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Predicting IDH and ATRX
mutations in gliomas from
radiomic features with machine
learning: a systematic review
and meta-analysis
Chor Yiu Chloe Chung1* and Laura Elin Pigott1,2*
1Institute of Health and Social Care, London South Bank University, London, United Kingdom,
2Department of Brain Repair and Rehabilitation, Queen Square Institute of Neurology, University
College London, London, United Kingdom
Objective: This systematic review aims to evaluate the quality and accuracy of
ML algorithms in predicting ATRX and IDH mutation status in patients with
glioma through the analysis of radiomic features extracted from medical
imaging. The potential clinical impacts and areas for further improvement in
non-invasive glioma diagnosis, classification and prognosis are also identified
and discussed.
Methods: The review followed the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses of Diagnostic and Test Accuracy (PRISMA-DTA)
statement. Databases including PubMed, Science Direct, CINAHL, Academic
Search Complete, Medline, and Google Scholar were searched from inception
to April 2024. The Quality Assessment of Diagnostic Accuracy Studies
(QUADAS-2) tool was used to assess the risk of bias and applicability
concerns. Additionally, meta-regression identified covariates contributing to
heterogeneity before a subgroup meta-analysis was conducted. Pooled
sensitivities, specificities and area under the curve (AUC) values were
calculated for the prediction of ATRX and IDH mutations.
Results: Eleven studies involving 1,685 patients with grade I–IV glioma were
included. Primary contributors to heterogeneity included the MRI modalities
utilised (conventional only vs. combined) and the types of ML models
employed. The meta-analysis revealed pooled sensitivities of 0.682 for
prediction of ATRX loss and 0.831 for IDH mutations, specificities of 0.874 and
0.828, and AUC values of 0.842 and 0.948, respectively. Interestingly,
incorporating semantics and clinical data, including patient demographics,
improved the diagnostic performance of ML models.
Conclusions: The high AUC in the prediction of both mutations demonstrates an
overall robust diagnostic performance of ML, indicating the potential for
accurate, non-invasive diagnosis and precise prognosis. Future research
should focus on integrating diverse data types, including advanced imaging,
semantics and clinical data while also aiming to standardise the collection and
integration of multimodal data. This approach will enhance clinical applicability
and consistency.
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TABLE 1 PEO research framework.

Population Exposure Outcome
Patients with a grade
II–IV glioma
diagnosis

Analyses of radiomic
features using ML
algorithms to predict IDH
and ATRX mutation status

Effectiveness and accuracy of
ML algorithms in
determining IDH and ATRX
mutation status from
radiomic features

TABLE 2 Table portraying the search terms, combinations and Boolean
operators included in the search strategy.

Search
No.

Search term

1 “Machine Learning” AND “Glioma” AND “ATRX” AND “IDH”

2 “Machine learning” OR “Artificial Intelligence” OR “Deep
Learning” OR “Neural Network”

3 “IDH” OR “Isocitrate Dehydrogenase” OR “IDH1”

4 “Glioma” OR “Brain Tumour” OR “Glioblastoma”

5 "ATRX” OR “alpha-thalassemia/mental retardation, X-linked"

6 (#2) AND (#3) AND (#4) AND (#5)
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1 Introduction

Gliomas are the most common type of primary malignant

tumours, accounting for approximately 77% of cases, with 23%

including other types such as meningiomas, medulloblastomas

and pituitary adenomas. Gliomas are classified into grades I–IV

based on histopathological and molecular analysis according to

the World Health Organization (WHO) (1). Survival rates for

patients with low-grade glioma vary significantly, from 2 to 12

years, depending on the age of diagnosis, tumour location and

histologic type (2). In contrast, patients with aggressive grade IV

gliomas typically survive less than 2 years despite treatment

advancements (3). An abbreviation and terminology explanations

table can be found in Supplementary Figure S1.

Isocitrate dehydrogenase (IDH) and α-thalassemia/mental

retardation syndrome X-linked gene (ATRX) are key biomarkers

used for the analysis and classification of gliomas. Grading of

gliomas has traditionally been solely based on histological features.

However, grading now incorporates biomarker statuses such as

IDH and ATRX per the 2016 WHO classification, which was

revised in 2021 (1). Beyond the grading of gliomas, IDH and

ATRX mutation statuses provide valuable insight and crucial

prognostic information to support decision-making and treatment

planning. IDH mutations are often associated with a better

prognosis compared to IDH wildtype. ATRX loss generally

promotes cancer cell survival by activating the alternating

lengthening telomere (ALT) pathway; however, recent research

suggests that when combined with IDH mutations, ATRX loss

paradoxically correlates with improved prognosis. This is attributed

to enhanced immune responses and increased genomic instability,

which collectively contribute to better survival rates (4–7).

