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SenseCare: a research platform
for medical image informatics
and interactive 3D visualization
Guotai Wang1,2, Qi Duan2, Tian Shen2 and Shaoting Zhang1,2*
1School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of
China, Chengdu, China, 2SenseTime Research, Shanghai, China
Introduction: Clinical research on smart health has an increasing demand for
intelligent and clinic-oriented medical image computing algorithms and
platforms that support various applications. However, existing research
platforms for medical image informatics have limited support for Artificial
Intelligence (AI) algorithms and clinical applications.
Methods: To this end, we have developed SenseCare research platform, which is
designed to facilitate translational research on intelligent diagnosis and
treatment planning in various clinical scenarios. It has several appealing
functions and features such as advanced 3D visualization, concurrent and
efficient web-based access, fast data synchronization and high data security,
multi-center deployment, support for collaborative research, etc.
Results and discussion: SenseCare provides a range of AI toolkits for different
tasks, including image segmentation, registration, lesion and landmark
detection from various image modalities ranging from radiology to pathology.
It also facilitates the data annotation and model training processes, which
makes it easier for clinical researchers to develop and deploy customized AI
models. In addition, it is clinic-oriented and supports various clinical
applications such as diagnosis and surgical planning for lung cancer, liver
tumor, coronary artery disease, etc. By simplifying AI-based medical image
analysis, SenseCare has a potential to promote clinical research in a wide
range of disease diagnosis and treatment applications.
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1 Introduction

With the development of medical imaging techniques and computer science,

computer-aided systems for medical image analysis and downstream diagnosis and

treatment decision have been playing an increasing role in clinic practices. In recent

years, Artificial Intelligence (AI) has lead to a revolution of image analysis and pattern

recognition, and has a huge potential to be applied for more efficient and intelligent

medical image computing in a wide range of medical departments towards smart

healthcare. However, before AI is used in clinic practice, extensive research studies are

needed through the collaboration between clinicians, radiologists, pathologists, surgeons,

AI scientists and engineers, which can validate the effectiveness, robustness, reliability

and security of AI systems. To this end, a research platform that supports different

medical image processing tasks and intelligent medical image computing algorithms for

various clinic applications are highly desirable.
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Despite the availability of several existing platforms for developing

AI algorithms for general image recognition or medical image

computing, they are not clinic-oriented and have limited support for

clinical research. For example, TensorFlow (1), Pytorch (2) and

Keras (3) are general deep learning libraries that provide low-level

functions to develop complex deep learning models without specific

functionality for medical image computing. Some other libraries

such as NiftyNet (4), DLTK (5) and PyMIC (6) are developed for

deep learning with medical images, but they are mainly designed for

AI algorithm developers and there is no graphic user interface,

which is difficult for clinicians and radiologists to use in specific

clinic applications.

On the other hand, several medial image analysis solutions

have also been developed in the past decades. Tools that solve a

specific medical image processing task such as segmentation (7),

registration (8, 9) and visualization (10) can be used for a part of

a clinic application pipeline, but still not ready-to-use for clinic

researchers. Some research platforms such as MITK (11), NifTK

(12) and 3D Slicer (13) provide several traditional medical image

analysis tools and 3D visualization for image guided intervention.

However, these platforms have limited support for AI models.

Recently, some AI-based plugins have been added to 3D Slicer

for image segmentation tasks, but the AI models for other tasks

are limited, and it does not support model training and dealing

with pathological images. Recently, some virtual reality

visualization platforms such as COVI3D (14, 15) have been

proposed for quantification and interpretation of lung tumor and

lesions (16, 17) with the help of AI models, but their

extensibility to other applications is limited. In the era of multi-

modal medical data, a desired clinical research platform based on

AI does not only need to provide AI models for various clinical

applications, but also require data exchange with other image

management systems, functionality across diverse image

modalities, availability of sophisticated 3D visualization and high

extensibility and portability for different clinic scenarios.

To solve these problems, we introduce the SenseCare Smart

Health Platform (SenseCare for short) that aims to take

advantages of state-of-the-art AI techniques to foster researchers

from different clinical departments to implement innovations for

improvement through the whole process of clinical diagnosis,

treatment planning and rehabilitation management. Compared

with some existing medical image computing and visualization

platforms, it has the following functionalities and advantages: (1)

Integrating a wide range of AI algorithms based on deep learning

for extensive image processing tasks, including classification,

detection, segmentation, registration and 3D visualization; (2)

Supporting various data modalities ranging from structural data

like radiological and pathological images to time series data like

ECG, with real-time data synchronization among different

systems; (3) Offering web-based access and multi-center

deployment with high concurrency across different devices and

operating systems; (4) Facilitating collaborative research for

various clinical applications. SenseCare has increasingly assisted

to achieve outputs in several research projects including

quantitative analysis of cardiac function (18), assessment of knee

articular cartilages (19), pathological image analysis (20, 21), lung
Frontiers in Radiology 02
cancer diagnosis (22, 23), quantitative brain tumor assessment

(24, 25), spine image analysis (26, 27) and radiotherapy planning

for head and neck cancers (28, 29), etc.

The following sections of this paper are organized as follows:

In Section 2.1, we give a brief summary of the architecture

of SenseCare, which is followed by detailed descriptions of

basic functional modules in Section 2.2. We then introduce

SenseCare’s AI toolkits in Section 2.3. In Section 3, we

show several examples of clinical applications powered by

SenseCare. Finally, discussions and conclusions are given in

Sections 4, 5, respectively.
2 Material and methods

2.1 Architecture of sensecare

As shown in Figure 1, SenseCare provides a wide range of

artificial intelligence algorithms based on deep learning for

learning from and analyze different kinds of medical data. It also

provides advanced visualization of medical images that enables

users to analyze complex anatomies and segmented structures.

These modules are combined with a browser/server architecture

and multi-center deployment so that they are accessible on

different kinds of devices and at various locations.

The architecture of SenseCare follows a modular structure that

consists of three layers: (1) basic functional modules such as data

management and visualization, web-based access and multi-

center deployment, (2) advanced AI toolkits that include libraries

for model training and many built-in AI algorithms for image

segmentation, registration, lesion detection, etc., and (3)

application scenarios that adapt the basic functional modules and

AI algorithms to deal with different clinical tasks such as

computer assisted diagnosis of the lung and surgical planning for

bone tumors.
2.2 Basic functional modules

2.2.1 Data support
Support of various imaging modalities. SenseCare supports

intelligent analysis of in images in various modalities ranging

from radiological images to pathological images. For radiological

images, it allows efficient import, query, retrieval, and storage of

clinical images using DICOM protocols and structures. Major

radiological images including Computed Tomography (CT),

Magnetic Resonance Imaging (MRI), Digital Radiology (DR) and

Positron Emission Tomography (PET) are all well supported by

SenseCare in different clinical applications. For pathological

images, SenseCare supports several image formats including SVS,

TIFF, VMS, NPDI, KFB and others. It also provides a series of

functions of import, query, retrieval, storage, management,

common measurements and analysis to help pathologists

perform diagnosis in a more efficient and intuitive way.

