Texas
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Background: MR fingerprinting (MRF) is a novel method for quantitative
assessment of in vivo MR relaxometry that has shown high precision and
accuracy. However, the method requires data acquisition using customized,
complex acquisition strategies and dedicated post processing methods
thereby limiting its widespread application.
Objective: To develop a deep learning (DL) network for synthesizing MRF signals
from conventional magnitude-only MR imaging data and to compare the results
to the actual MRF signal acquired.
Methods: A U-Net DL network was developed to synthesize MRF signals from
magnitude-only 3D T1-weighted brain MRI data acquired from 37 volunteers
aged between 21 and 62 years of age. Network performance was evaluated
by comparison of the relaxometry data (T1, T2) generated from dictionary
matching of the deep learning synthesized and actual MRF data from 47
segmented anatomic regions. Clustered bootstrapping involving 10,000
bootstraps followed by calculation of the concordance correlation
coefficient were performed for both T1 and T2 MRF data pairs. 95%
confidence limits and the mean difference between true and DL relaxometry
values were also calculated.
Results: The concordance correlation coefficient (and 95% confidence
limits) for T1 and T2 MRF data pairs over the 47 anatomic segments
were 0.8793 (0.8136–0.9383) and 0.9078 (0.8981–0.9145) respectively.
The mean difference (and 95% confidence limits) were 48.23 (23.0–77.3) s
and 2.02 (−1.4 to 4.8) s.
Conclusion: It is possible to synthesize MRF signals from MRI data using a DL
network, thereby creating the potential for performing quantitative
relaxometry assessment without the need for a dedicated MRF pulse sequence.
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Introduction

The power of MRI as a noninvasive diagnostic test is due not only

to the range of soft tissue contrasts and functional information

generated but more significantly to their correlation with anatomic

and physiologic changes across a range of conditions and disease

states (1). In the clinical setting, this versatility is utilized by

executing several MR pulse sequences that provide multiple

visualizations and quantitative data of the abnormality or disease in

question. With the potential for each acquisition to last multiple

minutes, MR examination times can range from tens of minutes to

one or even two hours for specific imaging indications and number

of anatomic regions covered. Thus, an MR exam represents a trade-

off between allowing sufficient imaging time necessary to acquire the

requisite MR data needed for diagnosis and the need to limit overall

MR exam duration to ensure patient compliance, provide access to,

and ensuring efficient and cost-effective use of an expansive and

restricted imaging resource. Within this context, the demand to

obtain additional imaging data—particularly that derived from

multiple sequences—is limited.

Because MR image contrasts are a surrogate of the underlying

and intrinsic relaxometry values of the tissue being imaged, it

seems intuitive that quantitative assessment of these values would

provide a more accurate and rapid diagnostic tool when compared

to acquiring multiple MR data sets. Despite this, quantitative

relaxometry methods have found limited clinical application due in

part to their long acquisition times, the lack of multiparametric

quantitation, and susceptibility to machine and environmental

effects (2). Bobman et al. (3) described early approaches to

multiparametric quantification and “synthetic” MR image

generation in which a set of source images acquired with differing

imaging parameters were used to generate quantitative relaxometry

data. These data where then used as inputs into the Block

equations for a given pulse sequence type. Although the approach

demonstrated high precision and accuracy (4), long computing

times impeded clinical introduction and widespread adoption.

Within the past decade there has been renewed interest in

acquiring quantitative multiparametric imaging data, particularly

from a single acquisition. One such approach, referred to as multi-

dynamic multi-echo (MDME) or magnetic resonance imaging

compilation (MAGIC) (5–7) involves acquiring multiple echo

saturation recovery spin echo data from which relaxometry data

are generated and then used as input to generate multiple synthetic

MR images (contrasts). Another approach, first described by Ma

et al. (8) and referred to as MR fingerprinting (MRF) involves the

continuous repetition of a given MR imaging sequence, generating

multiple 2D or 3D datasets of the object under interrogation.

Unlike conventional steady-state MR imaging approaches in which

parameters such as the pulse repetition rate (TR), echo time (TE),

and the radio frequency (RF) excitation pulse flip angle (α) are

held constant throughout the acquisition, MRF acquisition

strategies rely upon varying multiple MR acquisition parameters

according to a pre-determined history throughout the acquisition

process. The result of this approach is to destroy the steady state

signal, thereby making the acquired images non-diagnostic.

However, given that the signal from a given pulse sequence can be
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described mathematically and that scan parameter values are

known, the signal evolution of a given voxel can be generated for a

chosen set of relaxometry parameters. If this process is repeated

over a range of diagnostic relaxometry values, a so-called

dictionary or library of signal evolutions can be generated (8–12).

Comparison of the acquired signal evolution of a given voxel with

the generated dictionary allows estimation of the actual

relaxometry of the voxel in question by identifying the best match

between the acquired and dictionary signals. Then, repetition of

this process on a voxel-by-voxel basis allows for the quantitative

and spatial resolution of these parameters. Additionally, once the

spatial topography of various MR relaxometry parameters are

quantified, multiple image contrasts can be synthesized by using

these maps as inputs into the Block equation (13) describing the

MR signal for the pulse sequence type and for the scan parameters

of interest. Therefore, MRF provides a method for quantitative

assessment of tissue relaxometry values, together with the ability to

synthesize multiple MR image contrasts from a single acquisition.

Given the potential for MRF to address the limitations of

conventional relaxometry approaches and the ability to synthesize

multiple MR contrasts, MRF is an active area of research and

development. However, limitations of this technology are the fact

that it can only be used prospectively, thereby constraining its

application to those subjects imaged since its inception (circa 2013)

(8) and requires a dedicated pulse sequence and reconstruction

pathway both of which are available only within research settings.