Neuroimaging techniques, including magnetic resonance

imaging (MRI), positron emission tomography (PET) and

computed tomography (CT) scans, are essential for the non-

invasive identification and monitoring of glioma (8). Recent

advancements in neuroimaging, including dynamic susceptibility

contrast, diffusion- and perfusion-weighted imaging (DSC, DWI

and PWI) have significantly improved glioma characterisation and

molecular profiling (9, 10). Radiomics is the analysis of medical

imaging and often employs machine learning (ML) to extract

quantifiable image-based features, indicating structural alterations

and pathophysiological processes (11–13). Non-invasive imaging

can assess the entire tumour, providing advantages over biopsy

and resection. Although histopathological testing remains the gold

standard for definitive diagnosis, the invasiveness of the

procedure leads to inherent risks including infection, bleeding and

possible restriction by sampling error. Additionally, incorporating

ML can identify patterns in medical imaging potentially missed

by clinical interpretation alone, thereby improving diagnostic

accuracy and patient outcomes (14). These advancements offer

the potential for accurate, efficient and non-invasive diagnostic

approaches. However, challenges include variations in imaging

modalities and ML approaches, which may influence the accuracy

and outcomes (15, 16).

Previous reviews have focused on the accuracy of ML in predicting

biomarkers including IDH, MGMT and 1p19q (11, 17, 18). The most
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recent studies included in a systematic review on predicting IDH and

MGMT statuses using ML and radiomic features were published in

September 2021 (19). Another study reviewed the accuracy of

radiomics in predicting IDH mutations, specifically in diffuse

gliomas (20). Nonetheless, newer research has emerged, and a

systematic review has yet to comprehensively evaluate the potential

of using ML to predict both ATRX and IDH mutation statuses

from extracted radiomic features, which together may be associated

with more positive patient prognosis.

Given the mutual prognostic implications of these mutations,

this review aims to identify and synthesise the most current

studies to evaluate the diagnostic accuracy of ML in predicting

ATRX and IDH mutation statuses. The review will also assess

the potential and clinical impact of using ML algorithms (MLA)

for non-invasive and efficient glioma treatment planning,

prognosis and overall patient care.
2 Materials and methods

2.1 Search strategy and study selection

The Preferred Reporting Items for Systematic Reviews and

Meta-Analyses of Diagnostic and Test Accuracy (PRISMA-DTA)

statement was adhered to for this systematic review and meta-

analysis (21). The research question was formulated using the

Population, Exposure and Outcome (PEO) framework (Table 1).

A comprehensive search was conducted across major databases

including PubMed, CINAHL, Academic Search Complete,

Medline, Science Direct, and Google Scholar for grey literature.

The search strategy included “machine learning”, “glioma”,

“ATRX mutation”, “IDH mutation” and related terms to identify

research from database inception to April 2024 (Table 2). The

search strategy and screening process for study abstracts and full

texts were independently carried out by two reviewers, to ensure

the comprehensiveness and accuracy of the selection process.

Any disagreements were resolved through discussion.
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Eligibility criteria were predetermined using the Population,

Intervention, Comparison, Outcome and Time (PICOT) framework

(Table 3). The included studies were required to use neuroimaging

as part of the ML approach in predicting IDH and ATRX mutation.
2.2 Data extraction and quality appraisal

A data extraction form was used to extract relevant information,

which was predetermined before extraction to minimise bias, from

the included studies (Supplementary Figure S2).

The Quality Assessment of Diagnostic Accuracy Studies

(QUADAS-2) tool was used to assess the risk of bias (RoB)

and concerns regarding applicability. This consisted of a

comprehensive assessment across four domains including patient

selection, index tests, reference standards and the flow and timing of

the study with a completed example shown in Supplementary

Figure S3 (22). To further enhance the appraisal of study quality and

improve the significance of the results, the METhodological

RadiomICs Score (METRICS), which is a novel tool developed

specifically for radiomics research, was employed. The METRICS

tool enabled a comprehensive evaluation of the methodologic quality

of the assessed research papers across 30 items and nine domains

including study design, imaging data, image processing and feature

extraction, metrics and comparison, testing, feature processing,

preparation for modelling, segmentation and open science (23).
2.3 Statistical analysis

The primary outcome of this systematic review is to evaluate

the accuracy of using ML to predict ATRX and IDH mutation

status from extracted radiomic features. This includes analysing

accuracy metrics such as pooled sensitivity, specificity and area

under the curve (AUC).

2.3.1 Meta-analysis
As the raw data were not reported in all studies, confusion

matrices (2 × 2 tables) were reconstructed (Supplementary

Table S1 and S2), to calculate pooled sensitivity and specificity

(24). For studies reporting multiple results from training and test
TABLE 3 The eligibility table displays the predefined inclusion and exclusion

Inclusion criteria Exclus
Population (P) Adult patients diagnosed with grade I–IV glioma Non-human rese

Intervention (I) MLA is used to predict both ATRX and IDH status
using neuroimaging data

ML was not used
and IDH mutati

Comparison (C) IDH mutations and ATRX loss confirmed via
histopathological and/or molecular testing

Studies that did
and/or molecula

Outcome (O) Accuracy metrics for ML reported including
sensitivity, specificity and AUC

Studies that did
metrics

Timeframe (T) Conducting searches from inception to present N/A

Study design Primary research. Reviews, editoria
abstracts only

Non-English stu

AUC, area under the curve; MLA, machine learning algorithms.
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(validation) sets, data from the test sets were used for analysis.

