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In neuro-oncology, MR imaging is crucial for obtaining detailed brain images to
identify neoplasms, plan treatment, guide surgical intervention, and monitor the
tumor’s response. Recent AI advances in neuroimaging have promising
applications in neuro-oncology, including guiding clinical decisions and
improving patient management. However, the lack of clarity on how AI arrives
at predictions has hindered its clinical translation. Explainable AI (XAI) methods
aim to improve trustworthiness and informativeness, but their success
depends on considering end-users’ (clinicians’) specific context and
preferences. User-Centered Design (UCD) prioritizes user needs in an iterative
design process, involving users throughout, providing an opportunity to design
XAI systems tailored to clinical neuro-oncology. This review focuses on the
intersection of MR imaging interpretation for neuro-oncology patient
management, explainable AI for clinical decision support, and user-centered
design. We provide a resource that organizes the necessary concepts,
including design and evaluation, clinical translation, user experience
and efficiency enhancement, and AI for improved clinical outcomes in
neuro-oncology patient management. We discuss the importance of multi-
disciplinary skills and user-centered design in creating successful neuro-
oncology AI systems. We also discuss how explainable AI tools, embedded in a
human-centered decision-making process and different from fully automated
solutions, can potentially enhance clinician performance. Following UCD
principles to build trust, minimize errors and bias, and create adaptable
software has the promise of meeting the needs and expectations of
healthcare professionals.
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explainable artificial intelligence (XAI), user-centered design (UCD), clinical
neuro-oncology, MR imaging, clinical decision support
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1 Introduction

In neuro-oncology, MR imaging is an essential component of

patient management. It provides high-resolution, detailed images

of the brain for precise identification and characterization of

neoplasms, aids in formulating the most suitable therapeutic

strategy, serves as a navigational aid for neurosurgeons during

procedures, and is employed post-therapeutically to monitor the

neoplasm’s response to treatment and detect any early signs of

recurrence. Patient management decisions require balancing

potential benefits and risks. Effective coordination among team

members ensures accurate data interpretation, streamlined

workflows, and timely decision-making.

Recent progress in artificial intelligence (AI) related to

neuroimaging makes the application to neuro-oncology timely

and promising (1). AI technology can support healthcare

professionals in making clinical decisions for neuro-oncology

patients by providing evidence-based information and patient-

specific tools (1). It thus promises to improve patient care by

reducing diagnostic variation, preventing unnecessary treatments

and surgeries, and decreasing associated healthcare costs (1, 2).

Lack of clarity regarding how AI systems operate has been one of

the reasons why the clinical translation of AI tools has been

limited so far. Explainable AI (XAI) methods aim to produce

explanations that improve trustworthiness, informativeness,

confidence, fairness, and interactivity (3, 4). Given the varying

criteria that constitute a good explanation, the success of XAI

methods depends on considering the specific context and goals

of end-users (clinicians) and their individual preferences (5).

Additionally, clinical translation of XAI systems will require

usable and familiar interfaces to clinicians (6).

User-Centered Design (UCD) is an iterative design process

where designers prioritize user needs in every phase. It involves

users throughout the process to create highly usable and

accessible products. A UCD framework ensures that usability

goals, user characteristics, environment, tasks, and workflow are

given extensive attention at each stage. Previous studies on XAI

to support MRI interpretation related to CNS tumors have lacked

a direct and intentional focus (7). Theoretical solutions often

adjust existing XAI solutions in a way that does not fit the

clinical context. For instance, tasks like distinguishing between

tumor tissue and healthy tissue or between brain metastases and

glioma are already performed very well by humans (8–10). This

leaves little room for AI to improve accuracy and makes it

challenging to assess its impact due to small potential effect sizes

and limited access to human experts (11). That does not imply

that these lines of research should not be generally pursued.

However, it does mean that the exact implementation context

and expected value of the AI system being developed should be

carefully considered. As such, the opportunity exists to design

XAI systems tailored to clinical neuro-oncology (12).

