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Introduction: Task-based language fMRI is a non-invasive method of identifying
brain regions subserving language that is used to plan neurosurgical resections
which potentially encroach on eloquent regions. The use of unstructured fMRI
paradigms, such as naturalistic fMRI, to map language is of increasing interest.
Their analysis necessitates the use of alternative methods such as machine
learning (ML) and deep learning (DL) because task regressors may be difficult
to define in these paradigms.
Methods: Using task-based language fMRI as a starting point, this study
investigates the use of different categories of ML and DL algorithms to identify
brain regions subserving language. Data comprising of seven task-based
language fMRI paradigms were collected from 26 individuals, and ML and DL
models were trained to classify voxel-wise fMRI time series.
Results: The general machine learning and the interval-based methods were the
most promising in identifying language areas using fMRI time series classification.
The geneal machine learning method achieved a mean whole-brain Area Under
the Receiver Operating Characteristic Curve (AUC) of 0.97+ 0.03, mean Dice
coefficient of 0.6+ 0.34 and mean Euclidean distance of 2.7+ 2.4mm
between activation peaks across the evaluated regions of interest. The interval-
based method achieved a mean whole-brain AUC of 0.96+ 0.03, mean Dice
coefficient of 0.61+ 0.33 and mean Euclidean distance of 3.3+ 2.7mm
between activation peaks across the evaluated regions of interest.
Discussion: This study demonstrates the utility of different ML and DL methods in
classifying task-based language fMRI time series. A potential application of these
methods is the identification of language activation from unstructured paradigms.

KEYWORDS

task-based fMRI, language, time series, brain activation, machine learning,
deep learning

1 Introduction

Individual variation in functional representation in the cerebral cortex (1, 2) and the

potential for re-organisation in the setting of neurological disorders (3, 4) make it crucial

to accurately localise eloquent areas of the cortex when surgery that may impinge on these

areas is contemplated. Accurate localization plays a key role in guiding the decision to

proceed with surgery and in intra-operative surgical guidance aiming to minimize the

risk of post-operative neurological deficits. Functional Magnetic Resonance Imaging

(fMRI) is a non-invasive method of functional brain mapping that measures the blood
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oxygen level dependent (BOLD) signal changes in the brain due to

changes in regional cerebral blood flow during brain activation

(5, 6). It is commonly used for non-invasive pre-surgical

mapping across a range of functional domains, including the key

domain of language (7–11).

Task-based language fMRI is a conventional approach for

presurgical language mapping. It achieves language lateralization

and localization that is concordant with gold standard methods,

such as direct cortical stimulation and the Wada test (12–14). In

task-based language fMRI, the subject completes a specific

language task arranged in a paradigm comprising of blocks with

task performance interleaved with blocks during which a control

or baseline task is performed, (11, 15). Such designs facilitate

statistical analysis using the General Linear Model to identify

brain areas activated during the performance of the language task

(16, 17). In these areas, the time course of the fMRI signal

resembles the temporal profile predicted from the structure of

the task (i.e., the task regressor). Clinical application of task-

based fMRI requires the patient to understand and perform the

task paradigm, potentially hampering its use in patient groups

such as young children or those with deficits in comprehension,

memory or attention that interfere with task performance.

This limitation of task-based paradigms can be overcome by

using unstructured, continuous paradigms such as naturalistic

fMRI (18–22). Naturalistic paradigms are less demanding in

terms of patient compliance and mimic everyday activities

insofar as they may only involve passive viewing of a movie or

video (18, 20). However, unlike task-based fMRI, naturalistic

fMRI has no obvious task regressor of interest. In previous

studies, regressors have been defined by manually labelling the

movie stimulus to identify features that are considered a priori to

engage specific cognitive processes (23, 24). The labelling

procedure is subjective and likely to vary with the expertise of

the reviewer. A more direct alternative approach would be to

extract the regressor(s) of interest from the temporal profiles of

already-defined functional systems. One way to investigate the

feasibility of this approach is to validate extracted temporal

profiles using task-based paradigms in which the temporal

profiles are known.

Machine Learning (ML) and Deep Learning (DL) methods

have already been applied to fMRI analysis [See (25) for a

general review of the applications of ML and DL in fMRI data

analysis]. ML and DL methods are data-driven and their

potential use for the classification of fMRI time series in keeping

with their ability to classify time series in other application

domains (26–28). However, the application of ML/DL methods

to voxel-wise time series fMRI data (i.e., 1D data) have not been

considered to date. The best ML/DL approach for learning task

regressors are also yet to be determined.