Meta-analysis was conducted using OpenMeta[Analyst] software

(MetaAnalyst, Brown University EPBC), which uses R packages

for statistical analysis (25).

The Chi-square and Higgins inconsistency index (I2) tests were

conducted to assess for heterogeneity. In the Chi-square test, p < 0.05

indicates the presence of heterogeneity. The I2 statistic was used to

evaluate the degree of heterogeneity, following the interpretation

guidelines from the Cochrane Handbook for Systematic Reviews

of Interventions: I2 = 0%–40%, heterogeneity might not be

important; 30%–60%, heterogeneity may be moderate; 50%–90%,

heterogeneity may be substantial; and 75%–100%, considerable

heterogeneity. Pooled estimates for sensitivity, specificity and AUC

and 95% confidence intervals (CI) were calculated using a

random-effects model due to expected heterogeneity among

studies regarding methodology between studies (26).

2.3.2 Meta-regression and subgroup analysis
Meta-regression was conducted using IBM SPSS Statistics (IBM

Corp. Released 2017. IBM SPSS Statistics for Windows, Version 25.0.

Armonk, NY, USA: IBM Corp.) to determine covariates contributing

to heterogeneity. The covariates included the number of extracted

radiomic features; the mean age of the patient group; the number

of mutations; the sample size; the types of ML models, which were

support vector machine (SVM) or tree-based or convolutional

neural network (CNN)-based or others; and the MRI modality,

which was conventional only or combined. A subgroup analysis

was subsequently conducted based on findings from the meta-

regression to reduce heterogeneity (26).

Less than 10 studies were included in the meta-analysis.

Therefore, publication bias was not assessed, due to the low

power of the tests, which may lead to inconclusive results from

the funnel plots for detecting publication bias (27).
3 Results

3.1 Study selection

A total of 218 publications were initially retrieved with 161

remaining after duplicates and non-English publications were
criteria and justification following the PICOT framework.

ion criteria Justification
arch To ensure relevance to the research question and objective

to predict both ATRX
on status

To ensure focus on evaluating the effectiveness of MLA
with neuroimaging

not use histopathological
r testing.

Gold standards in confirming mutation status for patients
with glioma for a standard reference

not report these accuracy To allow evaluations of the diagnostic performance of ML
algorithms

To capture all relevant research developments over the
recent years regarding the clinical use of ML

ls, letters and conference Ensuring comprehensive and original research data is
included only

dies and duplications Duplicate will not contribute any new information
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removed. Moreover, 139 results were excluded after titles and

abstracts were screened, which resulted in 22 full texts being

assessed for eligibility. Finally, 11 studies were included in the

systematic review (Figure 1).
3.2 Study characteristics and outcomes

This systematic review included 1,685 patients with grade I–IV

glioma across the 11 studies. Studies either utilised conventional

MRI only or a multiparametric approach combining both

conventional and advanced MRI techniques (Table 4).

Sensitivity, specificity and AUC for ML in predicting

IDH mutation ranged from 0.69 to 1.00, 0.67 to 0.94 and

0.74 to 0.98, respectively. The highest sensitivity, specificity

and AUC achieved were 1.00 (28, 32), 0.94 (33) and

0.98 (37), respectively.
FIGURE 1

PRISMA flowchart illustrating the sifting and selecting process for the system

Frontiers in Radiology 04
Sensitivity, specificity and AUC for the prediction of ATRX

loss ranged from 0.53 to 0.97, 0.53 to 0.95 and 0.60 to 0.97,

respectively. The highest sensitivity, specificity and AUC were

0.97 (33), 0.95 (32) and 0.97 (30), respectively (Table 5).
3.3 Quality appraisal and risk of bias

QUADAS-2 revealed varying RoB across the four domains

(Figure 2). Some studies did not mention whether a random or

consecutive selection process was used, leading to unclear RoB

for Domain 1. Concerns were also noted in Domain 2 due to

unclear reporting on threshold pre-specification and blinding

during test interpretation. Furthermore, all studies used

histopathological examination as the reference standard, resulting

in consistently low RoB for Domain 3. External validation in

studies by Calabrese et al. (30) and Zhong et al. (37) improved
atic review.
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TABLE 4 Study and patient characteristics tables. Including patient demographics and study characteristics detailing MLA and radiomics used in the
included studies.