Generation of a synthetic MRF signal obtained without the need for

a dedicated MRF sequence has the potential to significantly expand

this technology both in terms of prospective application but also by

enabling its use retrospectively, thereby accessing the wealth of MR

data acquired during the three-decade long period prior to the

inception of the MRF technique.

Interest in the use of deep learning (DL) methods to solve a

variety of challenges in MRI has increased significantly over the

past several years given the promise of improved precision,

accuracy and reduced computation times afforded by advanced

DL models and graphical processing units (GPUs). Given the

described limitations related to current MRF acquisition

techniques and reconstruction methods, the development of a DL

MRF method has the potential to address these and in doing so

expand development and use of this promising technology. The

purpose of this study is to report on the development and

evaluation of a DL-based algorithm for synthesizing MRF data

from a limited set of MR image information, specifically a

rapidly acquired, magnitude only volumetric T1-weighted dataset.

By contrast, this work distinguishes itself from existing DL

approaches in MRF which are directed towards improvements in

reconstruction accuracy and processing speed (14, 15).
Materials and methods

Subjects

This prospective study was approved by the lead author’s

Institutional Review Board (IRB), was HIPAA complaint and
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involved obtaining written informed consent from all subjects.

Imaging data from 37 normal subjects were used in the study.

Subject ages ranged from 21 to 62 years of age and included 10

males (minimum, maximum age = 24, 43 years) and 27 females

(minimum, maximum age = 21, 62 years). There was no

inclusion or exclusion criteria for subjects other than being able

to successfully complete the MR imaging examination with

recruitment being in response to internal, IRB approved research

protocol advertising.
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Imaging protocol

All imaging was performed on a single 3T MR scanner (Signa

Premier, GE Healthcare, Waukesha, WI). Each subject was imaged

using the protocol listed in Table 1 that included a 3D MRF

sequence described previously (16, 17) and multiple conventional

MR imaging sequences (series). Each normal subject was scanned

using a single 48 channel receive-only RF coil for signal reception.

MR image data were reconstructed by the host computer

system of the MR scanner and stored in the DICOM imaging

standard format while MRF reconstruction was performed offline

using a proprietary Matlab (Mathworks, Natick, MA) software

package provided by the University of Pisa (Pisa, Italy) on a

Linux workstation equipped with two 8-core Intel Xeon Gold

6244 central processing unit and NVIDIA (NVIDIA Corporation,

Santa Clara, CA) Tesla V100 graphical processing unit. Gomez

et al. (9) have described the MRF processing pipeline that was

used to process the raw MRF data into the first 15 singular value

decomposition (SVD) coefficients of the temporal MRF signal

(18). This compressed MRF signal was used to reconstruct

quantitative parametric maps of T1, and T2 with relaxometry

maps being generated in units of milliseconds (ms).
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DL network

DL involves training artificial neural networks to model

complex patterns in data. These models, particularly

convolutional neural networks (CNNs), have revolutionized

various fields, including medical imaging, by enabling automated

feature extraction and image classification. CNNs are particularly

adept at recognizing spatial hierarchies in images through layers

of convolutions, pooling, and nonlinear activations. In this study,

we employed a U-Net architecture, a type of CNN originally

designed for biomedical image segmentation (19).

MRF data consist of time-series signals which are projected

onto the SVD space to reduce the dimensionality of the problem

to a manageable level, as discussed by McGivney et al. (18). In

this implementation, only the first four singular values (SV) are

used, since higher order ones are found to contain very low

signal and therefore only contribute to the noise component of

the MRF SVD space. Phase renormalization is first applied by

setting the imaginary component of the first SV (SV1) to zero.

As a result, the real part of SV1 approximately resembles the

spatial distribution of the proton density signal. Each complex
Frontiers in Radiology 03 frontiersin.org

https://doi.org/10.3389/fradi.2024.1498411
https://www.frontiersin.org/journals/radiology
https://www.frontiersin.org/


McGee et al. 10.3389/fradi.2024.1498411
SV is represented mathematically with a real and imaginary matrix

associated with two distinct channels. Since SV1 is only real, the

model establishes a multi-valued link between a single-channel

MRI and seven-channel MRF information for the fours SV’s.

Figure 1 describes in block form the overall structure of

the network which consists of seven identical DL networks.

The network was designed to replicate the multichannel

characteristics of the SVD MRF data with each network being

considered an individually trainable channel. Each complex SV

was considered a complex eigen value with each eigenvector

being associated with two distinct channels, establishing a

multiple-valued link between single-channel MRI and seven-

channel MRF information. Each of the seven networks were

trained simultaneously in the computational pipeline where the

final composite network contains a total of 1,940,902 trainable

parameters. The seven networks denoted U1 to U7 of Figure 1

are identical U-Net DL networks [fully convolutional DL

network (20)] adapted for regression tasks (21). The overall

architecture of each network is shown in Figure 2 which includes

an enhancement achieved with batch normalization (22) and

dropout layers to improve generalization and prevent overfitting

(23). While these modifications are not novel in isolation, their
FIGURE 1

Schematic representation of seven parallel U-Net architectures utilized for r
imaginary component of the singular value decomposition (SVD) from th
compared (dashed box) with the ground truth continuous MRF singular va
train iteratively each neural network, by updating the weights, for accurate
(R) and imaginary (I ) component that is processed through separate U-N
value which was treated as being only real (I1 = 0) and therefore require
networks, one for the real and imaginary values.
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inclusion in this adaptation of U-Net is intended to improve the

robustness of the model in generalizing production of synthetic

MR data from limited input MR images. Leveraging these

established techniques serves to enhance the model’s

performance in predicting relaxometry values and synthesizing a

wide range of image contrasts from a single acquisition.