To answer these questions, we first investigated the ability of

different ML and DL algorithms to detect language activation by

task-based language fMRI paradigms in individuals. We

evaluated different types of ML and DL algorithms using a range

of clinically relevant performance metrics including Area Under

the Receiver Operating Characteristic curve (AUC), the Dice

coefficient and the Euclidean distances between corresponding
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activation peaks identified by the ML or DL methods and those

identified by the gold standard, the General Linear Model. This

approach enabled us to determine the ML/DL methods that

identify areas of language activation corresponding to the gold

standard. This result serves as the foundation for future work to

extract the task regressors from naturalistic paradigms using

ML/DL methods.
2 Materials and methods

2.1 Participants

The study was approved by the Royal Brisbane and Women’s

Hospital Human Research Ethics Committee. All participants

provided written informed consent. The study comprised of 26

individuals (20 healthy participants and 6 epilepsy patients;

mean age 40, range 21–71 years, 13 females). Head motion for

each individual across each language language paradigm was

accessed using Framewise Displacement (FD) (29). Framewise

Displacement for the 26 participants across all language

paradigms were found to be within the acceptable range

(Mean FD ¼ 0:12+ 0:06 mm, maximum FD less than 0.4 mm).

All participants’ primary language was English and handedness

was assessed using the Edinburgh Handedness Inventory

(EHI) Questionnaire.
2.2 Task design

All participants underwent seven task-based language fMRI

scans in a single session. The paradigms utilized a block design

with task blocks interleaved with control blocks. Participants

were provided with training for each task before the scanning

session and at the beginning of each task, instructions were

presented on screen followed by 10 s of dummy scans, during

which a black screen was presented. Dummy scans were

excluded from the analysis. At the end of each task, a black

screen was also presented for 10 s to allow for signal stabilisation.

See Table 1 for more information.

For each task, participants were instructed to respond covertly

during the task blocks (i.e., to think of the responses and not to

speak out loud) and to fixate on a fixation point presented on

the screen during control blocks.

Task stimuli were presented with E-prime 3.0 software

(Psychology Software Tools Inc., version 3.0) and participants

were given MRI-safe active noise-cancelling headphones.

Participants who required vision correction were encouraged

to wear contact lenses or MRI-safe vision correction lenses

were used.
2.3 Image acquisition

Data were collected using a Siemens Magnetom 3T Prisma

scanner (Siemens Healthcare, Erlangen, Germany). BOLD
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TABLE 1 Task paradigms.

Paradigm Duration No. blocks Details of each block Participant instructions
Sentence Completion
(SC)

4:20 6 task, 6 control 4 incomplete sentences or garbled sentences,
presented for 5 s each

Participants were instructed to think of the word that completes
the sentence during task blocks

Silent Word
Generation (SWG)

4:20 6 task, 6 control 2 alphabets or symbols, presented for 10 s each. Participants were instructed to silently think of as many words
as possible beginning with the alphabet shown on the screen
during task blocks

Rhyming (R) 4:20 6 task, 6 control 5 sets of two words or symbols, presented for 4 s
each.

Participants were instruct to press a button when the words or
symbols presented to them rhyme or match.

Object Naming (ON) 4:20 6 task, 6 control 6 images or symbols, presented for 3.34 s each Participants were instructed to think of the name of the object
presented on screen during the task blocks.

Antonym Generation
(AG)

3:00 4 task, 4 control 10 words or fixation crosses presented for 2 s
each.

Participants were told to think of the antonym of the word
during the task blocks.

Passive Story
Listening (PSL)

4:20 6 task, 6 control One segment of the story or garbled audio,
played for 20 s

Participants were instructed to close their eyes and pay
attention to the audio story during the task blocks

Sentence Completion
Listening (SCL)

4:20 6 task, 6 control 4 audio sentences (with the beep indicating the
end of the sentence) or garbled sentences
presented for 5 s each.

Participants were asked to think of the word that completes the
sentence at the end of the beep during the task blocks.
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Functional images were acquired using an Echo Planar (EPI)

sequence and standard 64 channel head coil. (TR ¼ 2,000 ms,

TE ¼ 23 ms, Flip angle ¼ 90 Degrees, FoV ¼ 210 mm,

Resolution ¼ 70� 70, 42 Axial Slices, Voxel size ¼ 3� 3� 3

mm). Whole brain T1 MPRAGE structural images were also

acquired (TR ¼ 1,900 ms, TE ¼ 256 mm, Flip Angle ¼ 9

Degrees, FoV ¼ 256 mm, Resolution ¼ 256� 256, 192 Axial

Slices, Voxel size ¼ 1� 1� 1 mm).
2.4 Pre-processing of fMRI data

Data were analysed using Statistical Parametric Mapping

SPM12 software (30, 31). The steps included slice timing

correction, realignment (realigning images to the mean image

functional image across all tasks for each participant), co-

registration to structural T1 image, spatial normalization to

Montreal Neurological Institute (MNI) space (re-sampled to

3� 3� 3 mm) and smoothing using a full-width half maximum

(FWHM) Gaussian kernel of 6 mm.
2.5 Task-based language fMRI activation

For each participant, first-level task-based language activation

maps were derived for each of the seven tasks. Pre-processed

voxel-wise fMRI time series data were modeled with the General

Linear Model using SPM12 software. General linear modelling

was performed with defined task regressors and covariates. The

former were obtained by convolving the box-car stimulus

function (contrasting task and control conditions) of each task

with the canonical Haemodynamic Response Function (HRF).