Study ID Study
design

Glioma
grade

Mean age Sample
size

No. of
features
extracted

MLA Radiomic features analysed

Ren et al. (28) RO II 41.1 57 260 SVM T2FLAIR, CBF, ADC, eADC

Haubold et al. (29) PO I–IV 49.3 30 19,284 SVM and RF Multiparametric

Calabrese et al. (30) RO IV Adults, no mean
age given

199 5,300 RF T1, 3D ASL, 3D T2, SWI, DWI, T2W FLAIR,
2D HARDI

Shboul et al. (14) RO II–III 46.5 108 680 XGBoost T1, T2, T2 FLAIR

Haubold et al. (31) RO II–IV 50.2 217 4,686 XGBoost, Boruta T1, FLAIR

Sohn et al. (32) RO IV 60.1 126 660 BR, EC and SVM T1, T2, FLAIR

Calabrese et al. (33) RO IV 60.0 400 5,300 CNN and RF T1, T2, T2 FLAIR, SWI, ASL, DWIs, HARDI

Wu et al. (34) RO II–III 43.5 111 250 Elastic Net Regression Multiparametric

Musigmann et al. (35) RO I–IV 43.5 124 107 AutoML T2

Rui et al. (36) RO II–IV 47.0 42 NA CNN QSM, 3.0 T MRI, T2FLAIR, T1 + C

Zhong et al. (37) RO IV 48.0 37 428 ResNet50 and C3D T1, T1 + C, T2

MLA, machine learning algorithms; PO, prospective observational; RO, retrospective observational. Full abbreviations and explanations table can be found in Supplementary Figure S1.

TABLE 5 Summary of ML performance in prediction of IDH and ATRX mutations from included studies.

Study ID IDH sensitivity IDH specificity IDH
AUC

ATRX sensitivity ATRX specificity ATRX
AUC

Ren et al. (28) 1.00 0.86 0.93 0.95 0.88 0.93

Haubold et al. (29) 0.77 0.87 0.89 0.84 0.75 0.85

Calabrese et al. (30) 0.93 0.88 0.95 0.94 0.92 0.97

Shboul et al. (38) 0.90 0.79 0.84 0.69 0.83 0.70

Haubold et al. (31) 0.69 0.80 0.86 0.66 0.85 0.92

Sohn et al. (32) 1.00 (BR)
1.00 (ECC)

0.88 (BR)
0.88 (ECC)

0.96 (BR)
0.97 (ECC)

0.53 (BR)
0.70 (ECC)

0.95 (BR)
0.85 (ECC)

0.78 (BR)
0.82 (ECC)

Calabrese et al. (33) 0.86 0.94 0.96 0.97 0.88 0.97

Wu et al. (34) N/A N/A 0.90 N/A N/A 0.84

Musigmann et al. (35) N/A N/A 0.74 N/A N/A 0.76

Rui et al. (36) 0.86 0.67 0.77 0.65 0.53 0.60

Zhong et al. (37) 0.77 (3DResNet) 0.90
(C3D)

0.74 (3DResNet) 0.84
(C3D)

0.98 0.79 (3DResNet) 0.89
(C3D)

0.84 (3DResNet) 0.91
(C3D)

0.95

FIGURE 2

Summary of RoB and quality assessed using QUADAS-2.

Chung and Pigott 10.3389/fradi.2024.1493824
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FIGURE 3

Traffic light plot detailing the assessed domains in QUADAS-2 for each included study.

TABLE 6 Results for METRICS appraisal of included studies.

Study METRICS score Quality category
Ren et al. (28) 71.0% Good

Haubold et al. (29) 74.0% Good

Calabrese et al. (30) 85.9% Excellent

Shboul et al. (14) 75.6% Good

Haubold et al. (31) 75.6% Good

Sohn et al. (32) 67.7% Good

Calabrese et al. (33) 73.7% Good

Wu et al. (34) 79.6% Good

Musigmann et al. (35) 72.2% Good

Rui et al. (36) 75.1% Good

Chung and Pigott 10.3389/fradi.2024.1493824
quality and reduced bias. Applicability for all included studies

was low concerning patient selection, index test and standard

reference (Figure 3).

METRICS revealed similar results, thereby enhancing the

significance of the findings, with all studies appraised as

having good or excellent quality (Table 6). Notably, Calabrese

et al. (30) and Zhong et al. (37) were also evaluated as the

highest quality among the included radiomics studies using

the METRICS tool, achieving an excellent quality category for

both studies with METRICS scores of 85.9% and 89.7%,

respectively (Figure 4).
Zhong et al. (37) 89.7% Excellent

This table evaluates 30 items across nine domains to assess the methodological rigour of the
radiomic studies, resulting in a METRICS score and quality category for each study.
3.4 Heterogeneity assessment and

meta-regression

The initial meta-analysis including all 11 studies showed

homogeneity in the sensitivity outcomes between studies

(p = 0.156, I2 = 31.59%). Nonetheless, considerable heterogeneity

was revealed in specificity (p < 0.001, I2 = 77.96%) and AUC

(p < 0.001, I2 = 98.29%) for predicting IDH mutations. For

predicting ATRX loss, moderate heterogeneity was observed for

sensitivity (p = 0.038, I2 = 49.44%) and specificity (p = 0.009,

I2 = 59.19%), and considerable heterogeneity was found for AUC

(p < 0.001, I2 = 99.29%) (26).