There have been comprehensive reviews on the application of

AI within clinical decision-making associated with neuro-

oncological care (1, 12, 13). Voigtlaender et al. broadly discuss

applying AI technology to clinical neurology practice (13). They

note that advancements in AI technology point towards a variety
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of practical clinical neurology applications but that the clinical

neurology community must engage in the development to ensure

software adoptions, positive human-AI interactions, and

improved clinical outcomes. Khalighi et al. survey the application

of AI systems to clinical neuro-oncology specifically (1). Like

Voigtlaender, they also point to several applications unique to

clinical neuro-oncology, including CNS tumor diagnosis,

determining prognosis, and treatment planning. In addition, they

also stress the importance of engaging with all stakeholders to

develop safe, ethical, and legally compliant AI software.

Familiar et al. provide a comprehensive assessment of the

challenges in identifying and delineating subregions of pediatric

brain tumors from MR images (14). Their goal is to use these

subregions and their respective measurements to assess clinical

response to treatment according to existing guidelines. This work

implicitly represents an initial UCD effort in that a specific

clinical task has been defined (i.e., response assessment from MR

images) with particular areas for improvement that AI can

potentially address. The next phase of such work is to design

solutions to address these challenges and to evaluate their

effectiveness. However, very few theoretical solutions have ever

been assessed broadly in radiology (15).

It has been shown that AI assistance can have a variable impact

on how humans make clinical decisions (16). Human experts may

demonstrate automation bias or neglect, which causes them to

overweigh or underweight values from AI predictions (11, 17).

Human experts may also treat AI information in a manner that

considers evidence from the AI and all other evidence as separate

independent entities, and they do not predictably update their

beliefs (11). There may also be biases that manifest over time

after the AI system has been deployed in a setting; for example, a

user may begin to preemptively predict AI responses as they

interact with an AI system more (18).

Implementing a UCD approach during design and

development ensures that AI systems are aligned with experts’

needs and expectations. Chen and colleagues review the

scientific literature on transparent AI for medical image

analysis (12). After carefully assessing this literature, they

define a set of clinical AI design guidelines that emphasize the

importance of following a user-centered approach to designing,

implementing, and evaluating AI for medical imaging analysis.

This work is just one example framework; while others exist, it

is important to consider the advantages and limitations of the

framework chosen.

This review organizes various facets of applying XAI to

support and enhance clinical decision-making within neuro-

oncology. We specifically emphasize the intersection of the

interpretation of MR images for neuro-oncology patient

management decisions, XAI, and UCD. However, only some

scientific studies have specifically evaluated AI-assisted

radiological interpretation in CNS tumor care on a human-

based application level. Therefore, we provide a resource that

organizes the necessary concepts at a high level: (1) Design and

Evaluation, (2) Translation, (3) Enhancing the User Experience

and Efficiency, and (4) AI for Improved Clinical Outcomes in

Neuro-Oncology Treatment.
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2 Design and evaluation considerations
regarding XAI in clinical neuro-
oncology

Clinical neuro-oncology relies on MR imaging in various

contexts through the patient care trajectory. Figure 1 presents the

data stream for neuro-oncology patients, including example

applications and data resources for each stage. Other fields have

developed a variety of UCD frameworks. Table 1 presents three

examples from different fields and discusses their advantages

and disadvantages.

Because of the high risks associated with clinical decision-

making, design requirements and specifications must be carefully

defined to create an XAI interface. The design space for XAI

visual representations is ample; examples include saliency maps,

feature attribution maps, tabular data, and graphical networks.

The implementation space for a model is also significant,

including the type of model and its various parameters.

Increasing the model’s accuracy typically comes at the cost of

decreasing explainability. Figure 2 illustrates the AI models’

accuracy/explainability trade-off with expected post-hoc XAI

benefits (explanations are generated after the model has been

trained; see Section 3 for details). Neural networks are the most

accurate but potentially expensive and typically have low

explainability. Simple linear regression is less precise and flexible.

However, regression models are directly interpretable because

they have a clear, mathematical structure that allows for

straightforward interpretation of the model’s predictions. Other

methods exist between these two extremes. Additional

implementation considerations include choosing between single-

modality data or multimodal data fusion methods and

conducting the process on-premises or remotely.