By assigning distinct U-Net architectures to each SV, each

individual network can be optimized to accurately reconstruct

the specific component without interference or conflation. In a

single network processing all components, the shared layers may

unintentionally learn features that overlap or blend information

from different SVs. This can dilute the specificity of the

learned representations for each SV component. Instead, distinct

networks for each component distribute the reconstruction tasks

among independent networks, thereby favoring high fidelity

reconstruction of synthetic MRF SVs. This is because errors in

one component can propagate and degrade the overall quality of

the reconstruction, affecting convergence. Multitask learning

processes often struggle with interference between tasks when

shared parameters optimize for diverse and potentially conflicting

objectives. This is known as negative transfer and work in this

area suggests that separating tasks can improve performance for
egressing MRI input data. Each U-Net (U1 … U7) predicts a specific real or
e multi-parametric MRF data. The predicted singular values are then
lues, and the mean squared error of each loss (L1 to L7) is employed to
reconstruction. Each singular value is complex and comprised of a real
et convolutional neural networks (CNNs) except for the first singular
d only one CNN compared to higher order values that required two
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FIGURE 2

U-Net architecture for MRI image regression. The network begins with an input layer, proceeds through a contracting path on the left, characterized
by convolutional and max pooling layers that increase in feature channels while incorporating dropout for regularization. The bottleneck at the center
serves as a critical transition between the contracting and expansive paths, where up-sampling and concatenation with corresponding feature maps
from the contracting path occur, followed by convolutions for detailed feature construction. The output layer, through a 1 × 1 convolution, translates
the feature information into a continuous MRF space.
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problems with distinct characteristics. In our case these can be the

different imaging modalities (e.g., proton density, T1, and T2), or

simply the specific nature of the real and imaginary components

of the SVs (24).

During the network training process, convergence ismonitored by

generating repeatedly synthetic MRF results from the MRI data sets

reserved for verification. A running comparison is made of the

synthetic MRF with the corresponding original MRF datasets which

provide the ground truth and are never utilized in the network

training process. Following the progression of the verification along

with the training iterations ensures that convergence of both

processes reaches acceptable levels of the error and that the

downward trends show no significant overfitting behavior.

The U-Net is characterized by its U-shaped structure, which

includes an encoder (contracting) path to capture context, and a

decoder (expansive) path that enables precise localization. In

between, the two paths are connected via a set of convolutional

layers (bottleneck). Structurally, the network includes three

consecutive pathways; a contractive path followed by a bridging

and finally expansive path. 3D MRI data are input into each

network and trained to generate each of the seven synthetic SVD

outputs. While 3D data is used as input, each 3D data set is

considered as a series of contiguous 2D inputs in which

consecutive 2D inputs are fed into the network. Each slice

follows the contracting path of the U-Net architecture, by
Frontiers in Radiology 05
application of two consecutive convolution steps with 16 different

3 × 3 filters. Each convolution is followed by a rectified linear

unit (ReLU) and a batch normalization step generating a (256 ×

256 × 16) feature block. Next, a 2 × 2 max pooling operation

follows for down-sampling, in each of the separate 16 channels,

resulting in a (128 × 128 × 16) block. The previous convolution

scheme is repeated with a double number of 3 × 3 filters yielding

now a (128 × 128 × 32) block. This overall down-sampling step is

then repeated until a (16 × 16 × 256) feature block is obtained.

The bridging or bottleneck step repeats the previous two

consecutive convolution steps with the addition at the end of an

up-sampling layer based on bilinear interpolation, which results

in a (32 × 32 × 256) feature block.

After completion, the decoder expansive path begins with a

concatenation step that combines the up-sampled block with the

corresponding one obtained at the same level in the previous

down-sampling path. Thus, the concatenation increases by 50%

the number of channels. Then, two consecutive convolution steps

follow as applied in the down-sampling path, but without the

batch normalization step. At each up-sampling level, the same

number of filters used in the corresponding down-sampling level

is used ensuring that, after convolution, the same number of

channels is reached. Finally, before climbing to the next level,

another upscaling step is applied. The process is repeated until the

top layer is reached, at which point the output contains a single
frontiersin.org
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channel. Each axial 2D slice of the 3D data are processed sequentially

through the network until the entire 3D volume has been processed.
TABLE 2 Minimum and maximum values of each component of the
compressed ground truth MRF (i.e., acquired) data used for rescaling of
the synthetic MRF singular values (SVs).

Singular value components Minimum Maximum
SV1 real 0.0 10.35

SV2 real −3.09 0.65
Data preparation

Before being used for network training, both MRI and MRF

data underwent several preprocessing procedures. The first

involved selection of the appropriate MRI data. While multiple

MRI contrasts were available as described in Table 1, only 3D

magnitude prepared rapid gradient echo (MPRAGE) data was

used as input MRI information due to its superior gray/white

parenchymal differentiation (25) and to limit the complexity of

the network by only accepting a single volumetric dataset as

input. The second involved converting both data sets to the

NIFTI format to ensure a single consistent format and image

coordinate system. Thirdly, registration and resolution matching

between the MRF SVD and MPRAGE data were performed to

ensure equivalent spatial and geometric concordance of voxel

pairs. Interpolation was performed on MPRAGE data producing

equivalent 256 × 256 × 256 matrices with isotopic voxels of

1mm3. MPRAGE data underwent additional indexing to generate

a 3D stack of axial slices. Registration was performed using the

SimpleITK open-source package (26) and involved performing

3D rigid body registration and optimization based on mutual

information optimization metric (26). Finally, normalization and

skull stripping of both MRF and MRI data were performed. For

MRI data, normalization involved rescaling the dynamic range of

the voxel intensities to a minimum and maximum of 0 and 1 by

dividing by the maximum voxel intensity of the volume. For

MRF each real and imaginary SVD volume was similarly

normalized between 0 and 1. Skull stripping was performed

using binary masks of the whole brain generated as part of the

tissue segmentation process described below. Both the

segmentation and voxel-wise normalization steps were found to

be necessary to ensure optimal model performance.