Figure 5 shows a graphical interpretation demonstrating

the variability in the AUC for ML performance across the
Frontiers in Radiology 06
studies, especially for predicting ATRX loss, which aligns

with the assessed heterogeneity. Additionally, significant

variability is shown between studies that use multiparametric

approaches. The ML model in Rui et al. (36) performs visibly

poorer in predicting IDH and ATRX mutation compared to

other studies.

The results from the meta-regression show that heterogeneity

was influenced by the number of extracted radiomic features

(p = 0.009), type of ML models (p < 0.001) and MRI modality

used (p < 0.001). Other assessed covariates including the

mean age of patients (p = 0.073) and the number of patients
frontiersin.org
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FIGURE 4

Bar chart displaying the METhodological RadiomICs (METRICS) scores for each assessed radiomic study, facilitating comparison. The green bars
indicate the studies appraised as having excellent quality, while the orange bars indicate the studies with good quality.

FIGURE 5

Bar chart comparing the AUC values for predicting IDH and ATRX mutations across the 11 included studies. Each study is represented by two bars, with
blue indicating IDH AUC and orange indicating ATRX AUC. *Studies that combined advanced and conventional MRI modalities.

Chung and Pigott 10.3389/fradi.2024.1493824
included (p = 0.073) did not significantly contribute to the

observed heterogeneity.
3.5 Subgroup meta-analysis

Subgroup analyses were performed based on the results of the

meta-regression. Therefore, for analysis of sensitivity and

specificity, studies using a combination of conventional and

advanced MRI were excluded. Furthermore, the meta-analysis

of AUC only included studies that provided sufficient data
Frontiers in Radiology 07
by reporting CI for consistent and accurate calculation of

standard error (SE).
3.5.1 Predicting IDH mutation status
Four studies were eligible for inclusion with six outcomes

synthesised and analysed in the meta-analyses. Sohn et al. (32)

and Zhong et al. (37) evaluated two different models, and

therefore each consisted of two outcomes for sensitivity,

specificity and AUC. The pooled sensitivity and specificity were

0. 831 (95% CI: 0.701–0.911) and 0.828 (95% CI: 0.761–0.871),
frontiersin.org
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FIGURE 6

Forest plots showing the sensitivity (A), specificity (B), and AUC (C) of MLAs in predicting IDH status. Overall pooled data are presented at the bottom
left of the forest plots with the values for Higgins I2 and Chi-square shown in brackets.

Chung and Pigott 10.3389/fradi.2024.1493824
respectively (Figures 6A,B). Meta-analysis of AUC consisted of four

studies with five outcomes. The pooled AUC for ML models in

predicting IDH mutations was 0.948 (95% CI: 0.913–0.983)

(Figure 6C). Additionally, the forest plots for all metrics

graphically portrayed moderate heterogeneity, therefore further

justifying the random-effects model used for the meta-analysis.

3.5.2 Predicting ATRX mutation status
The pooled sensitivity was notably lower in predicting ATRX

loss compared to IDH, at 0.682 (95% CI: 0.585–0.765). Whereas

pooled specificity was slightly higher at 0.874 (95% CI: 0.828–

0.910) (Figures 7A,B). The pooled AUC value for MLAs in

predicting ATRX loss was 0.842 (95% CI: 0.776–0.909)

(Figure 7C). The forest plots for all metrics graphically portrayed

the presence of heterogeneity, particularly for specificity and AUC.
Frontiers in Radiology 08
3.6 Incorporating clinical information and
semantics

Wu et al. (34) developed a predictive nomogram model

incorporating age, gender and radiomics signature. The odds

ratio (OR) and 95% CI from univariate regression analysis

determined the correlation of these predictors with IDH and

ATRX mutations. Age was found to be a significant predictor for

IDH mutations, with younger age associated with a

higher probability (OR = 0.935, 95% CI: 0.894–0.978, p = 0.003).

A high radiomics signature was a strong predictor for both IDH

mutation (OR = 16.463, 95% CI: 4.898–55.338, p < 0.0001) and

ATRX loss (OR = 24.676, 95% CI: 5.073–120.029, p < 0.0001).

Although gender was not significant according to univariate

logistic regression, gender was included in the multivariable
frontiersin.org
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FIGURE 7

Forest plots showing the pooled sensitivity (A), specificity (B), and AUC (C) of MLA in predicting ATRX status. Overall pooled data are presented at the
bottom left of the forest plots, with the values for Higgins I2 and Chi-square shown in brackets.
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model for its clinical importance. The decision curve analysis

(DCA) demonstrated the clinical utility of the nomograms, which

included all three variables. This led to the development of

highly accurate nomograms with C-index values of 0.90 and 0.84

for predicting IDH and ATRX mutations, respectively, in the

validation cohort. These findings highlight the importance of

demographic information in predicting biomolecular status in

gliomas and improving model performance.