When designing and evaluating AI tools to support clinical

decision-making, it is crucial first to determine which UCD

framework best suits your specific circumstances, such as team size
FIGURE 1

Stages in a patient data stream for neuro-oncology (top), along with example
2 provide additional details for the example applications and data resources
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and meeting frequency. Next, we must determine the details

regarding patient care trajectories and clinical workflows within

which the AI system will be deployed. By adhering to UCD

principles, we can rigorously define the task specifications for the

XAI interface by working directly with the target user groups. Finally,

we can determine the specifications for the underlying AI models to

optimize for factors like cost, time, and explainability. These pilot

systems can then be evaluated in terms of clinical beneficence and

usability via user studies before scaling to clinical settings. Because

this process is iterative, the system can be constantly scrutinized and

improved. Overall, UCD ensures that the software meets the

expectations of providers, users, and affected patients and is aligned

with software outputs and clinician expectations.
3 The role of XAI in translating AI into
clinical neuro-oncology

Implementing AI in high-risk settings, such as the care of

patients with CNS tumors, is hindered by what is known as the

“black box” problem (22). The issue results from the

computational complexity that underlies state-of-the-art AI systems

and describes the inability of a user or programmer to identify the

exact algorithmic process that yields the AI output. It is possible to

create highly accurate predictive models. However, there are limits

to our understanding of how the prediction was made and the

associated uncertainty. Therefore, the translation of AI into clinical

settings has been limited because of the ethical and legal need for

clinicians to have a reliable understanding of the information they

utilize in making patient care decisions and recommendations.

XAI methods broadly fall into two main categories: ante hoc

and post hoc. Ante hoc methods involve the construction of AI

models that are inherently interpretable but may sacrifice some

degree of accuracy. On the other hand, post hoc methods

generate explanations after the model has been trained.
applications (green) and data resources (orange) for each stage. Tables 1,
(adapted from Kann et al.).
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TABLE 1 Description of user-centered design framework examples with advantages and disadvantages.

Name Description Advantages Disadvantages
Design thinking
(19)

Design thinking, originating from the industrial
design community and popularized by
Stanford’s d.school, is a human-centric method
for problem-solving across various fields. It
consists of five stages: empathize, define, ideate,
prototype, and test; it focusses on empathy,
creativity, and iterative refinement

By centering on user needs and fostering
teamwork, Design Thinking stimulates creative
solutions. Constant testing and feedback
enhance validation and reduce risk

Design thinking can be time-consuming and may
incorporate biases. It may also overlook technical
constraints and encounter resistance during
organizational adoption, requiring customization to
fit specific goals and needs

Nested model/
extended nested
model (20, 21)

The Nested Model, introduced by Munzner in the
Information Visualization community, provides a
methodical structure for crafting visualization
systems. The Extended Nested Model for
explainable AI is an expansion of the framework
to enhance transparency and trust by
concentrating on user-centric explanation factors

The Nested Model offers a systematic, in-depth
approach to design, ensuring a deep
understanding of user needs and problem areas.
Its extension, the Extended Nested Model,
boosts AI system transparency and trust,
providing clearer user explanations for AI
decisions and enhancing system efficacy

These structured design approaches can be complex
and demand a delicate balance between
transparency, efficiency, and user experience. They
may also require supplementary ethical
considerations to address broader impacts

INTRPRT (9) Introduced within the biomedical community,
the INTRPRT guidelines advocate for the
development and evaluation of transparent ML
systems, particularly in medical imaging. These
guidelines stress the importance of balancing ML
method development with evidence collection
and considering human-centric design factors
like format and interactivity. They also highlight
the necessity of employing appropriate metrics
and validating transparency techniques through
a user-centered approach

These guidelines enhance transparency
specifically in medical ML applications, promote
evidence-based development, and focus on user-
centered designs. They ensure relevance and
effectiveness through correct metric usage and
practical evaluation of transparency methods

Achieving transparency in ML systems can
challenge the balance between performance and
complexity, consume substantial computational
resources, and face logistical hurdles in user
validation. The guidelines may require continual
updates to accommodate emerging techniques