Data synchronization and security. Medical data are

commonly stored in different systems such as the Picture
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FIGURE 1

Architecture of SenseCare platform.
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Archiving and Communication System (PACS) and Radiology

Information System (RIS). Synchronization of data between these

systems and the image computing workstation is critical in a

clinical research environment. To facilitate more efficient and

functional workflow for clinical researchers and medical

practitioners, SenseCare can be seamlessly integrated into existing

information systems in the hospital, and provides users with

improved access by efficient data synchronization. It is capable of

synchronizing data from PACS, RIS and other common

information systems in hospitals without disturbing the original

clinical workflows. When newly acquired data are transmitted or

changes in status take place in these information systems,

SenseCare will synchronize the updated information and present

the users with the latest information automatically. It also

supports pulling data directly from PACS/RIS based on user-

defined rules. For example, users can designate image modality

and type or time range, and send queries to fetch the data they

want from a database.

Several strategies are employed by SenseCare to ensure data

security in clinical environment. First, the sever of SenceCare is

located in the hospital, and is only accessible in the local area

network within the hospital, avoiding the risk of leaking data to

the internet. Secondly, the cloud-based image computing and

visualization in SenseCare avoids data transmission from the

server to users’ devices, and only the outputs of image analysis

and rendering are sent to the client side. Thirdly, encryption

algorithms are embedded in SenseCare to reliably manage and

protect user accounts and data from potential risk factors.

2.2.2 Advanced visualization
SenseCare provides advanced 3D reconstruction and

visualization of medical images to facilitate the analysis of

complex anatomies and segmented structures, which presents

data and information in a more explicit way thus improving the

information interpretation. Comprehensive methods such as

Maximum Intensity Projection (MIP), Minimum Intensity

Projection (MinIP), Multi-Planar Reconstruction (MPR), Curved

Planar Reformation (CPR) and 3D volume rendering are

available for users to perform 3D visualization and enhance
Frontiers in Radiology 03
interactivity. These capabilities play an important role in clinical

diagnosis meanwhile contributing to surgical planning,

simulation and navigation, as well as radiotherapy planning, etc,

as shown in Figures 3c, 4.
2.2.3 Concurrent and efficient web-based access
SenseCare is designed with high performance concurrency. The

network communication structure of SenseCare enables hundreds

of users to concurrently perform high-resolution image rendering

and 3D post-progressing thus satisfying multiple usage needs.

With servers deployed, SenseCare platform allows over 1,000

concurrent users to review and retrieve medical images while its

comprehensive toolkits for advanced image post-processing are

designed to support more than 160 users simultaneously.

SenseCare can be used in different devices and operating

systems and no plugins are needed. By adopting a browser/server

architecture, it offers a truly seamless user experience and

eliminates the need for multiple logons. Users can access not

only MPR, MIP/MinIP, CPR tools, but also the full range of

three-dimensional capabilities through HTML5 websites.

SenseCare grants radiologists and physicians with efficient access

and workflow-boosting benefits even when working from iPad,

smartphone or laptop.
2.2.4 Multi-center deployment
Collecting data from multiple centers is important for

developing robust algorithms and large-scale clinic studies. To

support such research that requires a collaboration between

researchers from different locations, SenseCare can be deployed

at multiple centers. This favorable feature distinguishes SenseCare

from traditional image computing workstations that are located

at a single institution.

In addition, SenseCare’s multi-center deployment facilitates the

data collection and access process. Various types of data from

different centers can be collected and cleaned under standardized

rules. Data scientists, clinical researchers, and pharmacists are all

able to participate in the process while respecting the original

clinical process.
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2.2.5 Support for collaborative research
To facilitate the collaboration between researchers, SenseCare

provides a specific Document Management System (DMS) to make

it easier to organize, secure, capture, digitize, tag, approve and

complete tasks with research-related files. It can handle a large

amount of papers and images and cope with different workflows by

supporting advanced user permission management and task

management. This efficient tool enables researchers to manage

multiple sophisticated research projects easily, and helps a ground

of researchers collaborate with each other and exchange knowledge

for efficient accomplishment of comprehensive research projects.

For user permission management, SenseCare supports different

levels of users. Admin users can create normal users and set

permissions for other normal users to access, view, manipulate,

share and remove folders and files. Nonetheless, Admin users can

change the permission if needed. For task management,

SenseCare’s DMS allows admin users to break down tasks and

delegate tasks to normal users. It also allows users to track task

progress from the beginning to the end and set small milestones to

make sure the whole project will be finished on time. Users can

prioritize, organize and set deadlines for themselves and are able to

draw together the resources they need to achieve their research goals.
2.3 Artificial intelligence toolkits

Recent years have seen a fast growing of novel deep learning

algorithms for medical image computing tasks (30), which play an

important role for more accurate and efficient diagnosis and

treatment planning and assessment. In this section, we introduce

SenseCare’s AI toolkits for medical image computing, including

tools for users to develop new algorithms, and built-in deep learning

models for image segmentation, registration and lesion detection, etc.

2.3.1 Data annotation and model training
Deep learning models require a large amount of annotated data

for training, and both annotation of medical images and model

training are time-consuming and complex for common clinical
FIGURE 2

Annotation of signet ring cell carcinoma. (a) Suggested annotations. (b) Ma
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researchers. To facilitate developing AI models for a range of

medical image analysis tasks, SenseCare not only provides AI-

assisted image annotation tools to improve annotation efficiency,

but also offers a framework to train deep learning models easily,

and support docker integration to avoid complex environment

configuration by users.

Efficient data annotation tools. To facilitate the annotation of

a large set of training images for developing AI models, SenseCare

provides a set of off-the-shelf tools for efficient image annotation,

such as contouring tumors and organs for segmentation tasks,

bounding box annotation for object and lesion detection tasks.

The annotation tools in SenseCare are available for both

radiological images and pathological images, and they provide a

variety of annotation types. For example, users can choose from

different interactive styles including mouse click points,

rectangles, circles, ellipses, polygons or hand-drawn shapes based

on the characteristics of the target.

Since manual annotation is time-consuming and annotation

may vary from different annotators’ inputs, SenseCare also

supports semi-automatic annotation with minimal user

interactions and high efficiency and accuracy. For medical image

segmentation, the interactive annotation tool not only generates

high-accuracy boundaries based on the click/bounding box

prompt given by the user (31), but also automatically suggests

the most informative samples for annotation (32), which largely

reduces the annotation burdens and improves the efficiency. For

object detection tasks, the annotator can start from annotations

automatically generated by algorithms, and only needs to provide

few interactions to obtain refined annotations. As an example,

Figure 2 shows efficient annotation of signet ring cell carcinoma

in pathological images using SenseCare, where algorithms

suggested some annotations in Figure 2a, and the annotator only

provides manual refinement to obtain accurate annotations for a

slide in Figure 2b.