Zhong et al. (37) incorporated semantic features such as

tumour shape, location and heterogeneity into convolutional

neural network (CNN)-based models. This resulted in substantial

improvements in accuracy in predicting IDH and ATRX

mutations, with increases from 85.56% to 91.11% and from

82.29% to 86.46%, respectively. Similarly, Calabrese et al. (30)

used a deep learning-based automated segmentation algorithm to

distinguish various elements of glioblastoma, such as enhancing
Frontiers in Radiology 09
and non-enhancing tumours, as well as surrounding oedema.

Subsequently, this supports the importance of including

qualitative imaging for accurately identifying IDH mutations.
3.7 External validation of predictive models

Zhong et al. (37) used external validation to confirm the

robustness of the deep learning models, therefore ensuring the

consistent reliability of ML models in predicting IDH and ATRX

mutations across different datasets. High and moderate to low

accuracy were achieved in the external validation for predicting

IDH and ATRX mutation status, respectively. Accuracies of

83.51% and 88.30% were achieved for IDH mutations, whereas

accuracies of 66.67% and 76.67% were achieved for ATRX loss

with the 3DResNet and C3D integrated models, respectively.
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Similarly, Calabrese et al. (30) also conducted an external

validation and achieved relatively poor performance on the

external compared to the internal dataset with an AUC of 0.63

for IDH and 0.72 for ATRX contrasting with 0.95 for IDH and

0.97 for ATRX, respectively.
4 Discussion

4.1 Main findings

This systematic review evaluated the effectiveness of ML in

predicting IDH and ATRX mutations in gliomas using extracted

radiomic features. Meta-analysis revealed pooled sensitivities of

0.682 for ATRX loss and 0.831 for IDH mutations, indicating

higher accuracy for MLAs in identifying IDH mutations. ML

models demonstrated high pooled specificities of 0.874 for ATRX

loss and 0.828 for IDH mutations, with AUC values of 0.842 and

0.948, respectively. The high specificity indicates the strong

capabilities of ML to accurately identify glioma patients without

mutations, minimising false positives and aiding appropriate

decisions on personalised treatment plans. The high AUC

highlight the overall great diagnostic performance of ML models.

The review highlights the excellent diagnostic accuracy of ML

models for IDH while emphasising the need to improve ATRX

detection. This aligns with results from existing literature, where

research reporting a high diagnostic performance for predicting

IDH mutations has increased significantly since 2017 (11, 17, 39).

Jian et al. (18) reported high diagnostic performance for IDH

mutations with pooled sensitivity, specificity and AUC of 0.85,

0.83 and 0.90, respectively. However, for ATRX, more varied

sensitivity and specificity were reported, ranging from 0.84 to 0.95

and 0.75 to 0.90, respectively. Lost et al. (19) also found a high

mean AUC of 0.89 for IDH mutation prediction and a lower

mean AUC of 0.72 for ATRX loss prediction.
4.2 Heterogeneity

Significant heterogeneity among the included studies was present.

The meta-regression identified that covariates significantly

contributing to heterogeneity included the different MRI modality

combinations and the ML model types (p < 0.001). Figure 5 shows

that ML models in three out of six studies using combined MRI

approaches achieved AUC above 90% in predicting both mutations.

Enhanced diagnostic accuracy by combining advanced with

conventional MRI modalities was supported by recent literature.

Incorporating advanced techniques can more comprehensively

capture tumour characteristics and ultimately contribute to more

accurate predictions (40, 41). Despite these advances in research

regarding multiparametric approaches, conventional MRI remains

prevalent in clinical practice due to its availability and standardised

application (42, 43). Nonetheless, the predictive performance of ML

models using multiparametric MRI varies and may be lower or

similar to studies using conventional MRI, as shown in this review,

which aligns with other recent reviews (44).
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The diversity in ML models developed, from SVM and RF to

CNN, also significantly contributes to heterogeneity. Different

MLAs differ in feature extraction and model training approaches,

which influence the performance of the ML models. No single

MLA has shown to be superior, as suggested by the variability in

predictive capability across all 11 studies (Figure 5).
4.3 Overall effectiveness of ML in
predicting ATRX and IDH

The high diagnostic accuracy, particularly for identifying IDH

mutations, demonstrated the excellent potential for effective use of

ML models in non-invasive diagnosis for gliomas. The high AUC

value of 0.948 for predicting IDH mutations emphasises the

robust capability of ML models to provide reliable predictions for

ATRX loss and IDH mutations. This aligns with studies by Jian

et al. (18) and Karabacak et al. (45), who have reported similarly

strong performance in predicting IDH mutations with AUC

values of 0.90 and 0.89, respectively. These results demonstrate

great potential in the integration of ML models into clinical

practice to offer reliable prediction for IDH mutation status.