FIGURE 2

Accuracy vs. explainability trade-off in AI model types, with expected
benefit from post-hoc XAI methods. Blue circles represent the
tradeoff between accuracy (y-axis) and explainability (x-axis)
concerning the listed XAI methods. The purple circles demonstrate
how that trade-off shifts when using post-hoc XAI methods
concerning each model type.
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Perturbation-based methods, such as LIME (Local

Interpretable Model-agnostic Explanations) and SHAP (SHapley

Additive exPlanations), are a commonly utilized class of post hoc

XAI methods within biomedical research (23–26). These

methods involve modifying inputs to observe the corresponding

changes in the output, aiding in comprehending the importance

of different features in the decision-making process. However, it’s

worth noting that these XAI methods are primarily tailored for

AI engineers and researchers and may pose accessibility and

interpretability challenges for clinicians (27).

The ante hoc approach to XAI is significant as it focuses on

creating inherently transparent AI systems. Unlike post hoc
Frontiers in Radiology 04
methods that interpret the decisions of trained models, ante hoc

methods provide transparency from the beginning, making the

model’s decisions understandable at each stage (4, 28). In the

work titled “This Looks Like That,” Chen and colleagues

developed the ProtoPNet architecture, which matches inputs to

previously learned prototypes (29). This approach could classify a

CNS tumor using a single MR image, as shown in Figure 3. The

matching facilitates an explanation of what different subregions

of a novel input look like when compared to previously seen inputs.

The ante hoc approach demands less training data, as the

network connections are pre-determined, but it may lead to

reduced accuracy due to its inflexibility (30). Nonetheless, the

ability to develop specialized AI systems based on existing

knowledge can lead to more transparent AI architectures,

offering valuable insights and supporting human experts in

various tasks.

Several groups have comprehensively reviewed XAI healthcare

methods, analyzing technical implementations, challenges,

explanation types, scope, interpretability, and the risks of medical

interpretability and class activation maps (31, 32). Meeting the

user’s needs is essential to creating a successful biomedical XAI

system. This involves understanding the application context by

modeling the biomedical and clinical domains. Key actors must

be identified, decision-making processes must be defined, data

collection phases must be clarified, and critical elements must be

identified, including potential missing data. Combi et al. also

stress the importance of measuring, interpreting, and

understanding AI systems’ usability, usefulness, and

interpretability. They propose that explanations are only

necessary for XAI models under certain circumstances (32).

A domain analysis and user-centered study can determine when

explainability is required.
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https://doi.org/10.3389/fradi.2024.1433457
https://www.frontiersin.org/journals/radiology
https://www.frontiersin.org/


FIGURE 3

Conceptual rendering of how the “This Looks Like That” (protoPNet) approach could be applied to classify a single sagittal MR image. The input image
(left) is a preoperative sagittal contrast-enhanced T1-weighted MR image of a patient diagnosed with a suprasellar tumor.67 The second column
shows overlaid bounding boxes generated by a model, highlighting the content like the prototypical parts learned by the algorithm. The third
column displays the prototypical parts learned by the model, while the fourth column presents the source images of the prototypical parts. Finally,
the rightmost column shows the activation maps indicating the extent to which each prototypical part resembles the test image, with red
indicating high and green indicating low resemblance.
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Visual analytics in XAI aim to enhance individuals’

comprehension of the data, models, and results generated by AI

systems. Even if an AI system’s accuracy is not optimal, visual

analytics can highlight important areas within an image,

enhancing overall performance. However, few visual analytics

platforms are tailored to clinical predictive modeling (33–35).

The communication method between the human user and the

AI system is a crucial aspect of XAI approaches. Visual analytics

approaches use visual representations and interactive interfaces to

make data, models, and outputs easily understandable for

humans (6, 36, 37). These approaches allow for the rapid

analysis of large amounts of data, identifying patterns, and

deriving meaningful insights. For example, Villain et al.