While interpolation is not necessarily considered as

“augmentation”, it serves a similar purpose by artificially

increasing the variability of training data or modifying data to fit

specific needs. In this application, interpolation was applied to

resample MRI images acquired with varying voxel sizes, to

achieve a consistent resolution. Throughout this work MRF

voxelization has served as the reference because it is generated

on a regular grid as indicated above. Rigid affine transformations

align the volumes but do not ensure voxel-to-voxel alignment of

MRI to MRF data due to differences in voxel dimensions across

different subjects. Registration and augmentation by resolution

matching performed (resampling) between MRI an MRF data

were therefore critical to ensure resolution consistency, effectively

increasing the variety and quality of the training data.

SV2 imaginary −1.83 1.88

SV3 real −2.22 1.36

SV3 imaginary −1.21 1.54

SV4 real −1.95 0.90

SV4 imaginary −1.16 1.30

These values are the maximum and minimum values obtained from the individual SVs of the

30 compressed MRF data used in training the network.
Network training and testing

To train the network, 16 slices were selected from the training

data. Slices were randomly selected across subjects and location
Frontiers in Radiology 06
within the 3D imaging volume of each. Given that there were a

total of 7,680 slices (30 subjects × 256 slices/subject) 480

iterations of the training phase were performed. The use of

randomly sampled paired slices (MPRAGE, MRF) in this manner

was necessary to address the need for substantial input data to

attain the requisite precision and accuracy for quantitative

analysis, amplifying the input volume by a factor of 256. While

this strategy significantly augmented the dataset size, potential

spatial correlations arising from contiguous slice acquisition were

not accounted for in the model training.

To ensure convergence of the network, each synthetically

generated SVD was rescaled using the ranges listed in Table 2.

These values were generated from the maximum and minimum

values of the ground truth MRF SVD values of the entire

training set. Renormalization was applied to the SVD for each

slice given that the network is designed as a 2D reconstruction

network as opposed to the SVD of the entire 3D synthetic

MRF volume.

Quantification of network performance was achieved by

comparison of the synthetic SVs and their ground truth

counterparts. For each SV pair the batch mean squared error

(MSE) in relation to the ground truth MRF data were calculated.

Network weights were adjusted iteratively using an ADAM

optimization algorithm (27), selected for its adaptive learning

capabilities, and configured with a learning rate of 10−4. This

process was repeated over numerous iterations, constituting an

epoch (number of times network processes all data in the

training set), with a total of 1,000 epochs executed for each

network. Model performance was monitored, and the optimal

weights corresponding to the lowest MSE throughout the

training process were preserved. MSE is the standard choice of

loss function for regression problems. As the differences between

the ground truth and predicted values are squared, MSE tends to

give more weights and thus be more sensitive to large errors.
Estimation of relaxometry values

After training of the network, MPRAGE data from the five test

subjects were input into the network to generate the four SVs for

each. While the MPRAGE data was 3D, each dataset was treated

as a stack of continuous 2D slices. As a result, 256 2D slices
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were input generating 256 × 4 complex SVs. The 256 2D SVs were

combined to create a single 3D SV for each of the four complex

values and rescaled to the global SV maximum and minimum

values listed in Table 2. The 3D true and synthetic SVs were

then input into the MRF dictionary matching algorithm (9, 28)

using the software and hardware described above thereby

generating 3D T1 and T2 data for both.
Segmentation

MPRAGE derived anatomical regions of interest were

generated using Statistical Parametric Mapping version 12

(SPM12) (SPM12: https://www.fil.ion.ucl.ac.uk/spm/) (29) with

templates, settings and priors from the Mayo Clinic Adult

Lifespan Template (MCALT: https://www.nitrc.org/projects/

mcalt/). Subject specific segmentation maps were then applied to

MRF derived relaxometry maps providing gray matter (GM),

white matter (WM), cerebral spinal fluid (CSF) and whole brain

(used for skull stripping described previously) segmentation

maps. Additional segmentation was performed resulting in

regional brain parcellations using the MCALT_ADIR122 atlas

(https://www.nitrc.org/projects/mcalt/) (30) with Advanced

Normalization Tools (31). In total, 47 individual regions were

identified. For each region, the average relaxometry value (T1, T2)

was calculated and used as input for statistical processing.
Statistics

Region specific mean and standard deviation values were

averaged for the five normal subjects for both true (i.e., acquired)

MRF vs. DL MRF relaxometry values. To assess the degree

of agreement between the relaxometry data pairs, the

concordance correlation coefficient (CCC) was calculated. Prior

to calculation of the CCC, clustered bootstrapping of data pairs

(T1 true vs. T1 DL, T2 true vs. T2 DL) was performed using

10,000 bootstrapping operations to account for the multi-level

nature of the data (multiple subjects and multiple correlated

regions provided by the segmentation process). CCC values

and 95% confidence intervals were calculated in addition to

the mean difference between true and DL relaxometry values.

All calculations were performed using the RStudio software

package [Posit team (2023). RStudio: Integrated Development

Environment for R. Posit Software, PBC, Boston, MA.

http://www.posit.co/version 2023.12.0.369].
Results

Table 3 lists mean and SD values averaged over the five normal

subjects for both the true and DL derived T1 and T2 estimates for

the 47 anatomical regions of interest. Overall, the DL estimates

showed lower variance as measured by the average ratio of True

to DL SD values across all subjects and regions (235 = 5 × 47

individual regions) and quantitated by the average ratio of 1.14
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(minimum = 0.30, maximum = 2.19) and 1.79 (minimum = 0.35,

maximum = 6.67) of the true to DL SD values. This is expected

given the inherent smoothing nature of the DL process: The final

layer of the neural network uses an activation function tanh

which effectively compresses the data into the interval [−1, 1]
with a low-pass filtering smooth function, as needed to maintain

the stability of the training process.