However, the overall performance for the prediction of ATRX

mutations shows greater variability compared to the prediction of

IDH mutations across studies. Compared to the pooled AUC of

0.842 for predicting ATRX mutation status identified in this

review, Lost et al. (19) reported a lower mean AUC of 0.72,

while Mora et al. (46) also achieved a high performance with an

AUC of 0.831. These findings suggest promise in incorporating

ML with radiomics to predict ATRX predictions; nonetheless,

further research and optimisation will be essential to enhance

and ensure consistent performance.
4.4 The impact of incorporating
clinical information and semantics on
ML performance

The review revealed that incorporating clinical information and

semantic features improves the accuracy of ML in predicting IDH

and ATRX mutations. The findings were consistent with recent

reviews that demonstrated enhanced performance via multimodal

data fusion with the incorporation of clinical characteristics,

demographics and semantic features (47).

Primary studies also supported the inclusion of clinical and

semantic data in ML models for glioma diagnosis and prognosis

(39, 48). Kazerooni et al. (39) emphasized the potential of

integrated diagnostics by exploring the use of multi-omics, which

combines radiomics, molecular status and clinical measures. This

approach yielded superior performance in predicting overall

survival in glioblastoma patients, resulting in more comprehensive

patient profiles to facilitate personalised treatment planning.

Similarly, Jang et al. 2020 also integrated radiomic features with

clinical information to distinguish pseudoprogression from true

glioma progression. This provides valuable insights into the broader

application of multimodal data and highlights the potential to
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reduce the need for multiple imaging modalities, which may lead to

substantial memory usage and the “curse of dimensionality”. This

term refers to the issue of having too many variables, therefore

radiomic features, compared to the number of samples, leading to

difficulty for ML models to learn effectively (49). Hence, suggesting

the potential for multimodal data integration to overcome practical

ML model implementation challenges in clinical settings.
4.5 Strengths and limitations

The review benefitted from having two independent reviewers

involved in the study selection, data extraction, and result

interpretation processes. This dual-independent screening

approach helps minimise potential bias and enhance the

reliability and validity of the findings. Having two reviewers also

allowed for cross-checking and helped mitigate individual biases.

The quality and RoB assessment using QUADAS-2 revealed

low concerns regarding applicability but suggested unclear RoB,

which led to some concerns overall. Methodological details

regarding the index test, including blinding and predetermining

threshold during the use of ML models, were often unclear. The

patient selection methods detailed often suggested a consecutive

selection process by searching through databases and specifying

the timeframe in which patients were tested. Nonetheless, the

studies lacked explicit documentation of consecutive or random

recruitment. The unclear reporting of the methodology is a

limitation consistently observed in the literature evaluated in this

review therefore impacting the RoB for Domains 1 and 2,

affecting overall study quality. These findings are consistent with

the results of the conducted METRICS appraisal (Table 6). The

METRICS score ranged from 67.7% to 89.7%, with most of the

appraised studies being evaluated as being “Good” quality with

only two studies being evaluated as “Excellent” quality (30, 37).

Higher-scoring radiomic studies provided clearer methodological

descriptions and more robust validation methods, such as the

inclusion of external validation sets. Overall, the findings from

the QUADAS-2 and METRICS appraisal emphasise the

importance of methodological transparency to improve the

reliability of radiomics and ML studies in predicting glioma

mutation status (23).

A limitation of this review was that only two studies used external

validation (30, 37). External validation strengthens evidence

regarding model robustness while also demonstrating greater

generalisability and applicability in a variety of clinical settings.

Most of the included studies employed internal cross-validation

techniques to mitigate overfitting, where ML models become overly

familiar with the training data, including its outliers. As a result,

the MLA performs exceptionally on training data but performs

poorly on unseen datasets due to over-reliance on memorised data

rather than identifying underlying patterns to predict the presence

of IDH mutations and ATRX loss. Cross-validation divides datasets

into subsets to train models on different combinations and expose

MLA to new test data. This ensures consistent performance across

the various subsets of the internal data. Nonetheless, cross-

validation cannot fully assess the predictive capabilities of models
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on completely independent datasets. Future research should aim to

include larger datasets and allow for external validation to better

evaluate the generalisability and clinical utility of predictive models

for clinical implementation.

Integrating ML into clinical practice for the management of

glioma involves significant initial costs, such as technical training

for staff, acquiring required technological infrastructure, and

advanced imaging tools. However, in the long term, these

investments may reduce the need for invasive procedures and

frequent diagnostic testing, thereby improving clinical workflow

and reducing overall costs. By balancing short-term expenses

with potential long-term savings and improved patient outcomes,

this review highlights the strength of this approach in glioma

management (50).
4.6 Clinical implications and
future recommendations

This systematic review highlights the potential of ML models to

provide a powerful, non-invasive approach for predicting IDH and

ATRX mutations using radiomics from conventional MRI. This

approach enhances diagnostic precision, facilitating early

identification of glioma biomarkers and improving personalised

treatment outcomes. High diagnostic accuracy for IDH mutations

supports integrating ML models into clinical practice to aid

clinicians in diagnosis and decision-making. However, the lower

sensitivity for detecting ATRX loss indicates the need for further

research to improve glioma classification and clinical application.