introduced a visualization technique that can effectively guide a

user’s attention to specific parts of an image, even when the

model’s accuracy is relatively low (38). This implies that AI, even

with limited accuracy, can be beneficial by enhancing human

performance through attention direction. However, it’s important

to note that this approach can lead to false positives, disrupting

workflow by requiring additional time to investigate non-existent

issues. This prolongs the work of radiologists, clinicians, and
Frontiers in Radiology 05
others, potentially harming patients by necessitating unnecessary

procedures. Despite these challenges, visual analytics methods

specifically designed for clinical settings are still in their infancy

(6, 37). Most existing platforms are designed for traditional

statistical methods, with only a few catering to predictive

modeling. This presents an opportunity to develop AI tools that

support clinical decision-making while minimizing risks like

those associated with false positives.
4 Enhancing the user experience and
efficiency of XAI implementation in
healthcare with UCD

It is vital to understand the audience, their goals, and the

decision-making context to determine the understandability of an

explanation (39). Embedding users’ needs in AI design principles

is crucial to creating efficient and effective XAI clinical decision

support systems (CDSS) that meet clinicians’ requirements. The

computer science community has developed guidelines for AI

explanations to achieve this. One such example is the XAI User
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Needs Library for the medical field (40–42). This library considers

various factors related to AI model performance and ethics and was

developed in collaboration with engineers, AI experts, and clinical

end-users. Design components and a prototype were then created

and evaluated based on this library. The results emphasized the

importance of managing explanation detail and personalization

for the clinical end-user.

Schoonderwoerd et al. developed the DoReMi approach, a

user-centered design workflow that considers social contexts for

AI-generated explanations in CDSS for diagnosing ADHD (43).

This approach allows developers, designers, and clinical end-

users to collaborate to create efficient and effective XAI CDSS.

Similarly, Cai and colleagues conducted a study using UCD

methods to identify user onboarding needs for deploying XAI in

prostate cancer diagnosis (44). They found that an AI CDSS

should have performance metrics based on human benchmarks,

transparent data sources, explicit objectives, and comprehensive

information on AI model provenance, tool validation, legal

liability, regulatory approval, expected costs, and impacts on

workflows, as well as a non-confrontational interface that directs

attention instead of correcting the user.

The tool BreastScreening-AI, developed by Calisto et al., aims to

customize explainable AI methods for clinical users and their tasks,

focusing on the impact on medical workflow, changes in clinicians’

expectations, and the effect on breast cancer classification from

mammography imaging (45). The group conducted a follow-up

study to assess how different forms of communication enhance the

performance of clinical experts when presenting information on

their BreastCancer-AI software. The study aimed to evaluate

diagnostic time and accuracy, with the experimental variable being

the tone of communication for predictions—either assertive or

nonassertive (46). The findings indicated that junior clinicians

responded better to assertive statements, while junior clinicians

showed greater accuracy improvement than their senior

counterparts. These studies highlight the importance of

understanding the clinical context of AI deployment and the

potential benefits of using variable assertiveness to communicate

messages with varying confidence levels. For example, the system

can use an assertive tone for highly confident predictions and a

nonassertive style for predictions with low confidence (<80%) to

reflect the level of confidence.

These studies demonstrate the application of UCD in defining

design requirements and creating successful XAI prototypes,

offering transparency, accountability, and user-friendly tools to

improve the user experience and enhance the efficiency and

effectiveness of AI implementation.
5 Harnessing AI for improved clinical
outcomes in neuro-oncology
treatment

Extensive testing has been conducted on the feasibility of using

AI for clinical treatment of CNS cancers. The current FDA-

approved commercial products used for MR imaging in CNS

tumor care include AI devices for preoperative neurosurgical and
Frontiers in Radiology 06
radiation treatment planning. For example, BrainLab AG offers

BrainLab Elements and Automatic Registration iMRI for

neurosurgical planning and Philips MRCAT Brain for radiation

treatment planning. Various automatic segmentation and

volumetric analysis software solutions are available, although they

are not specifically related to CNS tumors. Here, we focus on

preclinical solutions that have not been approved by the FDA

but are candidate applications and solutions currently being

developed. Table 2 provides further details, and the following

sections discuss XAI and UCD efforts in these contexts.
5.1 Factors to consider in tailoring UCD
guidelines for neuro-oncology

There is an increasing demand for guidelines to help direct the

design of XAI systems that support decision-making in clinical

neuro-oncology practice (12, 47). Meeting this demand

necessitates the inclusion of UCD in the development of XAI

(48). Although specific XAI design guidelines for clinical neuro-

oncology remain to be defined, some prospective elements have

been described.