Model training. SenseCare’s AI toolkits are constructed on the

basis of SenseParrots, a deep learning framework independently

developed by SenseTime. While matching mainstream

frameworks such as TensorFlow (1) and PyTorch (2), it also has
nual refinement.
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FIGURE 3

Nodule detection, image registration and 3D visualization of lung images in SenseCare. (a) Lung nodule detection. (b) 3D visualization. (c) Image registration.
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advantages in ultra-deep networks and ultra-large-scale data model

training. The integrated optimization from the underlying layer to

the SenseParrots framework enables the platform to outperform

others under the same level of configuration. By using more than

1,000 GPU cards for parallel training, it takes less than 1.5 min

to complete the AlexNet neural network training in a benchmark

task, surpassing the previous fastest 4 min record (33).

For medical image analysis, SenseCare supports a wide range

of neural network structures including CNN-based and ViT-

based networks for image classification, detection and

segmentation, etc. Considering that the there are a large amount

of unannotated images or imperfect annotations in many

applications, SenseCare also provides Semi-Supervised Learning

(SSL) and Weakly Supervised Learning (WSL) methods for

training. Especially, SSL leverages a small set of annotated images

with a large set of unannotated images for training, and can

better mine information from unannotated cases based on

pseudo labels or consistency regularization (34). WSL leverages

image-level or sparse annotations for training high-performance

models (35), which reduces the annotation requirement.

Additionally, noise-robust loss functions and training paradigms

are implemented in SenseCare to learn from noisy labels (36),

which prevents the model being corrupted by incorrect or noisy

labels in the training set.

SenseCare provides a human-in-the-loop strategy for data

annotation and model training. For a set of unannotated images,

it first allows the user to label some images using the interactive

annotation tools. With a set of labeled images (and optionally

a set of unlabeled images for SSL), it then invokes the

model training process through a configuration file, where

configurations include the paths of training data and output

model, training strategies (e.g., fully supervised learning or SSL),

network structure, loss function, optimizer and hyper-parameters

such as batch size, learning rate and training epoch number.
Frontiers in Radiology 05
Additionally, users can select image pre-processing and

augmentation methods in the configuration file. After training,

the model can be used to predict labels for remaining unlabeled

images with uncertainty estimation, which is used to query the

user for active learning-based annotation. The training process is

iteratively conducted with more annotations obtained. The

human-in-the-loop strategy avoids labeling all the images from

scratch and improves the annotation efficiency. In each round of

training, SenceCare allows the user to use a set of validation

dataset to validate the performance and assess the degree of

over-fitting, and the training can be early stopped if the

performance on validation set does not increase for several

epochs. Note that a single round of training is also allowed if the

user has provided annotations for the training images in advance.

Docker integration. Users of SenseCare can employ the built-

in deep learning models mentioned above for several image

computing tasks, and they can also develop their own models

with the help of SenseCare’s training and testing pipelines. When

the user creates a new algorithm, SenseCare provides a

dockerized version of the algorithm, and can package it with all

the dependencies together in the form of containers, so that the

algorithm can work seamlessly in any new environment.

Therefore, researchers can focus on the development of AI

algorithms without worrying about the testing and production

environment. Since dockers are lightweight, SenseCare makes it

more convenient and efficient for users to develop, test and

deploy algorithms and deep learning models for various

clinical applications.
2.3.2 Object detection
Automatic detection of objects of interest is a common task for

computer assisted diagnosis systems. SenseCare has several built-in

deep learning models for object detection tasks, such as landmark
frontiersin.org
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FIGURE 4

Chest X-Ray image and Lung CT analysis in SenseCare. (a) User interface of Chest X-ray analysis. (b) Multi-disease detection and automated report
generation. (c) Intelligent lung nodule analysis and follow-up in CT. (d) Intelligent analysis of pulmonary embolism. (e) Lung surgical planning with
visualized traced tube structures. (f) Lung surgical planning with lung segment analysis.
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and lesion detection in 3D radiological images and cancer cell

detection in histopathological images.

For example, automatic localization of vertebrae in CT is

important for image-guided diagnosis, pre-operative planning and

post-operative evaluation. Deep learning models such as 3D Fully

Convolutional Neural Networks (FCN) are embedded in SenseCare

for accurate vertebrae localization (26). The model also takes

advantages of prior knowledge such as spatial and sequential

constraints to obtain high robustness in challenging cases. In

addition, SenseCare is able to predict tumor invasiveness and

malignant in Ground Glass Opacity (GGO) on the basis of its lung

nodule detection model (22). Figure 3a shows an example of lung

nodule detection by deep learning models in SenseCare. For signet

ring cell carcinoma detection from Hematoxylin and Eosin (H&E)

stained Whole Slide Images (WSI), SenceCare is integrated with
Frontiers in Radiology 06
bottom-up approaches (37) that obtain cell instance masks first and

then derive bounding boxes for each instance, which is more

accurate than the general RCNN-based detection methods.

2.3.3 Image segmentation
Image segmentation is essential for most clinical applications

such as accurate modeling of anatomical structures, quantitative

measurement of tumor volumes, planning of radiotherapy and

surgical treatment. Its output has a large impact on the

downstream workflows. However, due to the low contrast

between the target tissue and its surroundings, inhomogeneous

appearance, complex shape variation and image noise, accurate

segmentation is extremely challenging and traditional image

segmentation algorithms are often faced with large regions of

over- and under-segmentation.
frontiersin.org

https://doi.org/10.3389/fradi.2024.1460889
https://www.frontiersin.org/journals/radiology
https://www.frontiersin.org/


Wang et al. 10.3389/fradi.2024.1460889
Supported by its deep learning-based image segmentation

models, SenseCare can overcome these challenges and has

obtained state-of-the-art performance in a range of segmentation

tasks. For example, to segment the complex structures of

pulmonary vessels from CT images, SenseCare is equipped with

a multi-view-based 2.5D network with a low complexity, which

outperformed other contemporary networks by a large margin

on the LIDC dataset (38). To segment intervertebral discs from

MR images, a novel multi-resolution path network with deep

supervision is included in SenseCare and it achieved superior

performance on the MICCAI 2018 IVDM3Seg challenge dataset

(27). Several specific CNN models are also developed for other

applications, such as multiple Organs-at-Risk (OAR)

segmentation from CT for radiotherapy planning (28),

segmentation of optic disc and cup for glaucoma diagnosis (39),

nuclei instance segmentation in histopathological images (20, 21)

and cartilage segmentation from MR images for osteoarthritis

assessment (19). These different models are ready-to-use and

serve as strong baselines for the above specific applications, and

they can be easily adapted to new segmentation tasks based on

the user’s research interests.

2.3.4 Image registration
Images acquired in different modalities are often need to be

fused to provide sufficient information for diagnosis and

treatment decision. In addition, a patient may be scanned several

times at different stages of a disease to obtain a better

understanding of the evolution of the disease. Therefore, it is

necessary to register two or more images into a common spatial

coordinate system for better interpretation of anatomical and

pathological characteristics thus improving diagnosis and

treatment for patients.