Table 4 lists the bootstrap CCC values and 95% confidence

intervals for both T1 and T2 true—DL data pairs. T2 values

showed a slightly higher degree of correlation between the true

and DL values compared to T1 (0.9078 vs. 0.8793). This is also

reflected in the mean difference values with the mean differences

being 48.23 and 2.02 ms for T1 and T2 respectively. The positive

differences indicate an underestimation of DL relaxometry

estimates compared to the acquired, i.e., true values. However, T2

estimates closer agreement due in part to the smaller absolute

values and the fact that the 95% confidence intervals included

zero difference. Figures 3, 4 show scatter plots of data pairs

for T1 and T2 estimates for each region and subject (235 data

pairs = 47 regions × 5 subjects) respectively and illustrate the bias,

that is, the underestimation of relaxometry values estimated by

the DL network.

Figures 5, 6 show representative mid-brain axial slices of both

true and DL reconstructed T1 and T2 relaxometry maps for the five

normal subjects used for network testing. All data sets were

preprocessed using an automated skull stripping algorithm and

zeroing of non-brain (background) pixels and reconstructed to

provide isotropic voxel dimensions (1 × 1 × 1 mm3). The same

window and level settings were used for all T1 and T2 data

(T1: window/level = 2/1 s, T2: window/level = 0.12/0.06 s). Both

T1 and T2 DL maps were “smoother” in appearance which can

be attributed to the inherent low-pass effect of the network noted

previously while the true MRF data qualitatively exhibited lower

signal-to-noise ratio (SNR) due to the apparent increase in image

noise. The observed lower SNR of the true MRF relaxometry

data is due to the relatively short acquisition time (∼4 min), high

resolution, volumetric acquisition.
Discussion

In this work we have developed a DL network for the purpose

of generating a synthetic MRF signal from standard magnitude-

only MR imaging data, in this case a T1-weighted (i.e.,

MPRAGE) 3D data of the brain of normal subjects. The

potential for such a technique is that it provides the opportunity

to generate quantitative relaxometry information from an

MR examination that does not include an MRF as part of the

original acquisition.

Given the complex acquisition strategies, computational

requirements, and unique reconstruction methods of MRF,

significant efforts are underway to integrate various DL based

approaches to address these challenges. In general, these efforts

can be categorized into those attempting to improve the

precision and accuracy of quantitative relaxometry results,

improve the computational efficiency of the data reconstruction
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TABLE 3 Mean and standard deviation values for the actual and deep learning (DL) generated relaxometry values for the five normal subjects for 47
anatomical regions of interest.