One of the most directly applicable resources is the INTRPRT

framework, a set of UCD guidelines specific to medical imaging AI

(12). These guidelines are relevant to neuro-oncology because

clinical image analysis and interpretation are the most common

AI applications in neuro-oncology (39, 49). Like DoReMi,

INTRPRT emphasizes the importance of formative user research,

empirical user testing, general assessment of model transparency,

and XAI systems for diverse stakeholders. Notably, the authors

emphasize that these guidelines are a starting point and must be

adapted and refined to the individual context of an AI

application to ensure it is tailored to the clinical end-user’s

needs. This requirement for refinement and adaptation asserts

that the successful implementation of XAI in neuro-oncology (or

any specific field) merits customized UCD.

From the clinical provider perspective, we can abstract clinical

decision-making into two steps: gathering high-quality information

and aggregating that information to make decisions (50). For AI to

gather high-quality information, the interface between the AI and

humans must be designed to ensure that the information is

accessible and understandable to the expected clinical user (6, 48,

51). AI can also assist with information aggregation to reduce

diagnostic error and cost, improve electronic health record data

collection and interpretation, and potentially help make advanced

technologies more available in geographic areas without specialized

medical facilities (36, 52–61). To leverage this potential, AI

technologies must establish trust with clinical decision-makers and

demonstrate greater intuitive usability for clinicians (62).
5.2 Unlocking the potential of AI-assisted
imaging diagnosis in neuro-oncology

Assisting in generating a radiologic differential diagnosis is the

most common AI application in neuro-oncology (39, 49). While
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TABLE 2 Example applications of AI within clinical care of patients with CNS tumors. IDs reflect entries in Figure 1.

ID Clinical
service

Application Model Description PMID Publication
year

E1 Radiology Classification of brain tumor
from MRI

Laplacian
Eigenmaps

The authors investigated whether nonlinear dimensionality
reduction techniques improve unsupervised classification of
brain tumor data compared to linear methods. They found
that Laplacian eigenmaps (LE) combined with unsupervised
clustering provided high accuracy in classifying glioma grade
and distinguishing tumor and normal spectra, as well as
achieving color-coded visualization of tumor and normal
brain tissue

25199640 2015

E2 Radiology Classification of brain tumor
from MRI

Convolutional
neural network

The NeuroXAI framework provides visualizations to
increase the transparency and trust of deep learning models
used in medical image analysis for brain imaging, making it
a valuable tool for assisting radiologists and medical
professionals in detecting and diagnosing brain tumors

35460019 2022

E3 Radiology Classification of brain tumor
from MRI

Ensemble model A modified InceptionResNetV2 pre-trained model and an
ensemble method combining InceptionResNetV2 and
Random Forest Tree (RFT) are used to detect and classify
brain tumors and their stages with high accuracy using brain
MRI. The dataset size is augmented using C-GAN (Cyclic
Generative Adversarial Networks)

35137330 2022

E4 Radiomics Prediction of MGMT promoter
methylation status

Convolutional
neural network

This study proposes a deep learning-based approach using
MR imaging data to identify methylation of the MGMT
promoter in glioblastoma patients, which is a predictive
biomarker of therapy response and prognosis,
demonstrating comparable or better results than current
methods with minimal parameters and incorporating an
explainable AI analysis for clinical usability

36547486 2022

E5 Neurosurgery Estimation of intraoperative
brain shift for intraoperative
surgical guidance

Convolutional
neural network

This study used a convolutional neural network (CNN) to
generate updated magnetic resonance images (uMR) to
compensate for brain shifts during neurosurgeries. The
CNN model was trained using preoperative MR (pMR) and
intraoperative MR (iMR) images from 248 patients who
underwent craniotomy for brain tumor removal. The system
significantly reduced the target registration error (TRE),
demonstrating the potential of using deep learning to correct
brain shifts after dural opening

37164701 2023

E6 Radiology/
Neuro-Oncology

Longitudinal response
assessment in pediatric brain
tumors

3-D U-net neural
network

AutoRAPNO is an algorithm that automatically calculates
the product of the 2D diameters of tumor segments, by
searching for the largest tumor line segment and its
perpendicular at each slice, applying criteria for measurable
lesions, and selecting the largest product as the cross-
sectional area, with the option to sum the top 4 products
for multiple connected lesions and return them as the
RAPNO score

34174070 2022
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not currently available, a potential outcome of AI-assisted imaging

diagnosis would be to no longer depend upon invasive tissue

biopsy to obtain the biological data needed to guide therapy.