These clinical implications align with Singh et al. (38), who

emphasised that advances in radiomics offer less invasive

approaches to glioma diagnosis, thereby, informing surgical

planning and therapeutic strategies. Therefore, these advances in

radiomics refine glioma management and optimise patient care.

Significant potential benefits can be offered through the

integration of ML with the predicting of IDH and ATRX

mutations into clinical practice. Potential benefits include

reduced reliance on invasive biopsies for diagnosis, enhanced

diagnostic accuracy, and early detection of mutations in glioma

patients, ultimately, leading to timely and targeted treatments.

However, careful consideration of various factors is imperative in

the implementation of this approach. This involves considering

the economic viability of implementing ML and addressing

technical challenges. These challenges include standardising data

collection and processing procedures across various organisations

while ensuring data privacy and security when handling large

amounts of sensitive patient information. Resistance to change

may be another barrier to the implementation of this approach.

Therefore, it is crucial to gain clinical acceptance by gaining trust

from clinicians who may be hesitant to rely on the incorporation

of ML models with neuroimaging over traditional molecular

diagnostic methods. Additionally, considerations around

regulatory and ethical concerns, including navigating the

approval processes for implementing ML-based tools, addressing

algorithm bias and ensuring equitable access to advanced

diagnostic technologies, should be addressed (51, 52). Future
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research should focus on standardising data collection, clarifying

methodologies and improving ML model validation to increase

reliability across diverse clinical settings. The review also

highlights that incorporating patient demographics and semantic

features with radiomic data can further enhance the predictive

capabilities of ML models. This holistic approach combines

imaging and clinical data to create robust diagnostic tools

tailored for clinical application. Integrated models, which include

clinical characteristics and combine conventional MRI with

advanced imaging modalities, show promise. Future research

should address the standardisation of multimodal data collection

and validate these enhanced models by conducting multicentred

cohorts to ensure generalisability (47).

Furthermore, the use of METRICS, which is a recently

introduced appraisal tool, has been highly efficient and relevant

in the evaluation of the methodological quality of studies of this

nature (23). Therefore, it significantly supports the reliability of

the appraisal process in this systematic review. Incorporating the

METRICS tool in future research is recommended to ensure

robust evaluations and enhance reliability when quality

appraising methodological rigor and transparency in radiomics

and ML research.

In addition, although integrating ML into the diagnostic and

treatment planning processes for glioma patients requires a

substantial initial investment, including acquiring advanced

imaging tools and establishing ML infrastructure, this approach

holds significant potential for long-term cost reductions by

reducing the need for invasive procedures and enabling more

precise treatment planning (50–52). Therefore, it will be crucial to

perform cost–benefit analyses to facilitate the widespread adoption

of advanced ML models into clinical practice. Barriers to the

integration of ML into molecular identification and prediction for

glioma patients include the necessity for specialised training for

clinical practitioners, integrating new workflows and procedures

into existing clinical operations and ensuring privacy and security

are upheld when handling sensitive patient information (50).

Overcoming these barriers requires effective cooperation among

healthcare professionals, professional bodies, health legislators and

technology developers to establish standardised protocols.

Additionally, this collaboration should ensure the provision of

necessary resources and training to support the integration of ML-

based approaches in predicting molecular status and diagnosing

glioma patients. Identifying and predicting molecular status in

glioma patients efficiently and accurately can improve glioma

classification. Therefore, overcoming barriers to the widespread

integration of ML in the diagnostic pathway for glioma patients

can lead to improved diagnostic accuracies, making targeted

therapies more feasible and overall, improved patient outcomes.
5 Conclusion

This systematic review highlights the high and moderate

accuracy of ML models in predicting IDH and ATRX mutation

statuses in gliomas, respectively. Recent studies correlate ATRX

loss and IDH mutations with improved prognosis due to
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enhanced immune response and increased genomic instability.

Both are key diagnostic genes in the 2021 WHO Classification of

CNS Tumours. The current gold standard for glioma

classifications is histopathological diagnosis via invasive

procedures including biopsy or tumour resection, which carry

inherent risks such as infection and bleeding. These recent

developments therefore strengthen the significance of this review.

Combining neuroimaging with ML approaches shows promise in

the accurate classification and prediction of glioma mutations.

This approach demonstrates the potential to reduce the need for

invasive diagnostic procedures and improve patient outcomes

through lower-risk yet early and precise diagnosis (1, 7).

The meta-analysis showed that ML had higher pooled

sensitivity and AUC for predicting IDH mutations compared to

ATRX loss, indicating proficiency in identifying IDH mutations.

However, further improvements in ML performance in

predicting ATRX loss are suggested. Additionally, incorporating

patient demographics and semantic features into ML models

significantly improves accuracy and clinical relevance. Findings

and recommendations for future research made in this review

will contribute to clinical adoption, enhancing patient outcomes

through precise, non-invasive and individualised diagnosis,

prognosis and treatment plans.
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