SenseCare provides several registration algorithms for different

tasks. For example, the combination of MR and CT is quite useful

since the former is better suited for delineation of tumor regions

while the latter is needed for accurate computation of the

radiation dose. Registration between MR and CT images

supported by SenseCare makes it more efficient and accurate to

obtain radiotherapy planning. Registration algorithms embedded

in SenseCare include both rigid and non-rigid registration

between images from a single modality or multiple modalities.

Rigid methods are useful for the registration in the presence of

rigid bodies such as bones. Non-rigid registration is used for

applications such as correcting soft-tissue deformation during

imaging and modeling the dynamic heart. Figure 3c shows an

example of non-rigid lung image registration in SenseCare.

2.3.5 Foundation models
Recently, foundation models such as vision-language models

(40) and Segment Anything Model (SAM) (41) have shown great

potential in reducing data and annotation cost and improving

performance in applications with limited dataset size (42).

SenseCare currently supports using foundation models mainly in

two ways for researchers. First, it allows researchers to use

foundation models to efficiently annotate data in image

classification and segmentation tasks. For example, by leveraging
Frontiers in Radiology 07
the zero-shot inference ability of vision-language models such as

variants of CLIP (40), users can first obtain pseudo-labels of

training images. Then, SenseCare uses uncertainty estimation to

select reliable pseudo-labels, and leverages semi-supervised

learning methods to learn from those with reliable pseudo-labels

and other unlabeled samples. SenseCare also supports source-free

domain adaptation of medical image segmentation models with

the help of SAM (43). Specifically, pseudo-labels obtained by the

source model is used to generate prompts for SAM that outputs

improved pseudo-labels for target-domain images. The new

pseudo-labels are then used to fine-tune the source model with

prior knowledge-based constraints (44), which makes the source

model be well adapted to a new domain without annotations.

Second, SenseCare provides a foundation model that improves

the performance of downstream tasks and reduces the annotation

cost (45). A hybrid architecture combining the advantage of

CNN and Transformers is designed, and it is trained on a large-

scale CT dataset based on a volume fusion-based self-supervised

learning framework. Then the pretrained model can be adapted

to different downstream segmentation targets including head and

neck organs, thoracic/abdominal organs and lesions in CT and

other modalities.
3 Clinical applications

The most important high-level goal of SenseCare is to serve as

a platform for clinical research in various applications. In this

section, we give several examples of user scenarios where

SenseCare is adapted for various clinical applications.
3.1 Lung-oriented application

3.1.1 Chest radiograph multi-disease detection
Chest Radiography (CR) serves as the most common imaging

tool for lung disease screening and diagnosis. SenseCare offers a

comprehensive CR-based multi-disease detection system,

encompassing foreign body detection, screening for negative

findings, multi-disease detection, rib counting, cardiothoracic ratio

measurement, scoliosis calculation, and automated report

generation, as shown in Figures 4a,b. Specifically, SenseCare

begins by performing quality control on the input chest

radiograph. It then detects 14 diseases, including Abnormal Aortic

Knob, Atelectasis, Cardiomegaly, Edema, Emphysema, Fibrosis,

Hilar Enlargement, Nodule, Pleural Effusion, Pleural Thickening,

Pneumonia, Pneumothorax, Rib Fracture, and Tuberculosis,

providing bounding box and confidence score for each disease.

For pneumothorax, it further calculates the pneumothorax

compression ratio by segmenting the pneumothorax and lung

regions using UNet (46). Rib instance segmentation and

detangling are implemented to achieve rib counting and

determine the corresponding regions for disease boxes. The

cardiothoracic ratio is calculated by detecting key points that

define the chest contour and heart width. Cobb angle

measurement for scoliosis is achieved through spine segmentation
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and extraction of the spinal centerline (47). Through the

coordination of multiple modules, SenseCare offers an automated,

rapid, and comprehensive fine-grained diagnosis for CR.

3.1.2 Lung nodule analysis and follow-up
Lung cancer is a malignant disease with a five-year survival rate

of 16%–17%. Researches have shown that early diagnosis and

intervention will improve the five-year survival rate up to 54%.

Although computer-assisted image analysis have been adopted to

facilitate the lung cancer detection and diagnosis in an early

stage, the various sizes, shapes and types of pulmonary nodules

are placing great burdens on clinical physicians, thus causing

misdiagnosis and missed diagnosis due to their fatigue

and overwork.

Based on its leading algorithms, SenseCare supports a thorough

research and analysis of pulmonary nodules and lesions (36) by

automatic detection, segmentation, and quantitative analysis. It

can automatically detect and locate the nodules (22, 48) and then

provide further quantitative information of each nodule such as its

volume and density, in addition to qualitative estimation of its

type and malignancy. As shown in Figure 3, four kinds of nodules

are automatically detected and distinguished by SenseCare (23).

Furthermore, it equips clinicians with an advanced nodule follow-

up feature. Utilizing registration technology, it facilitates the

longitudinal analysis between any two patient scans, automatically

pinpointing and correlating the positions of existing, vanished, or

emergent nodules. It meticulously gauges alterations in nodule

size, density, and malignancy risk, estimating the lesion’s doubling

time, which is a crucial metric that informs clinical decision-

making. Figure 4c illustrates the user interface for thoracic CT

imaging analysis and smart follow-up within SenseCare.

Compared with COVI3D (14, 15) that is specifically designed for

lung lesion analysis, SenseCare provides a more detailed analysis

and visualization of other important thoracic structures such as

different lung lobes, vessels and airways.

3.1.3 Pulmonary embolism analysis
Pulmonary Embolism (PE) is formed when a portion of a

blood clot breaks off from the wall of a vein and travels through
TABLE 1 Performance of SenseCare and related works on lung CT analysis.

Task Works Meth
Lung nodule detection Kuo et al. (51) Support vecto

Zhu et al. (52) 3D Faster R-C

Ardimento et al. (53) Ensemble net

SenseCare Attention CN

Lung lobe segmentation Zheng et al. (54) Dual-attention

Xie et al. (55) Cascaded CN

SenseCare 3D Res-UNet

Pulmonary vessel & airway segmentation Wu et al. (56) Cascade U-N

Wu et al. (57) 3D UNet

SenseCare 3D Res-UNet

Pulmonary embolism detection Huang et al. (58) Multi-phase C

Ma et al. (59) Multi-phase C

SenseCare 3D Res-UNet

CV, Cross validation; SEN, sensitivity; FP, False positives.
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the blood stream, passes through the heart (right atrium and

right ventricle), and becomes lodged in a pulmonary artery,

causing a partial or complete obstruction. The best available

diagnostic technique of PE is Computed Tomography Pulmonary

Angiography (CTPA) (49), where PEs usually appear as dark

spots among the bright regions of blood arteries.