Covariates or nuisance regressors were the six motion parameters

from the motion correction step during pre-processing. High

pass filtering with a cut off of 128s and a first-level

autoregressive model, i.e., AR(1) were employed.

A threshold of p , 0:001, uncorrected for multiple

comparisons, was applied to the t-statistic images to generate
Frontiers in Radiology 03
language activation maps which were binarised (activated vs non-

activated) for machine learning analysis. The process of deriving

task-based language activation maps is illustrated in Figure 1.
2.6 Training and test pipeline

Data analysis with machine learning and deep learning

comprises of training and testing stages. A set of carefully

curated training data is first provided to ML or DL algorithms,

allowing patterns to be extracted from the data, resulting in a

trained model. Test set(s) are then used to evaluate the

performance of the ML/DL model.
2.6.1 Training set
To construct the training set, pre-processed fMRI voxel time

series of 14 healthy participants across 6 tasks (SC, SWG, R, ON,

PSL, SCL) were extracted and labelled as activated (label 1) or

non-activated (label 0) to yield binarised activation maps for

each paradigm. The classification problem to be solved by the

ML/DL methods was therefore to classify whether a fMRI voxel

time series was activated or non-activated. The process of

extracting voxel-wise fMRI time series and labelling is illustrated

in Figure 2. Data from the AG tasks were excluded from the

training set because the length of the voxel time series differed

from that of the other tasks; however, the AG task was included

in the test set, see Section 2.6.2).

Reflecting individual variation in brain function, the number of

activated and non-activated fMRI voxel time series varied across

participants and tasks. To balance the training set so that the

numbers of activated and non-activated time series was equal,

and to equalize the contribution of samples from each

participant and each task, the participant and task paradigm with

the smallest number of activated voxels was identified, which

corresponded to 29 fMRI time series samples. The number of

activated fMRI voxel time series and non-activated voxel time

series for the remaining participants and tasks was randomly

sampled, without replacement, to match the smallest number of
frontiersin.org
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FIGURE 1

Illustrated are the steps to obtain task-based language activation maps. Task paradigm stimulus function was convolved with the hemodynamic
response function to get task regressors. Raw fMRI images were preprocessed, and together with task and nuisance regressors activation maps
are produced using Genearl Linear modelling.

FIGURE 2

Illustrated are the steps to extract voxel time series data and corresponding binary labels. Task-based language activation maps were used to define
the 0 and 1 labels.

Kuan et al. 10.3389/fradi.2024.1495181
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TABLE 2 Algorithms evaluated from different categories.

Category Algorithm
General Machine
Learning (GML)

Rotation Forest (RotF) (35)

Dictionary-based Word Extraction for Time Series Classification
(WEASEL) (37)

Feature-based Time Series Feature Extraction based on Scalable
Hypothesis Tests (TSFresh) (38)

Frequency-based Random Interval Spectral Ensemble (RISE) (39)

Interval-based Supervised Time Series Forest (sTSF) (40)

Kernel-based Ensemble of RandOm Convolutional KErnel
Transform transformers (ARSENAL) (41)

Deep-Learning (DL) Inception Time (Inception) (42)

Kuan et al. 10.3389/fradi.2024.1495181
activated voxels (i.e., resulting in 58 samples from each task

paradigm for each participant, with the number of activated

voxel time series and non-activated voxel time series from each

participant totaling up to 348).

The resulting training set had 4,872 samples, of which 2,436

samples were labelled 1 and 2,436 samples were labelled 0.

2.6.2 Test set
For the test set, time series from all brain voxels in 6 healthy

and 6 epilepsy patients for 6 tasks (SC, SWG, R, AG, ON, SCL)

were extracted and labelled according to the binarised language

activation maps. A combination of healthy participants and

epilepsy patients were included in the test set to ensure diversity

in the test data. The PSL task was excluded from analysis

because there was little activation in most participants. To

determine whether the trained models could be used to analyse

unseen data with fMRI time series of different lengths, the time

series for the AG task was padded with the final time point in

the fMRI time series to match the length of fMRI time series of

other tasks.

An average of 66,036 samples was extracted from each task in

each participant. The voxel locations of each sample were saved

and later used to reconstruct ML/DL activation maps. See

Table A1 in Appendix (Section A) for the number of samples

that were extracted for each participant and each task.