Using pediatric Adamantinomatous Craniopharyngioma (ACP)

as an example, the current diagnosis includes neurosurgical

biopsy more than 91% of the time (63). However, radiotherapy

alone could be an effective treatment for ACP without any

neurosurgical intervention (64, 65). Neuroradiologists can

identify ACP from preoperative MRI with an average accuracy of

86%. Existing deep learning algorithms perform equally as well at

this task (66, 67). While AI performance can assist

neuroradiologists in developing an efficient and thorough

differential diagnosis, it does not provide enough evidence to

eliminate the need for neurosurgical biopsy in diagnosis

mitigation. Another practical example of XAI in neuro-oncology

is AutoRAPNO, a completely automated system for segmenting

pediatric medulloblastomas, high-grade gliomas, and tumors that
Frontiers in Radiology 07
have seeded the leptomeninges, based on the Response

Assessment in Pediatric Neuro-Oncology (RAPNO) guidelines

(68). Integrating AI support with guidelines like RAPNO has

yielded a more reproducible and standardized assessment of

treatment response across clinicians, specifically in patients with

low-grade glioma (69). By efficiently and consistently applying

consensus recommendations, such as those defined by RANO

(70) or RAPNO working groups (71–73), XAI tools could

facilitate clinical decision-making and be used for continuous

guideline improvement.

It is essential to consider workflow aspects related to clinical AI

deployment. Chakrabarty et al. developed Integrative Imaging

Informatics for Cancer Research: Workflow Automation for

Neuro-oncology (I3CR-WANO). This AI-driven framework

transforms raw MRI DICOM data of patients with high- and

low-grade gliomas into quantitative tumor measurements (74).

This work can streamline clinical workflows, support clinical
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decision-making by automating tumor segmentation and

characterization, and help curate large-scale neuro-oncology data

sets. Finally, Zeineldin et al. presented a new explainability

framework, NeuroXAI, to assist in interpreting the behavior of

DL networks using state-of-the-art visualization attention maps

(75). NeuroXAI is post hoc, applicable to any deep neural

models, providing insights into their behavior. These examples

highlight the significance of XAI methods in medical image

analysis. NeuroXAI aids CNN analysis by supplying individual

activation maps for each internal layer, helping guide expert

users. However, the vague information from attention-based XAI

can cause information overload and alert fatigue, leading to

wasted time procedures (31).

AI in MR interpretation also includes radiomics and

radiogenomics, which analyze detailed data from medical

imaging to predict diagnosis, molecular stratification, and

personalized treatment trials (76). These AI outputs can be used

in various applications, including hypothesizing, predicting

patient response to radiotherapy, identifying radiation necrosis,

virtual biopsy, predicting tumor mutational status, and classifying

brain tumor images. These progressions are of particular

significance in the medical management of brain metastases, an

abundant terminal illness (77). By providing in vivo markers of

molecular and spatial heterogeneity, AI-based radiomic and

radiogenomic methods can support the division of patients into

improved initial diagnostic and therapeutical pathways and for

dynamic treatment monitoring (78). Furthermore, integrating

image analysis, deep learning, and radiomics can help enhance

radiotherapy programs (79). Technological advances in areas like

radiomics can revamp the standard of care for individuals

diagnosed with brain metastases, providing personalized medical

attention and treatment.
5.3 Enhancing patient outcomes through AI
in neurosurgery