Leveraging CTPA data, SenseCare employs advanced

algorithms for detection, segmentation, and localization, enabling

the automated identification, positioning, and quantitative analysis

of pulmonary embolisms (50). The system proactively issues high-

risk alerts when blockages are present in the principal pulmonary

artery. Furthermore, it performs curved plane reconstruction

for each individual embolus, streamlining the examination of

the embolism’s overall state. The curved plane reconstruction

technology vividly illustrates the embolus’s position and

morphology within the vessel, enhancing physicians’ capacity to

evaluate the condition. In addition, SenseCare provides intelligent

3D reconstruction for clinicians. By offering a 3D visualization of

various anatomical structures such as the lungs, pulmonary

arteries and veins, pericardium, and embolism, it eases the

assessment of the proximity of emboli to neighboring tissues,

furnishing a crucial benchmark for subsequent thrombolytic

treatments. Figure 4b illustrates the user interface for CTPA

imaging PE analysis within SenseCare.

Table 1 shows the performance of SenseCare and related works

on lung CT analysis. It obtains a sensitivity of 0.93 at 6 False

Positives (FPs) per scan for lung nodule detection, and a Dice of

0.945 for lung lobe segmentation. It also supports pulmonary

vessel and airway segmentation with an average Dice of 0.914,

and the sensitivity for pulmonary embolism detection is 0.90 at 2

FPs per scan.
3.1.4 Lung surgical planning
Surgical operations play an important role in effective

treatment of lung cancer. Due to complex anatomical structures

as well as breathing movements in chest, visualized surgical

planning is essential for improving the efficiency and success rate

of surgeries. SenseCare has provided the Lung Surgical Planning

system that can automatically build 3D quantitative pulmonary
od Training/Test cases Performance
r machine 381 in total SEN = 0.92

NN 888 (10-fold CV) SEN = 0.90@2FP/scan

works 510/500 Recall = 0.9873, Precision = 0.8062

N 11,483/1,759 SEN = 0.93@6FP/scan

V-Net 40/10 Dice = 93.4%

Ns 4,370/1,100 Dice = 93.6%

954/179 Dice = 94.5%

et 100/43 Dice = 71.7%

42/14 Dice = 84.9%

308/132 Dice = 91.4%

NN 6,292/1,000 AUROC = 92.58%

NN 1,428/369 AUROC = 85.47%, SEN = 0.75

2,069/130 SEN = 0.90@2FP/scan
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structures from CT images, shown in Figures 4c,d. The whole

pipeline of extracting various structures is completed in three

minutes without manual interactions. Soft tissues including

pulmonary parenchyma, pulmonary lobes and segments are

extracted as analysis basis. Besides, the bronchi tree is traced and

analyzed according to the position and depth, acting as

important landmarks during resection. Furthermore, pulmonary

arteries and veins are obtained following the vessel tree

structures, which ensures the precise segmentation results even in

non-contrast CT images. Base on above results, the system

supports watershed analysis for precise lung resection, as well as

precise needle placement suggestions for tumors and surrounding

tissues in ablation treatment. The system helps clinicians obtain

both global visualizations and important details, leading to more

efficient and accurate operations in clinical practice.
3.2 Pathology-related application

Pathological diagnosis is regarded as the most reliable criteria

for diagnosis of cancers such as Gastrointestinal cancer.

However, it is labor-insensitive and time-consuming to manually

discern lesion areas and pathological cells from up to 100,000 �
100,000-pixel whole slide pathological images, which easily leads

to fatigue of human analysts and cannot satisfy the increasing

demand for pathological diagnosis due to the lack of adept

experts in developing countries.

SenseCare-Pathology is designed to support pathological

diagnosis across a spectrum of anatomical regions, including

gastrointestinal, cervical, lymph nodes, lung, prostate and pleural

effusion & ascites diseases, and it facilitates both tissue and
FIGURE 5

Pathological image analysis in SenseCare.
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cellular level analysis (37, 60). This innovative platform

empowers pathology department of hospitals and third-party

pathological diagnosis centers to perform efficient and intelligent

analysis of pathological images by providing AI-based functional

modules such as lesion and cell detection (37), nuclei/gland

segmentation (21) and cell segmentation (61), etc. Especially,

SenseCare supports efficient retrieval of pathological images from

a large-scale database (61–63). Users can employ the retrieval

module to search for similar images for a given input image.

These modules help clinical researchers build capability to

conduct large-scale cancer screening projects. Figure 5 shows an

example of lesion localization from pathological images.

Table 2 shows the performance of SenseCare compared with

some recent works on pathological image classification tasks. For

gastric cancer malignancy detection from WSIs, it obtains an

sensitivity of 0.95 and specificity of 0.91. For colorectal cancer

malignancy detection, the sensitivity and specificity is 0.93 and

0.85, respectively. For Thin-prep Cytologic Test (TCT) analysis, the

sensitivity and specificity of cervical cancer malignancy detection is

0.95 and 0.83, respectively. SenseCare also supports classification of

mold from TCT (sensitivity 0.90 and specificity 0.99), classification

of clue cells (sensitivity 0.92 and specificity 0.99), segmentation of

cancer region in WSI (Dice 0.87) and detection of low-quality

WSIs including the presence of bubble, glue, folding, contaminant

with an overall sensitivity of 0.90.
3.3 Heart disease diagnosis

Cardiovascular diseases (CVDs) are the most common causes of

death throughout the world. Non-invasive morphological and
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TABLE 2 Performance of SenseCare and related works on pathological
image analysis.

Task Works Training/test
cases

Performance

Gastric cancer
malignancy detection

Ba et al. (64) 2,123/110 WSIs SEN = 0.906,
SPE = 0.782

Huang et al.
(65)

2,333/175 WSIs SEN = 0.934,
SPE = 0.905

SenseCare 20,000/3,000 WSIs SEN = 0.952,
SPE = 0.913

Colorectal cancer
malignancy detection

Ho et al. (66) 105/150 WSIs SEN = 0.97, SPE = 0.60

Song et al.
(67)

177/194 WSIs SEN = 0.89, SPE = 0.79

SenseCare 20,000/3,500 WSIs SEN = 0.93, SPE = 0.85

Cervical cancer
screening

Zhang et al.
(68)

5,558/1,389 WSIs SEN = 0.83, PRE = 0.88

Cao et al.
(69)

5,558/1,389 WSIs SEN = 0.91, PRE = 0.89

SenseCare 18,000/4,000 WSIs SEN = 0.96, SPE = 0.83

SEN, sensitivity; SPE, Specificity; PRE, Precision.
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functional assessment of cardiovascular structures plays an important

role in diagnosis and treatment of CVDs. Computed Tomography

Angiography (CTA) and electrocardiogram (ECG) are two common

means for diagnosis of CVDs. However, manual analysis of CTA

and ECG is laborious and time-consuming. SenseCare provides a

full-stack solution towards automatic diagnosis of coronary artery

disease based CTA and ECG.
3.3.1 Coronary artery disease diagnosis using CTA
For automatic diagnosis of coronary artery disease using CTA,

SenseCare provides a full-stack solution, including fully automatic

segmentation of 3D whole heart and coronary arteries, extraction

of coronary artery centerlines, labeling of important artery

branches, reconstruction of MPR and CPR, real-time volumetric

rendering, detection of plaques and quantification of stenosis,

and automatic generation of diagnose reports.