Segment True T1 DL T1 True T2 DL T2

T1 sT1 T1 sT1 T2 sT2 T2 sT2

Precentral 1,219.05 188.74 1,179.95 157.26 53.57 18.95 52.06 6.01

Frontal 1,091.95 324.63 1,034.93 263.09 56.47 25.18 55.25 21.38

Rolandic operculum 1,157.36 337.79 1,087.97 242.20 56.98 48.13 52.55 23.03

Superior motor area 1,174.16 247.40 1,137.35 236.75 54.84 42.99 59.62 55.05

Olfactory 1,129.85 230.67 1,101.78 208.78 52.75 24.97 53.41 13.02

Frontal superior medial 1,240.88 174.22 1,117.40 181.21 57.17 11.41 56.41 9.52

Frontal medial orbital 792.91 64.11 802.86 67.88 43.58 5.92 44.97 5.43

Rectus 1,226.21 348.29 1,211.80 311.57 56.93 21.15 59.02 17.90

Insula 1,165.76 296.00 1,110.20 235.98 48.41 18.41 47.56 8.36

Cingulum 1,112.00 376.06 1,041.23 264.94 58.04 49.78 53.23 22.49

Hippocampus 915.58 84.70 897.35 48.87 33.42 6.04 34.26 2.21

Amygdala 1,225.21 248.49 1,173.07 198.07 54.70 23.71 53.82 7.24

Calcarine 1,158.93 371.97 1,104.69 318.70 80.25 74.91 74.68 54.98

Cuneus 1,229.30 175.10 1,161.40 221.10 71.47 16.24 70.73 17.15

Lingual 810.18 53.54 835.18 98.76 52.95 7.96 54.00 7.51

Occipital 1,234.78 344.30 1,164.70 276.76 72.91 39.83 72.21 25.97

Fusiform 1,316.22 466.33 1,287.05 420.25 114.33 130.23 99.89 82.17

Postcentral 1,196.08 248.40 1,131.24 212.94 52.20 19.75 52.50 15.07

Parietal 1,226.17 375.31 1,198.44 347.56 55.63 31.66 53.94 16.21

Supramarginal gyrus 1,251.48 237.10 1,220.97 176.74 54.35 39.23 53.88 11.69

Angular 1,338.31 320.69 1,260.07 268.09 61.54 28.85 58.94 14.76

Precuneus 1,182.13 330.25 1,116.01 280.77 53.70 44.31 49.44 20.05

Paracentral lobule 997.40 286.32 944.59 215.99 51.52 23.10 50.74 15.05

Caudate 1,240.88 174.22 1,117.40 181.21 57.17 11.41 56.41 9.52

Putamen 792.91 64.11 802.86 67.88 43.58 5.92 44.97 5.43

Pallidum 1,300.74 253.88 1,223.73 197.90 49.93 12.68 51.44 7.02

Thalamus 923.59 89.64 871.30 59.08 33.14 6.12 35.20 2.73

Heschl’s gyrus 1,239.57 434.63 1,210.43 390.69 81.42 77.59 69.18 46.19

Temporal 1,221.05 265.70 1,120.69 221.14 47.17 17.75 46.21 9.04

Cerebellum 1,240.66 460.13 1,188.84 406.53 88.44 106.28 80.91 82.54

Vermis 1,225.46 161.34 1,188.85 288.09 63.29 26.21 67.66 35.23

Pons 822.00 55.10 860.70 106.77 47.36 9.55 49.60 8.62

Dorsal mesopontine 943.77 189.18 897.25 145.36 37.06 11.99 36.64 5.60

Entorhinal cortex 1,236.87 493.50 1,181.11 429.46 101.21 130.68 84.23 88.25

Para hippocampal 1,171.20 445.67 1,133.52 397.63 94.37 118.86 85.84 98.44

Cingulum posterior 1,243.10 385.92 1,166.64 314.87 64.51 59.76 59.39 37.00

Retrosplenial cortex 1,067.28 135.68 1,011.14 114.93 43.35 8.84 43.92 4.73

Frontal gray matter 1,171.88 280.44 1,103.91 253.17 59.50 23.20 59.50 13.21

Occipital gray matter 1,163.95 298.03 1,079.83 221.73 44.45 17.36 44.00 7.75

Parietal gray matter 1,294.66 399.55 1,184.95 335.35 68.82 53.80 61.55 27.98

Temporal gray matter 1,288.92 464.01 1,272.09 430.48 97.22 104.14 89.89 87.38

Cerebellum gray matter 1,165.18 383.41 1,104.97 326.07 63.64 40.17 60.18 31.17

Frontal white matter 1,123.70 303.51 1,076.94 263.71 58.80 28.40 57.65 17.88

Occipital white matter 1,239.66 178.45 1,165.70 197.19 61.94 15.95 61.23 11.72

Parietal white matter 817.22 60.55 831.06 86.89 44.08 7.71 45.84 6.91

Temporal white matter 1,043.98 195.88 1,006.65 180.79 39.94 18.30 39.44 14.05

Cerebellum white matter 1,287.52 321.54 1,270.22 317.31 59.32 52.13 58.62 32.41

The mean value (T1 and T2) and the standard deviation of the mean (sT1 and sT2 ) averaged across all volunteers for each region are displayed. True denotes the actual MRF derived
relaxometry value while DL represents the DL equivalent.

TABLE 4 Concordance correlation coefficient (CCC) and 95% confidence intervals based on bootstrapping involving 10,000 bootstrap replicates.

Relaxometry parameter CCC TrueT1,2 � DLT1,2

Value 95% confidence intervals Value (ms) 95% confidence intervals
T1 0.8793 0.8136, 0.9383 48.23 23.0, 77.3

T2 0.9078 0.8981, 0.9145 2.02 −1.4, 4.8

True denotes the actual MRF derived relaxometry value while DL represents the deep learning equivalent.
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FIGURE 3

Scatter plot of true vs. deep learning (DL) T1 relaxometry values. A
total of 235 points are shown with each point representing a given
region (47 total) and subject (5 total).

FIGURE 4

Scatter plot of true vs. deep learning (DL) T2 relaxometry values. T1
relaxometry values. A total of 235 points are shown with each
point representing a given region (47 total) and subject (5 total).
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process, or enhancement of specific MRF derived imaging

applications. Efforts to improve the precision and accuracy of

MRF-derived relaxometry values include using DL to increase

the spatial resolution of MRF relaxometry data (32, 33), the

accuracy and precision of quantitative relaxation values (34–39),

decreasing MRF acquisition times (40), or replacing the

dictionary matching process using DL (41). Similarly, DL has

been used for MRF-related applications such as MRF chemical

exchange saturation transfer (CEST) imaging (42–49), arterial

spin labelling (50), improved anatomical mapping of disease

processes (51–53), and MR spectroscopy (54). By contrast, the

network described in this work has been designed with the

specific intent of synthesizing an MRF signal from a previously

acquired magnitude-only MR image data set. The implications of

this approach are several fold; First, since the MRF technique

was first reported in 2013 (8) there exists approximately 30 years

of diagnostic MR image information that could benefit from this

technology given that the first clinical MR imaging systems were

developed in the early 1980s (55). Second, access to quantitative

relaxometry information derived through a synthetic DL MRF

could provide new insights into the development and progression

of multiple disease processes by providing quantitative

relaxometry information over time spans exceeding 50 years.

Third, the described network demonstrates as a proof of concept

the ability to derive quantitative information from an inherently

qualitative (i.e., MRI) signal thereby opening new areas of

investigation as well as DL methodologies for extracting

quantitative metrics from inherently qualitative data.

Overall, as measured by the CCC, there was agreement between

the DL-derived and actual MRF relaxometry values given their

absolute values and 95% confidence intervals of 0.8793 and

0.8136–0.9383 for T1 and 0.9078 and 0.8981–0.9145 for T2. The

authors have not attempted to assign a degree of agreement to

these values given that there is disagreement between the
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interpretation of degree of agreement based on the absolute CCC

value. For example. Akoglu (56) has described how CCC values

can be interpreted as being similar to other correlation coefficients

with values of <0.2 being assigned as poor and >0.8 as excellent. In

contrast, Akoglu (56) also noted that other authors have indicated

that poor agreement exists for values of <0.9 and substantial being

within the range of 0.95–0.99. However, the data does indicate, as

illustrated in Figures 1, 2 that strong agreement exists between

both MRF approaches but that the degree of agreement is related

to the absolute relaxometry value in question. This is particularly

true for comparisons of T1 estimates across the rang of values

(700–1,500 ms) while T2 estimates showed a decrease in DL-

derived compared to actual MRF T2 estimates greater than 80 ms.