2.6.3 Choice of machine learning and deep
learning algorithms

Several types of machine learning and deep learning algorithms

have been proposed for time series classification. They can be

categorised into general machine learning, dictionary-based,

distance-based, feature-based, frequency-based, interval-based,

kernel-based, shapelet-based, hybrid or ensemble-based and deep

learning methods. The different ML/DL categories and methods

can be found in the SKTIME library (version 13.4) (32, 33). A

separate category was defined, namely the general machine

learning (GML) category which includes ML methods that were

conventionally developed to solve non-time series problems.

These methods can be found in the Scikit-Learn library and the

Rotation Forest algoritm falls into this category (34, 35).

A representative algorithm from each category is chosen based

on the literature and evaluated to determine whether a particular

category of classification algorithms was more suited to task-

based language fMRI analysis. Table 2 shows the algorithms

from each category. Default hyper-parameters were used to

evaluate each of the chosen algorithms. While hyper-parameter

tuning is largely discussed in the machine learning community,

Probst et al. (36) evaluated the impact of hyper-parameter tuning

on six different ML algorithms and showed that AUC at most

improves by 10% by optimizing of hyper-parameters. Default

hyper-parameters are also useful starting points to ML algorithm

evaluation and generally work well across different problems

(35). The use of default parameters also ensures reproducibility

of results.

To choose the algorithms to be tested, we first identified the

most recent algorithms to be developed in each category. The
Frontiers in Radiology 05
literature was then reviewed to determine their performance in

comparison with algorithms previously used to benchmark time

series classification performance in terms of accuracy and

computational efficiency (28). The algorithms chosen for

comparison from each category were trained on high

performance computing clusters with different memory

requirements depending on the algorithm. Algorithms that

required more than 24 h or 128 GB of memory on a single core

for training were excluded from selection. Because long test times

can be overcome by testing multiple batches of data in parallel,

we did not consider this in algorithm selection. See Appendix

(Section A) for further details on the justification of machine

learning algorithm choices.

This study focused on time series classification methods that

build on traditional machine learning methods because of their

proven success in other application domains involving time series

datasets (See (28) for more). While deep learning methods have

great success in many domains, DL-based methods often require

more data to train and run the risk of over-fitting. Deep learning

networks are also more complex, which often makes

interpretation challenging.

2.6.4 Performance evaluation
Measures used to assess algorithm performance were Area

Under the Receiver Operating Characteristic Curve (AUC), Dice

coefficient and Euclidean distance(s) between activation peaks

identified with SPM and ML/DL. These were calculated for each

participant according to language paradigm and ML/DL algorithm.

AUC was calculated for the whole brain and both the Dice

coefficient and Euclidean distance were calculated using 12

language-related regions from both left and right hemispheres

defined using parcellations from (43). Of the 12 language-related

regions of interest, those for which at least one test participant

showed . 50 percent overlap between the region and the area of

task-based activation were selected, yielding 25 regions across 6

language paradigms.

AUC values were calculated from Receiver Operating

Characteristic (ROC) curves which plot the True Positive Rate vs.

False Positive Rate for each test participant and task at different

probability thresholds. The Dice coefficient was calculated using:

Dice ¼ 2jA>Bj
jAjþjBj , where A corresponds to activated voxels identified

by SPM and B corresponds to ML/DL activated areas. AUC and
frontiersin.org
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Dice coefficient values range from 0 to 1, with 1 indicating that a

ML/DL algorithm performs perfectly in classifying test samples

(i.e., full overlap between ML/DL and task-based activation maps.

We categorised a Dice coefficient of 0.00–0.19 as low overlap,

0.20–0.39 as low-moderate overlap, 0.40–0.59 as moderate

overlap, 0.60–0.79 as moderate-high overlap and 0.80–1.00 as

high overlap, in keeping with categories defined by (44).

The Euclidean distance between peaks within language-related

regions was also evaluated as peak location is of potential clinical

importance in neurosurgical decision-making. In each selected

language-related region, the distance between the highest SPM

activation peak and every ML/DL activation peak was calculated

and the shortest distance reported in millimeters (mm). We also

assessed whether the peaks identified by ML/DL and by SPM

were in the same or different gyri by co-registering the activation

maps to each participant’s T1 MPRAGE structural image.

A Kruskal-Wallis test with post hoc pairwise comparisons

using the Dunn test (p-value corrected for multiple comparisons

using the Holm–Bonferroni method) were performed to identify

if there were significant differences between the mean AUC, Dice

coefficient and Euclidean distance between peaks for different

ML/DL methods. The threshold for statistical significance was set

at p , 0:05.
3 Results

3.1 Activation maps

To illustrate how well each method performs, Figure 3 shows

the overlap between activation areas found by SPM and each
FIGURE 3

This figure shows the overlap between SPM activation maps vs. evaluated
LHS under each algorithm title and an epilepsy patient, RHS under each a
(SC). Black - Overlap, yellow - SPM activation, Red - ML/DL activation.