More specifically, SenseCare employs a cascaded method for

automatic segmentation of 3D whole heart (70) and coronary

arteries, which is integrated into a semi-supervised framework

(71) and has achieved state-of-the-art performance using very

few manual annotations. For robust and accurate coronary artery

segmentation, an Artery and Vein Disentanglement Network

(AVDNet) is proposed by incorporating the coronary vein into

the segmentation task (72). A unified deep reinforcement

learning (73) framework is proposed to automatically traverse

tree-structure centerlines of coronary arteries. Pixel-level

segmentation followed by 3D classification and segmentation of

point sets (74) is proposed for coronary artery labeling. We

utilize a recurrent CNN to automatic detect and classify the type

of coronary artery plaque (75), and the degree of coronary artery

stenosis is quantified by a multi-class segmentation of plaque and

vessel lumen from the reconstructed probe images. Finally, a

structured diagnose report is summarized based on the results

obtained from all steps mentioned above, and the whole

procedure is finished within one minute. Figure 6a shows a

snapshot of the coronary artery application in SenseCare.
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Table 3 shows the performance of coronary artery and cerebral

artery CTA analysis obtained by SenseCare compared with recent

related works. For coronary artery analysis, SenseCare obtains a

patient-level accuracy of 0.94 for stenosis detection (� 50%

stenosis), with an accuracy of 0.97 for calcium score calculation

and 0.96 for coronary artery labeling, respectively. For cerebral

artery analysis, the accuracy of artery labeling is 0.95, and the

sensitivity of intracranial aneurysm detection is 0.94. The

sensitivity of cerebral hemorrhage detection is 0.99, with a

specificity of 0.92. The sensitivity and specificity for cerebral

ischemia detection is 0.88 and 0.95, respectively.

3.3.2 Automatic diagnosis of cardiac diseases
using ECG

As a common means of heart disease detection, ECG has the

characteristics of being inexpensive, non-invasive, and easily

available. The manual measurement of parameters and waveform

recognition are essential steps in the traditional ECG diagnostic

process, posing significant challenges for doctors when analyzing

long signal sequences. As shown in Figure 6b, SenseCare

provides an automatic solution for ECG diagnosis, including

parameter measurement and diseases classification.
3.4 Liver cancer diagnosis and surgical
planning

Primary liver cancer, mainly Hepatocellular Carcinoma (HCC),

is the sixth most prevalent malignancy and third leading cause of

cancer-related death worldwide. The prognosis is poor owing to

the high recurrence in 60%–70% of patients within 5 years after

curative surgery (84). Diagnosis of liver cancer based on multi-

modal medical images is important for treatment decision.

SenseCare provides a closed-loop platform for intelligent

diagnosis of liver cancer using multi-phase dynamic CT scans

and multi-sequence MRI images. As shown in Figure 6c, it has

an integrated pipeline for automatic sequence alignment,

detection and localization of tumors (85). Moreover, it provides

morphology and density measurements for assessment of cancer

type, malignancy and LI-RADS symptom (86). It also

implements automatic segmentation and volume measurements

of abdomen organs, and risk assessment of cirrhosis and fatty

liver. Finally, a structured and standardized diagnostic report is

generated. Therefore, SenseCare serves as a promising tool to

help radiologists locate and identify the suspected liver tumors

more efficiently and effectively.

Table 4 shows the performance of SenseCare and recent

relevant works on structure segmentation and lesion detection in

liver CT images. For abdominal organ segmentation, the average

Dice of liver, left kidney, right kidney and spleen from CT and

MRI is 0.96 and 0.95, respectively. For hepatic vessel

segmentation, the recall of center line is 0.88 in both CT and

MRI. The sensitivity and specificity of lesion detection are 0.95

and 0.70 for CT images, and 0.92 and 0.70 for MRI images,

respectively. For classification between benign and malignant

liver lesions, the accuracy is 0.90, with an AUC of 0.95.
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FIGURE 6

Heart disease and liver cancer diagnosis and surgical planning system in SenseCare. (a) Conroy artery disease diagnosis using CTA. (b) Cardiac disease
diagnosis using ECG. (c) Liver cancer diagnosis system. (d) Liver surgical planning system.

TABLE 3 Performance of SenseCare and related works on CTA analysis.

Task Works Training/
test cases

Performance

Coronary artery
stenosis detection

Zreik et al. (76) 126 (10-fold CV) ACC = 0.71 for �50%
stenosis

Grifn et al. (77) 303 for
evaluation

ACC = 0.84 for �50%
stenosis

SenseCare 1,600/400 ACC = 0.94 for �50%
stenosis

Coronary artery
calcium score

Mu et al. (78) 365/240 ACC = 0.93

Hong et al. (79) 852/215 ACC = 0.95

SenseCare 640/160 ACC = 0.97

Intracranial
aneurysm detection

Dai et al. (80) 208/103 SEN = 0.92

Hu et al. (81) 12,817/900 SEN = 0.94

SenseCare 800/200 SEN = 0.94

Cerebral
hemorrhage
detection

Kim et al. (82) 180/20 SEN = 0.67, SPE = 0.86

Wang et al. (83) 19,530/2,214 SEN = 0.95, SPE = 0.94

SenseCare 640/160 SEN = 0.99, SPE = 0.92

CV, Cross validation; ACC, Accuracy, SEN, sensitivity; SPE, Specificity.

TABLE 4 Performance of SenseCare and related works on liver image
analysis.

Task Works Training/
test cases

Performance

Multi-organ
segmentation

Shaker et al.
(87)

18/12 Avg-Dice(CT) = 0.92

Chen et al. (88) 18/12 Avg-Dice(CT) = 0.91

SenseCare 670/66 Avg-Dice(CT) = 0.96,
Avg-Dice(MRI) = 0.95

Liver lesion
detection

Zhou et al. (89) 462/154 SEN = 0.93,
Precision = 0.83

Kim et al. (90) 761/589 SEN = 0.85@4.8FP/scan

SenseCare 2,040/582 SEN = 0.95

Hepatic vessel
segmentation

Xu et al. (91) 36/20 Dice = 0.69, SEN = 0.79

Chen et al. (88) 443(5-fold CV) Dice = 0.65

SenseCare 372/52 Recall of center line = 0.88

CV, Cross validation; SEN, sensitivity; FP, False positives.
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SenseCare also supports automatic recognition dynamic phases

of contrast enhanced CT with an accuracy of 0.97, and the

classification accuracy for different MRI dynamic sequences is 0.97.

For liver surgical planning, SenseCare provides a quantitative

3D modeling of the liver for highly automated liver-specific

analysis, which is shown in Figure 6d. It helps hepatobiliary

surgeons perform interactive analysis and treatment planning.