The discrepancies between relaxometry estimates are further

quantified by the bootstrapped average (and 95% confidence

intervals) of the difference between the true and DL-derived T1

and T2 estimates which were 48.23 ms (23.0–77.3 ms) and

2.02 ms (−1.4 to 4.8 ms) respectively. While the T2 confidence

interval indicates that the mean difference includes zero, the T1

estimate did not indicating that, on average, the DL estimate of

T1 was systematically less than the actual value. Previous

comparison between calculated (i.e., MRF) estimates and

National Institute of Standards and Technology (NIST)/

International Society of Magnetic Resonance in Medicine

(ISMRM) quantitative phantom (https://www.nist.gov/programs-

projects/quantitative-mri) relaxometry values using the same

MRF acquisition sequence have shown agreement for both

T1 and T2 over clinically encountered relaxometry values (17).

However, for both T1 and T2, the linear regression fit showed an

intercept of 22.4 ms and 1.7 ms for the T1 and T2 values

respectively with a positive intercept indicating an over

estimation of the MRF-derived relaxometry value. Similar results

were also reported by Buonincontri et al. (57) who performed a

multicenter reproducibility study using a similar MRF sequence
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https://www.nist.gov/programs-projects/quantitative-mri
https://www.nist.gov/programs-projects/quantitative-mri
https://doi.org/10.3389/fradi.2024.1498411
https://www.frontiersin.org/journals/radiology
https://www.frontiersin.org/


FIGURE 5

Mid-brain axial T1 relaxometry maps for the deep learning (DL) and true MRF reconstructions.

FIGURE 6

Mid-brain axial T2 relaxometry maps for the deep learning (DL) and true MRF reconstructions.
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run on the same scanner manufacturer as used in this study in

which both T1 and T2 derived relaxometry values were

overestimated compared to the NIST stated values. Taken

together, the underestimation of absolute T1 and T2 values by the

DL network are compensated by the overestimation of these

values by the actual MRF sequence therefore indicating overall

accuracy and precision of the DL-derived values.

Comparison of the true vs. DL relaxometry maps as seen in

Figures 5, 6 identify the overall smoothing of relaxometry maps

generated from the DL MRF data when compared to the actual

MRF relaxometry maps. This is to be expected given that DL in

general and U-Net networks in particular are designed to find a

local minimum of smoothly varying optimization functions and

therefore are less susceptible to noise both in terms of signal

value and spatial distribution. This is further quantified by

comparison of the coefficient of variation (CoV) of the

bootstrapped individual regional T1 and T2 estimates for both

MRF approaches. For T1, the mean and range (minimum and

maximum) of the CoV was 0.22 ms (0.066–0.399 ms) and

0.203 ms (0.054–0.364 ms) for the true and DL estimates across

all 47 anatomic segments. Similarly, T2 estimates of the mean

and range were 0.512 ms (0.136–1.291 ms) and 0.348 ms (0.065–

1.048 ms) for the true and DL estimates respectively. Given the

inherently noisy nature of the MRF data acquired in this work,

the effect of smoothing introduced by the DL network was seen

as an advantage thereby improving the precision of these estimates.

Our DL implementation differs from the standard U-Net

architecture (20) in several ways. The batch normalization and

the dropout layers have been added to avoid overfitting, which

results in better prediction on untrained data. Seven distinct

implementations of U-Net were trained independently and they

were concatenated only at the final inference stage after

convergence of the network weights. We plan to investigate in

the future alternative implementations in which the networks

are coupled during training, for example through weight sharing

or weight pre-training strategies. For regression problems, as

in this case, a linear activation function is commonly used for

the output layer (21). However, this work adopted a tanh

function which introduces nonlinearity in the prediction process

for MRF data, yielding better convergence. Of note, the U-Net

was originally designed for segmentation applications with a

sigmoid activation function. Preliminary network configurations

demonstrated poor convergence suggesting an ineffective

activation function prompting the adoption of the tanh function.

Future work will include assessment of other nonlinear

activation functions.

A unique feature of the current network configuration was the

use of a limited number of singular values and associated networks

employed in generating the DL MRF. While the MRF compression

algorithm generated a total of 14 complex SVs, initial investigation

of all 14 indicated that most of the signal of the compressed MRF

data was contained within the first four with the latter values

contributing only noise to the system. Thus, the network was

only trained on the initial four complex values except for the

first SV in which the signal was considered to be only real (i.e.,

zero imaginary component). Zeroing of the imaginary
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component of the first SV was necessitated by the fact that their

values were low, resulting in artifacts and a relatively large error

function suggesting that the network was not optimized. Simply

setting the imaginary component of the first SV eliminated this

problem and resulted in rapid optimization, achieved in part by

the optimization of seven vs. eight U-Net networks.

The results of this study suggest that it is possible to generate

accurate T1- and T2-weighted relaxometry maps from a single

rapidly acquired T1 dataset. T1 and T2 relaxometry data, in

combination with proton density information makes possible

synthetic MRI, allowing for creation of multiple additional

contrasts typically used in clinical MRI. The MRF DL technique

described herein has the potential to unlock hidden contrasts not

typically seen by the eye on routine T1 images, and may enable

calculation of T1, T2, fluid attenuated inversion recovery

(FLAIR)-weighted images typically acquired on a traditional

clinical MRI from a single acquisition. Furthermore, the

approach provides the potential for adding multiparametric

quantitative data without the need for additional imaging series,

addressing concerns regarding increased MR examination times.