Frontiers in Radiology 06
ML/DL algorithm studied for the Sentence Completion (SC) task

in two test participants (p , 0:001 uncorrected). The black areas

denote the overlap between SPM and ML/DL activation, yellow

areas denote activated areas found only by SPM and red areas

denote activated areas only found by each ML/DL methods.

Activated areas identified by SPM are shown in the upper left

row of the figure. Reflecting the expressive and receptive

language components of the SC task, activation can be seen in

frontal and temporal lobes in both participants; bilateral

activation was observed.

Activated voxels identified by the ML/DL algorithms occurred

in clusters and a qualitatively good level of overlap (as indicated by

the ratio of black areas compared to red and yellow areas) was

observed for most methods except for the frequency-based and

dictionary-based methods. The frequency-based method shows

areas that are not found to be activated by SPM (red areas in the

posterior brain, including occipital and parietal areas). A number

of scattered small activated areas were identified by the

dictionary-based method, although the main activation clusters

were still identified.
3.2 Whole-brain AUC

The scatter plot in Figure 4 shows the mean whole-brain AUC

values across test participants of different ML/DL categories and

language paradigms. The violin plots show the distribution of

AUC values across test participants for the best and worse

performing ML/DL categories of each language paradigm. Blue

violin plots show the distribution of AUC values for the best

performing ML/DL method and orange violin plots show the
ML/DL activation maps of two test participants (A healthy participant,
lgorithm title) for a single single language task - Sentence Completion
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distribution of AUC values for the worst performing ML/DL

method. Table 3 shows the values associated with the scatter plot

in Figure 4.

Mean whole-brain AUC values for different ML/DL categories

and language paradigms exceeded 0.8 with the GML method

achieving the highest AUC values for 5 of 6 of the language

paradigms (highlighted in blue in Table 3). For the SWG

paradigm, both the GML and kernel-based methods achieved the

highest AUC value of 0.98. AUC values for the GML method

ranged between 0.94 to 0.98, with values being highest for SWG

and AG (0.98). The highest mean AUC value across language

paradigms was achieved by the GML method (0:97+ 0:03;

Table 3). The frequency-based method consistently ranked the

lowest in whole-brain AUC values, with values ranging from 0.93

to 0.96 (Mean AUC: 0:89+ 0:06; Table 3).

The mean AUC differed significantly between ML categories

(Kruskal-Wallis Test, H(6) ¼ 131:1, p ¼ 7:34� 10�26). On post
FIGURE 4

Mean whole-brain AUC values across test participants of different
ML/DL categories, by language paradigm (as a scatter plot with
violin plots showing the distribution of AUC values for the best and
worse performing ML/DL methods for each language paradigm.
Blue - best, Orange - worst).

TABLE 3 Table of mean whole-brain AUC values across test participants by l

SC SWG R
General ML 0.97 0.98 0.97

Dictionary 0.94 0.95 0.92

Feature 0.95 0.97 0.96

Frequency 0.9 0.89 0.89

Interval 0.96 0.97 0.95

Kernel 0.96 0.98 0.94

Deep Learning 0.94 0.96 0.95

Frontiers in Radiology 07
hoc testing, the mean AUC of the GML method was found to be

significantly higher than that of the dictionary, frequency and

DL-based methods. The mean AUC of the frequency-based

method was found to be significantly lower than that of all other

evaluated methods.

When evaluated across the healthy participant and epilepsy

patient groups, the GML method consistently ranks the top three

when evaluated across the different language paradigms. This

occurs in 89% of cases for healthy participant group and 72% for

the epilepsy patient group. The GML method ranks the top two

in 75% of cases for healthy participant group and 64% for the

epilepsy patient group, and ranks the highest for 50% of cases

for healthy participant group and 42% for the epilepsy patient

group. In contrast, the frequency-based method ranks lowest

among both groups, with 83% of cases for healthy participants

and 86% for epilepsy patients across the evaluated language

paradigms. This suggests consistent performance of ML/DL

methods between healthy participants and epilepsy patients.
3.3 Dice coefficients of language regions

Figure 5 shows the mean Dice coefficients (across test

participants) for each ML/DL category in different language-

related regions. The violin plots show the distribution of Dice

coefficients across test participants for the best and worse

performing ML/DL categories of each language region of interest.

Blue violin plots show the distribution of Dice coefficients for the

best performing ML/DL method and orange violin plots show

the distribution of Dice coefficient values for the worst

performing ML/DL method. Table 4 shows the values associated

with Figure 5.