In detail, it supports efficient automatic segmentation and
Frontiers in Radiology 11
quantitation of tumors, vessels, ducts and abdomen organs

within four minutes, and interactive refinement of segmentation

results. It supports pre-surgical planning for liver resection in

multiple paradigms including anatomical, vessel-territory-based

and curvature-based methods. The system also aides in precise

needle placement relative to tumors and surrounding tissues

for ablation treatment. It helps clinicians get a whole picture of

the abdomen in a quicker and more comprehensive paradigm,

which improves the safety of operations and ensures the

treatment outcome.
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3.5 Pelvic tumor surgical planning

Pelvic tumor is one of highly malignant tumors, and surgical

treatment is the most effective treatment for pelvis tumors, where

an accurate preoperative simulation and planning based on

segmentation and modeling of the tumor is critical for the

success of surgery.

SenseCare provides an intelligent preoperative surgical planning

for for limb salvage surgery of malignant pelvic tumors, where the

accuracy and efficiency is improved by our deep learning-based

algorithms. The surgical planning workflow mainly consists of three

parts. First, the pelvic tumor is segmented from MR scans with a U-

Net like model (46). Then the pelvic bone is segmented from CT

scans with a CNN combined with self-attention blocks (92). Finally,

a robust rigid/affine inverse-consistency registration method that is

an extension of SymMirorr (93) is conducted to align the

corresponding MR-CT pair. Based on the registered CT-MR pair

and the corresponding segmentation results, surgeons and

radiologists could make accurate preoperative surgical planning

rapidly. Figure 7a shows the user interface of pelvic tumor surgical

planning system in SenseCare. The system efficiently cuts down the

multi-party communication costs between radiology, orthopedics

and 3D printing centers, and ultimately reduces doctor’s workload

and facilitates patient-tailored treatment. It took only 15min to

complete the surgical planning for pelvic tumor resection, which is a
FIGURE 7

Pelvic tumor and skeleton-oriented applications in SenseCare. (a) Pelvic t
assessment. (d) Skeleton reconstruction.
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dramatic acceleration compared with the 2-day time span in a

traditional workflow (94).
3.6 Skeleton-oriented application

Skeleton-relevant diseases such as fracture, development

disorder and osteoarthritis could largely reduce the patients’

quality of life, and lead to several complications. Skeleton

analysis based on medical imaging is essential for accurate

diagnosis and treatment planning of such diseases. SenceCare

provides several intelligent tools for diagnosis and assessment of

skeleton diseases, including lower limb surgical planning, bone

age assessment and whole body skeleton reconstruction.

3.6.1 Lower limb surgical planning
Knee Osteoarthritis (OA) is an important public health issue

that causes chronic disability. Lower limb osteotomies is a well-

established and commonly utilized technique in medial knee

osteoarthritis secondary to different forms of knee joint

malalignments, trying to establish a better alignment by passing

the load bearing leg axis through hip, knee and ankle joint. The

measurement of lower limb axial alignment with radiographs is a

critical step in the preoperative planning to exactly define the

characteristic of the osteotomy.
umor surgical planning. (b) Lower limb surgical planning. (c) Bone age
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SenseCare’s lower limb surgical planning system provides

advanced AI algorithms for automatic radiograph analysis such as

segmentation of femur and tibia and detection of lower limb

landmarks for accurate measurement of the critical angles and

distances of lower limbs. The results are used for planning of

surgical treatments such as High Tibial Osteotomy (HTO), as

shown in Figure 7b. Localization of landmarks is based on a coarse-

to-fine recurrent network (95) combined with Gaussian heatmap

regression (96). The heatmap corresponding to a landmark location

is a sum of multiple Gaussian functions centered at that landmark.

At inference time, the largest values in the heatmap are taken as the

detected landmark positions. Such a strategy helps to achieve stable

and accurate limb landmark detection results that ensure the

reliability of downstream surgical planning.

3.6.2 Bone age assessment
Bone age is an important and widely used quantitative metric to

estimate the development of child’s skeleton in the field of

pediatrics. Greulich and Pyle (GP) and Tanner–Whitehouse (TW)

are the two most used bone age assessment methods in clinical

practice. The GP method requires comparing the radiograph with

the reference atlases and taking the bone age of the closest one as

the evaluation result. Yet TW method is much more complex due to

its scoring mechanism. The radiologist needs to manually evaluate

the developmental stages of 20 specific bones. Each developmental

stage of each bone corresponds to a score. By adding the scores

of all bones, the final bone maturity score is obtained, and the

bone age is calculated. Obviously, this is a time-consuming and

error-prone task, and a fully automated workflow is desirable.

SenseCare provides a fast and fully automated solution that

integrates multiple bone age assessment methods, including TW3

RUS, TW3 Carpal, and GP. As shown in Figure 7c, it can

automatically detect 20 specific bones in the hand X-ray image,

evaluate the development status of each bone, and calculate the

bone age based on different methods. Meanwhile, an assessment

report containing descriptions of primary developmental

characteristics is also presented.

3.6.3 Whole body skeleton reconstruction
The SenseCare intelligent Virtual Reality (VR) application is

oriented to the whole body’s skeleton and joints, and fully

automatically performs VR and standard plane reconstruction to

help users interpret scans. For the VR function, the target skeleton

are fully automatically distinguished from the background including

non-interesting bones and plaster fixation, thereby eliminating

irrelevant information during VR display. For standard plane

reconstruction, the shape and posture of the target joint (including

shoulder, elbow, wrist, knee, ankle, foot, etc.) in the image can be

automatically recognized, and then the scan is reconstructed along a

preset standard direction, as shown in Figure 7d.
3.7 Stroke diagnosis

Stroke is a severe cerebrovascular disease globally, with high

incidence, high disability rate and mortality (97). Ischemic stroke
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is the most common type of stroke, accounting for 75%–85% of

all stroke cases. The detection and quantitative evaluation of

stroke lesions by medical imaging is of great significance for

accurate diagnosis and treatment decision.

The SenseCare platform provides a one-stop stroke diagnosis

solution based on different types of CT imaging. First, it provides

automatic analysis of intracerebral hemorrhage and ischemic stroke

using non-contrast CT. As shown in Figure 8a, for intracerebral

hemorrhage, it can detect the hemorrhage and calculate the volume

of bleeding automatically, and classify the hemorrhage into five

types. For ischemic stroke, the ASPECT score is automatically

measured for preliminary assessment of the severity of ischemia, as

shown in Figure 8b. Second, for ischemic stroke, the CT perfusion

analysis system can decode raw 4D CT perfusion images into

perfusion parameter maps (CBV, CB, MTT and TMAX) for

accurate diagnosis, as shown in Figure 8c. It can quantify

the volume (98) and mismatch between the infarct core and the

ischemic penumbra. Thirdly, for thrombectomy patients, SenseCare

features a head and neck CTA reconstruction and analysis system

(99) for rapid vascular reconstruction and localization of plaque

occluded areas and aneurysm, as shown in Figure 8d. In terms of

quantitative performance, the sensitivity and specificity for infarcted

region detection is 0.92 and 0.94, respectively, and the relative

volume error for low-perfusion region segmentation is 5.0%.