Recently Monga et al. (15) described developing trends in MRF

and identified several emerging clinical applications including

quantitative assessment of the heart, musculoskeletal, abdomen,

brain and malignancies, specifically quantifying their response to

radiation therapy. Collectively, they highlight the utility of MRF

as a method for deriving quantitative MR biomarkers for

multiple diseases and their related processes. However, a likely

short-term application of MRF involves the assessment of

intracranial diseases and tumors. This is due in part to the fact

that in vivo feasibility was first demonstrated within the brain (8)

but also because the brain is a relatively easy organ to image due

to its overall spherical geometry, relative insensitivity to

physiologic motion, and overall homogeneous tissue properties

making correction of magnetic field inhomogeneities including

both B0 and B1
+ straightforward. Unsurprisingly, multiple authors

have demonstrated the efficacy of MRF for diagnosing a range of

disease processes and masses including assessment of mesial

temporal lobe lesions associated with epilepsy (58), meningiomas

(17), and multiple sclerosis (16). MRF is also providing increased

clinical specificity particularly regarding further characterization

and classification of both benign malignant tumors. For example,

Badve et al. (59) demonstrated that MRF derived relaxometry

values can differentiate solid tumor regions of lower grade gliomas

from metastases and peritumoral regions of glioblastomas from

lower grade gliomas. When MRF is combined with additional

information, for example 18F PET-MR, it can be used to identify

tumor grade and predict mutational status in gliomas (60), of

inherent therapeutic significance. These data thus support the

viability of the approach described in this work, particularly when

applied to MRF of the brain.

The diversification of MRF applications to multiple organs and

diseases highlights the clinical significance of quantitative

relaxometry data in diagnostic MR imaging. The ability to

synthesize an MRF signal from magnitude-only MR imaging data

addresses a major limitation of this approach by allowing

generation of this data without the associated MRF infrastructure
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(pulse sequence and reconstruction pipeline) and addressing

clinical imaging constraints by not increasing overall examination

times through the addition of extra pulse sequence acquisitions.

Retrospective processing of existing MR data further points

to the potential of this approach by creating additional

opportunities for longitudinal studies that precede the arrival of

MR fingerprinting.

The significance of this work is multifaceted. The proof-of-

concept results presented highlight the transformative potential

of DL to address current challenges in medical imaging that

extend beyond the specific application of MRF. Also, since MRF

is still not widely available nor integrated in routine clinical

workflows, the development of this and other DL-based methods

and tools, once appropriately trained and tested, have the

potential to facilitate synthetic MRF information rapidly and

inexpensively, thus contributing to efficiency and resource

optimization. Finally, by demonstrating the feasibility and

accuracy of this approach in normal subjects, the groundwork for

extending these techniques to patients with various pathologies

in the future has been established. As a first-of-its-kind method,

this study has focused on establishing the feasibility and accuracy

of generating synthetic MRF data from MRI. Unfortunately,

benchmarking with other existing methods is not possible, due to

the lack of prior approaches addressing this specific problem.
Limitations

There are several limitations associated with this study. First, the

DL network has been trained based on a single MRF pulse sequence

and acquisition strategy on a single MR scanner and field strength.

To address this, thereby increasing the generalizability of the

approach, ongoing work is being performed to train and evaluate

additional networks to create a synthetic MRF that can be

described by a generalized scan parameter history that would

accommodate various acquisition strategies, scan times and pulse

sequences. This includes using MRF sequences from other MR

scanner manufacturers and obtaining data from scanners at

differing field strengths. Second, the network has only been trained

on contiguous 2D data from the brains of normal subjects based

on T1-weighted MR data thereby potentially reducing the

sensitivity of the network to the T2 component of the synthetic

MRF signal. It is important to note that, while heavily T1-

weighted, the MPRAGE signal does include a T2 signal component

(61) thereby influencing the learning phase of the network. Also,

the incorporation of additional imaging data from a given subject

such as T2-weighted or other contrast data sets greatly increases

both the complexity of the network as well as the computation

time, requiring additional computational resources. This also

imposes a practical challenge of providing spatially registered data

of equal resolution acquired at the same timepoint as input to the

network which may not be available in a prospective clinical

setting. Ongoing work is currently underway to train additional

networks based on multiple MRI data inputs including T2-

weighted data from patients referred to our clinical imaging

practice and to input a single 3D volume into the network. We are
Frontiers in Radiology 12
therefore transitioning network development from a single stand-

alone university server to national supercomputing resources, in

particular the Delta GPU cluster at the National Center for

Supercomputing Applications (delta.ncsa.illinois.edu). Finally, a

small number of subjects were used for this study in all phases of

the network development and training. However, we were still able

to obtain excellent convergence by applying data augmentation.

While the MRF data consists of a regular 3D grid of (256)3 voxels

with 1 mm3 resolution, the available MRI scans are obtained with

larger spacing between slices and the corresponding 2D grids,

although regular, have usually lower resolution (larger grid

spacing). The MRI data was carefully augmented by interpolation

during the process of alignment with the MRF volume, which

increased the effective distribution of MRI samples on a regular

grid, used in training. Such augmentation techniques are widely

used in machine learning to improve resolution and reduce model

overfitting. Despite these limitations, the results indicate that a

synthetic MRF signal can be generated from a single contrast MRI

data set. We predict that additional network development and

training will further increase the precision, accuracy and general

applicability of the DL network.
Conclusion

The results of this study support the hypothesis that MRF

signals can be synthesized from conventional MR imaging data

using a DL network. Overall agreement between the acquired

and synthetic MRF signals were acceptable for both T1 and T2

derived relaxometry estimates for normal brain tissue at 3T. The

work also demonstrates the potential to retrospectively analyze

MR imaging information in the absence of an MRF signal,

thereby enabling quantitative relaxometry to be performed on

data acquired prior to the development of the MRF technique.

Future work includes expanding the DL network capabilities to

synthesize MRF data from multiple MR scanner manufacturers

and to train additional networks on multiple T1-weighted and

non-T1-weighted image contrasts.
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