The interval-based method has the highest mean Dice

coefficient values (0:61+ 0:33) across evaluated language region

and ranks highest for 10 out of the 25 language-related regions

(highlighted in blue in Table 4). Mean Dice coefficient values for

the interval-based method range from 0.26 (ON-P3) to 0.83

(SC-P3), with mean values larger or equal than 0.6 for most

language-related regions except SC-P7, SC-P9, SWG-P3, ON-P3,

AG-P7, AG-P8, SCL-P1, SCL-P2, SCL-P7, SCL-P8, indicating

at least a moderate to high level of overlap between activated

voxels identified by SPM and by the interval-based method.

However, a high overlap (0.8-1.0) between activated voxels

identified by SPM and by the interval-based method was only

observed in 3 language-related regions (SC-P2, SC-P3, AG-P3).
anguage paradigm, associated with scatter plot in Figure 4.

ON AG SCL Mean+ SD
0.96 0.98 0.94 0:97+ 0:03

0.93 0.95 0.92 0:94+ 0:04

0.95 0.97 0.95 0:96+ 0:04

0.89 0.92 0.88 0:89+ 0:06

0.95 0.97 0.95 0:96+ 0:03

0.95 0.97 0.93 0:95+ 0:04

0.94 0.94 0.93 0:94+ 0:04
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FIGURE 5

Mean Dice coefficient across test participants of different ML/DL categories, by language regions of interest (as a scatter plot with violin plots
denoting the distribution of Dice coefficient values for the best and worse performing ML/DL methods for each language paradigm. Blue - best,
Orange - worst).
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The frequency-based method had the lowest mean Dice coefficient

(0:5+ 0:35) across the evaluated language regions and ranked the

lowest for 13 out of 25 language-related regions. The frequency-

based method achieved a mean Dice coefficient of larger than 0.6

in only 7 regions (SC-P1, SC-P2, SC-P3, SC-P5, AG-P1, AG-P2,

AG-P3), with a high level of overlap not being observed in any

of the language regions.

The mean Dice coefficient differed significantly between ML

Categories (Kruskal-Wallis Test, H(6) ¼ 41:8, p ¼ 2:00� 10�7).

The post hoc Dunn test revealed that the mean Dice coefficient of

the interval-based method was significantly larger than that of the

dictionary, frequency and DL-based methods but not significantly

different from that of the remaining methods. The mean Dice

coefficient for the frequency-based method was significantly lower

than that of the GML, feature and interval-based methods but not

significantly different from that of the remaining methods.
3.4 Euclidean distance between peaks

The scatter plot in Figure 6 shows the mean Euclidean distance

(across test participants) between peaks in different language-

related regions identified by SPM vs. peaks identified by the ML/

DL methods in millimeters (mm). The violin plots show the

distribution of Euclidean distances between peaks across test

participants and ML/DL methods in different language-related

regions. Table 5 shows the values associated with Figure 6.

Euclidean distances ranged from 1.3 mm (R-P3, interval-based

method) to 7.7 mm (AG-P2, kernel-based method) across different
Frontiers in Radiology 08
ML/DL categories. The GML method had the shortest average

distance between SPM peaks and GML peaks for 13 out of 25

regions (highlighted in blue in Table 5), with distances ranging

from 1.5 mm (SC-P2) to 4.2 mm (R-P1). The mean Euclidean

distances between the peaks for the GML method was 2:7+ 2:4

mm. The DL and kernel-based methods ranked the lowest for 9

out of 25 and 8 out of 25 regions respectively. Euclidean distance

for the DL-based method ranged from 3.0 mm (SC-P7) to

6.1 mm (SC-P5) and for the kernel-based method it ranged from

2.6 mm (R-P3) to 7.7 mm (AG-P2). The mean Euclidean

distances for the DL and kernel-based method were 4:8+ 3:1

mm and 4:7+ 3:1 mm respectively.

The mean Euclidean distance differed significantly between ML

categories (Kruskal-Wallis Test, H(6) ¼ 130:4, p ¼ 1:04� 10�25).
On post hoc testing, the mean Euclidean distance for the GML

method was significantly smaller than that of all other evaluated

methods. The mean Euclidean distances for the kernel and DL-

based methods did not significantly differ from each other but

were significantly larger than that of all other evaluated methods.