The holistic solution and high performance in CT perfusion

image analysis can be applied to stroke centers to improve their

treatment capacity.
3.8 Radiotherapy contouring

Radiotherapy is an important and widely-adopted treatment

for cancers. In radiotherapy treatment planning, one of the most

critical step is the delineation of the organs-at-risk (OAR) and

target volumes, the quality of which is a core factor affecting the

efficacy and side effects of radiotherapy. Clinically, radiologists

have to spend several hours for manual delineation, due to the

large number of OARs, complex shapes of cancers and large size

of 3D volumes. As a result, it requires great time and efforts, as

well as a high level of professionalism for the radiologist.

As shown inFigure 9, SenseCareRadiotherapyContouring system

aids in the radiologists by automatically contouring OARs across the

whole body, including the head and neck (100–103), chest (104)

and abdomen (105, 106), as well as common targets including

breast cancer, rectal cancer (107), etc. The system can be seamlessly

connected to different kinds of CT machines and Treatment

Planning Systems (TPS), automatically run AI calculation in

background, support a 3D interactive view and editing the

delineated structures, and export the results back via the standard

RT structureDICOMprotocol, in a complete closed loop of workflow.
4 Discussion

With the development of medical imaging techniques and

artificial intelligence, AI-based medical image computing systems
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FIGURE 8

Stroke diagnosis in SenseCare. (a) Hemorrhage diagnosis. (b) ASPECT score measurement for ischemic stroke. (c) CT perfusion analysis. (d) Head and
neck CTA analysis.

FIGURE 9

Radiotherapy contouring system in SenseCare.
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have an increasing potential for more intelligent diagnosis and

treatment in clinic practice. However, existing deep learning

platforms rarely support specific clinical applications while most

current medical image analysis platforms are not well supported
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by advanced AI algorithms. A desirable research platform for AI-

based medical image informatics should have easy-to-use and

extensive AI modules, be accessible to clinical researchers at

multiple centers and on various devices, and support a range of
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TABLE 6 Comparison between SeneseCare and existing medical image computing and visualization platforms for clinical applications.

Platform Deep learning
algorithms

Visualization Model
training

Pathology Multiple
applications

Web-based
access

MITK Nolden et al. (11) � ✓ � � ✓ �
3D Slicer Pieper et al. (13) ✓ ✓ � � ✓ ✓

COVI3D Benbelkacem et al. (14) ✓ ✓ � � � �
SenseCare ✓ ✓ ✓ ✓ ✓ ✓

TABLE 5 Agreement level of 53 clinical users on 8 statements of SenseCare.

Level Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Average
Agree (strongly) 38 37 34 35 32 28 32 43 65.81%

Agree 13 15 13 12 14 14 15 10 25.00%

Agree (somewhat) 2 1 3 5 6 9 5 0 7.31%

Neutral 0 0 2 0 0 2 0 0 0.94%

Disagree (somewhat) 0 0 0 1 1 0 0 0 0.47%

Disagree 0 0 1 0 0 0 1 0 0.47%

Disagree (strongly) 0 0 0 0 0 0 0 0 0.00%
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clinical applications with different data modalities. To achieve this

goal and boost clinical research towards smart healthcare,

SenseCare is developed as a generic research platform for

intelligent medical image computing that can support various

research needs across different medical disciplines.

To analyze how SenseCare meets the above goals, we collected

some feedback from users. 53 clinical users from 9 hospitals at 4

different cities were asked to assess to which extent they agreed

or disagreed (a 7-point scale) with 8 statements: (Q1) SenseCare

helps a lot in image analysis for diagnosis; (Q2) SenseCare is

easy to learn and operate; (Q3) SenseCare helps to improve the

diagnosis performance of users; (Q4) It effectively reduces the

risk of missed diagnosis for lesions especially small lung nodules

and rib fracture; (Q5) SenseCare has a good performance for 3D

vessel reconstruction for coronary artery CTA, head and neck

CTA and brain Magnetic Resonance Angiography (MRA); (Q6)

SenseCare’s 3D reconstruction of anatomical structures based on

segmentation is helpful for surgical planning in lung and liver

cancers; (Q7) SenseCare improves the efficiency and performance

in follow-up of patients; (Q8) Expect to use more AI tools in

SenseCare to assist solving problems in healthcare. The summary

of agreement level is shown in Table 5. 51 out of 53 users

(96.23%) agreed or strongly agreed that SenseCare is helpful for

diagnosis (Q1), and 52 out of 53 users agreed or strongly agreed

that SenseCare is easy to learn and use (Q2). More than 46

(86.79%) users agreed or strongly agreed that SenseCare helps to

improve the capability of users (Q3), reduces missed diagnosis

(Q4), obtains good results in vessel reconstruction (Q5) and

leads to better follow-up (Q7). In terms of being helpful for

surgical planing, 51 users gave the first three agreement levels,

accounting for 96.23%. In average, 90.81% users agreed or

strongly agreed with the 8 statements.

As shown in Table 6, compared with existing platforms ofmedical

image analysis and visualization for clinical applications, SenseCare

has several advantages: (1) On-the-shelf AI toolkits for different

medical image computing tasks such as image segmentation,
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registration, lesion and landmark detection, which makes it easy for

users to not only directly use these built-in AI models for specific

tasks, but also develop new customized AI models based on

SenseCare’s tools for intelligent image annotation, model training

and validation; (2) Extensive clinical applications that are developed

for a range of clinical diagnosis and treatment planning tasks, and

the comprehensive AI functional modules and advanced 3D

visualization make SenseCare scalable for new clinical applications;

(3) Easy to access with high concurrency and low requirement on

users’ device or operating system, due to its cloud-based service and

multi-center deployment; and (4) Efficient synchronization of data

from different information systems and cross multiple centers, with

data privacy ensured by encryption algorithms.

Despite that a range of AI toolkit have been available in SenseCare

for many clinical applications, there are still some aspects that need to

be improved. First, the current foundation models in SenseCare are

mainly for general radiology and pathology image analysis, and

foundation model for other modalities such as surgical videos will

be considered in the future (108). Second, SenseCare currently

focuses mainly on structured medical data. However, many

healthcare scenarios require the integration of unstructured

data such as clinical notes and patient histories. We will expand

its support for unstructured data to enhance the platform’s

ability to provide comprehensive diagnostic insights in the future.

Thirdly, to better support precision medicine, prediction of

prognosis, treatment responses and survival rates of patients will be

supported by SenseCare, which will contribute to more effective

treatment decision-making for patients with serious diseases such

as malignant cancers.
5 Conclusion

In this paper, we present a one-stop research platform

SenseCare that provides a large set of AI algorithms for medical

image segmentation, registration, detection and other tasks that
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can help clinicians and radiologists conduct various clinic-oriented

translational research programs, such as lung cancer diagnosis and

surgical planning, efficient pathological image analysis, pelvic

tumor and limb surgical planning, coronary artery disease

diagnosis and modeling, etc. In addition to the built-in AI

algorithms, SenseCare also provides several tools for users to

develop and deploy customized AI models efficiently. The AI

toolkits and other appearing functional modules such as

advanced visualization, web-based access and multi-center

deployment in SenseCare can efficiently boost clinical research

programs and applications towards smart healthcare.
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