Qualitative assessment of peaks was performed on the

activation maps corresponding to the two most promising

categories of methods (GML and interval-based). GML method

identified peaks which were either in the same or adjacent gyrus

to 80% of the peaks identified by SPM across the regions of

interest. The interval-based method identified peaks in the same

or adjacent gyrus to 60% of the peaks identified by SPM. (Note

that in each participant, we only included language regions with

at least 50% overlap and consequently the number of language

regions of interest varied between test participants).
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4 Discussion

We aimed to identify ML/DL methods for classification of

language activation in fMRI time series. This was motivated by

the challenges of analysing naturalistic fMRI data, where

regressors are often difficult to define. fMRI data from seven

language tasks were acquired. Experiments using task-based

language activation data i.e., structured fMRI time series data,

allowed us to understand how the ML/DL methods classify. We

considered ML/DL methods for univariate time series

classification from seven categories, namely general ML, DL,

dictionary, feature, frequency, interval, and kernel. fMRI time

series voxel data from 14 healthy participants were used for

training (4,872 1D time series samples). Data from 12

participants including 6 healthy and 6 epilepsy patients were

chosen for test. There were around 720,000 total 1D samples per

language paradigm - see Appendix (Section A) for exact number

of test samples. ML/DL models were trained on labelled data,

using participant-specific SPM activation maps as the ground

truth. The ML/DL methods were quantitatively evaluated using

three different performance measures: whole-brain AUC, Dice

coefficient and Euclidean distance between of activation peaks

identified ML/DL and by SPM.

The GML and interval-based methods showed good

correspondence with SPM activation (refer to Figure 3).

Quantitatively, the GML method had the highest mean AUC

values across the different ML/DL methods (0:97+ 0:03).

Interestingly, whole-brain AUC values were high for all the

evaluated ML/DL methods and the mean AUC values for the

GML, feature, interval and kernel-based methods were not

significantly different. The interval-based method achieved the

highest mean Dice coefficient (i.e., 0:61+ 0:33). The GML

method produced the smallest mean Euclidean distance for more

than half the evaluated language regions, as well as the smallest

mean distance (2:7+ 2:4 mm, superior by at least 0.5 mm

compared to other ML/DL methods) when all of the evaluated

language regions were considered. The GML and interval-based

methods located peaks that were qualitatively similar in location

to those identified by SPM for 80% (GML) and 60% of the

(interval-based) evaluated peaks. The mean Euclidean distance

for the GML method was significantly lower than for other

evaluated methods. The DL and frequency-based methods rank

lowest across evaluation metrics. While the frequency-based

method showed excess areas of activation not corresponding to

task activation, the DL-based method did predict reasonable

activation. The methods associated with the other categories

produced varied results, with no apparent trend in the metrics

evaluated. Additionally, there was also no noticeable difference in

results between healthy participants and epilepsy patients.

The results here suggest that the classification methods perform

dissimilarly. Methods involving decision trees (GML and interval-

based) outperform all other types of methods. Worst performing

methods appeared to be those incorporating frequency

information in one way or another into the features used for

classification. The frequency-based method uses spectral features,

and the DL-based method apply convolution operations
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FIGURE 6

Mean Euclidean distance between activation peaks across test participants of different ML/DL categories and SPM, by language regions of interest (as a
scatter plot with violin plots denoting the distribution of Euclidean distances for the best and worse performing ML/DL methods for each language
paradigm. Blue - best, Orange - worst).
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(essentially a product operation in the frequency domain). Their

inability to classify frequency features from the 1D time series

information may be because the brain response during the task

varies across time in a distinct, non-periodic, way (45). GML and

the interval-based method rely on many decision trees chosen

across the time series, essentially allowing selection of specific

time points. The feature method also considers the time series

features of the entire time series (38), which results in worse

performance than GML and interval-based methods. Although

not considered here, this suggests potential opportunities for

reducing the length of the time series data without sacrificing

classification accuracy.

A previous study using resting state fMRI data suggested that

locations of abnormal brain activity could be predicted from 1D

fMRI time series using a Convolutional Neural Network (CNN)

(i.e., DL-based method) (46) and raised the possibility that DL-

based methods can inform design of naturalistic fMRI stimuli.

Our findings suggest that GML and interval-based methods may

provide additional utility for 1D fMRI time series analysis and

task design.

To our best knowledge, specific comparisons between

methods categorised in the manner described here have not

been performed to date, but comparisons of specific ML/DL

methods in different research domains have been reported.

Findings by Cabello et al. (40) on different types of time series

data such as electrocardiographic recordings, stock market

prices, seismic data, power demand over time, and other 1D

time series data from the UCR database (47), suggest that the

interval-based method sTSF is superior to TSF in terms of

critical difference ranking (compared against 100+ datasets

from the UCR database). This study informed our choice of

sTSF in our study. Whilst not reported here, we did implement

TSF and found sTSF to produce better results for time series
Frontiers in Radiology 10
fMRI data. In previous work, Bagnall et al. compared TSF with

Rotation Forest (our GML method) and found TSF to be the

best time series classification method (28), which were not

concordant with our findings. In a subsequent study by Bagnall

et al., the inception time approach, a DL algorithm and

ROCKET, a kernel-based approach, sometimes did not perform

well (48), perhaps because of over-fitting during training of

these algorithms. This agrees with our finding that the

DL-based method was inferior in classification performance to

the others that we considered.

Our analyses indicate that, machine learning classification

methods can be used to identify brain activation from fMRI time

series data. The highlight the potential for ML/DL methods to

identify activation in fMRI studies without pre-specified task

regressors and in cognitive domains other than language.
4.1 Limitations and future work

Our study focused on comparing different ML/DL methods for

the classification of task-based language fMRI time series but an

analogous approach should be applicable to fMRI time series

with a similar block design. We used default hyper-parameters

for training the ML/DL methods and fMRI time series across

different language tasks of similar block design and length were

used (or the time series modified to ensure uniform length, such

as padding for the AG task). Further work should examine how

these methods generalize to other block designs or tasks (and

fMRI time series without block designs such as naturalistic

fMRI). This may involve identification of which time frame or

combination of time frames within the fMRI time series

contribute most to the classification resulting from the

ML/DL method.
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5 Conclusions

Our study involved seven routinely used fMRI language

activation tasks. We evaluated the utility of different ML/DL

methods from different time series classification algorithm

categories in predicting which task-based language fMRI 1D time

series data are activated by stimuli. The GML and interval-based

method were able to best identify language areas and shows

promise for use in fMRI data analysis. Our findings may lead to

other work where the potential of machine learning approaches

for 1D fMRI time series analysis are considered under different

paradigms, such as visual and motor activation.
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Appendix

A.1 Test set size for different
participant and tasks

Refer to Table A1 for test set sizes of the various fMRI language

tasks.
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A.2 Further justification of ML/DL
choice

Authors in (28) suggest that on data that has never been

evaluated before to start with Random Forest (RF), Rotation

Forest (RotF) or Dynamic Time Warping (DTW) as a basic

sanity check. Although DTW is known to be one of the more

accurate algorithms, like other distance-based methods it is

known to be slow and hard to scale (49) (For this reason the

distance-based category was also excluded from further analysis).

Hence, for the general ML category, RF and RotF were evaluated

and RotF was retained due to its strong performance. For the

dictionary-based category, two algorithms were short-listed,

Temporal Dictionary Ensemble (TDE) and Word Extraction for

Time Series Classification (WEASEL) (50). While TDE is built

on the advantages of other dictionary-based algorithms such as

Bag of Symbolic-Fourier Approximation (BOSS), Contractable

Bag of Symbolic-Fourier Approximation (cBOSS) and Word

Extraction for Time Series Classification (WEASLE)), TDE is

known to be more accurate but also memory intensive (50).

Authors in (50) also suggest that for faster prediction to use

WEASLE. It was found that TDE indeed was memory intensive

and took a long time to train, hence WEASLE was chosen

instead. The Hierarchical Vote Collective of Transformation-

Based Ensembles (HIVE-COTE) (51, 52) algorithm is an

ensemble of 4 different algorithms (Shapelet Transform Classifier

(STC), Time Series Forest (TSF), Random Interval Spectral

Forest (RISE) and Contractable Bag of Symbolic-Fourier

Approximation (cBOSS)) and was the early benchmark time

series classifier with high accuracy. However, it had the

disadvantage of long training and test times (28). It was since

super-seeded by the Kernal-based method, RandOm

Convolutional KErnel Transform (ROCKET) (53) algorithm

(which was faster and more scalable) and subsequently HIVE-

COTE version 2 (41). However, we found that the version 2 (v2)

of HIVE-COTE (41) still has long training time and is also

memory intensive, and was excluded from our analysis. The

ROCKET algorithm fails to produce prediction probabilities, and

ARSENAL which is an ensemble of ROCKET(s) was evaluated

instead. The RISE algorithm (39) remains the only algorithm in

the frequency-based category and was the only algorithm

evaluated within the category. Several feature-based algorithms

were also evaluated and the best performing algorithm, the Time

Series Feature Extraction based on Scalable Hypothesis Tests

(TSFresh) (38) method was retained. Several interval-based

algorithms including Canonical Interval Forest (CIF) (54),
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Diverse Representation Canonical Interval Forest (DrCIF) (41)

Time Series Forest (TSF) (55) and supervised Time Series Forest

(sTSF) (40) were evaluated as task-based fMRI time series is

block-designed and is known to have repetitive intervals. The

best performing algorithm i.e., sTSF was retained. The shapelet

based method, Shapelet Transform Classifier, was unable to

generate prediction probabilities, and was excluded from further
Frontiers in Radiology 15
analysis. Deep learning algorithms have had great success in the

image classification domain and efforts have been made to adapt

these algorithms for time series classification. We found that

Inception time performed well for time series classification

compared to two other methods, Residual Neural Network

(ResNet) and Fully Convolutional Network (FCN) and Inception

Time was retained.
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