AI applications are rapidly adopted in neurosurgery, offering a

variety of clinical advantages such as enhanced lesion

characterization, predictions of surgical outcomes and potential

complications, and projecting healthcare costs (80). AI has made

a significant impact in preoperative neurosurgical planning and is

expected to continue to do so to enhance the care and outcomes

of patients in this area. During pre-operative stages, AI has been

employed to assess overall health, select the appropriate operative

approach, and inform patients of the risks involved in the

procedure. Intraoperatively, AI is commonly used to aid with

vital sign monitoring. For example, radiomics and AI are used to

forecast intraoperative changes in visual evoked potentials or

cerebral spinal fluid leaks, as well as the estimated total expense

(81, 82). Surgical planning tools have largely been built on

population-scale data but have yet to be implemented on an

individual patient level. For many patients with a CNS tumor,

there is an opportunity for improved AI solutions to contribute

to personalized decision-making around calculating surgical risk

and operative approach (83). Furthermore, there is increasing
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interest in using AI in neurosurgical training, and further

research is needed (84). AI enhances neurosurgical outcomes,

and incorporating user-centered design ensures these

advancements meet the specific needs of patients and

healthcare providers.
5.4 Using AI to optimize radiotherapy for
CNS tumor treatment

Radiation therapy is an essential tool for treating cancer. AI-

based studies have investigated five areas of radiotherapy: image

reconstruction, image registration, image segmentation, image

synthesis, and automatic treatment planning (85). An example of

the application of AI in clinical radiotherapy includes a

parameter optimization system that automates portions of dose

distribution without interfering with physicians inputting

clinically viable constraints (86). In another example, deep

reinforcement learning was used to design customized treatment

regimens for glioblastoma patients, leveraging a proliferation

invasion model to simulate tumor growth and its response to

therapy (87). The AI framework was evaluated for designing

chemo-radiation therapy regimens based on patient

characteristics to construct individualized treatments better suited

to each patient’s needs than the conventional regimens

recommended by clinical trials. Notably, the authors emphasize

that this framework is designed to be completely safe because it

merely provides decision support to clinicians while still allowing

clinicians to make the final call on whether to implement or

discontinue the therapy. When clinicians maintain agency over

the decision-making process, it does provide some safety to

patients; it is crucial to continuously verify that the interactions

between clinicians and AI remain consistent concerning patient

outcomes. The implementation of high-performance computing,

artificial intelligence, and advances in imaging technology have

revolutionized the role of imaging in medicine (88).
5.5 Interface system development options
for XAI in neuro-oncology

A variety of resources exist to support the implementation of

XAI in neuro-oncology. Local resources, public databases, and

Federated databases, which have been gaining popularity, can all

be used as data sources for these XAI models. Notable resources

within neuro-oncology include The Cancer Imaging Archive and

the Pediatric Brain Tumor Atlas; others are listed in Table 3.

Developers use AI-specific languages and frameworks to train

models on high-performance architecture like GPU servers.

Interface system development options include Python or

R packages, full-stack web development, and software libraries,

allowing for customization and scalability of medical imaging

and web analytics. It’s crucial to consider the distinctions

between training and production models and the availability of

explainability methods.
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TABLE 3 Available data resources for developing XAI models for CNS tumors. IDs reflect entries in Figure 1.

ID Name Description Controlled URL
DR1 Figshare brain tumor dataset This brain tumor dataset consists of 3064 T1-weighted contrast-

enhanced images from 233 patients, with three types of brain tumors:
meningioma (708 slices), glioma (1426 slices), and pituitary tumor (930
slices). The dataset is split into four subsets, with each subset containing
766 slices, and includes patient information and tumor border
information to generate tumor masks.

N https://figshare.com/articles/dataset/
brain_tumor_dataset/1512427

DR2 Kaggle brain tumor MRI
dataset

This dataset consists of 7023 human brain MRI images classified into
four classes: glioma, meningioma, no tumor, and pituitary

N https://www.kaggle.com/datasets/
masoudnickparvar/brain-tumor-mri-
dataset

DR3 TCIA—ReMIND The Brain Resection Multimodal Imaging Database (ReMIND) contains
pre- and intra-operative imaging data, including preoperative MRI,
intraoperative ultrasound, and intraoperative MRI, from 114 patients
who underwent image-guided tumor resection between 2018 and 2022,
along with segmentations of various structures, and this dataset aims to
support computational research and neurosurgical training in brain shift
analysis and image interpretation

N https://wiki.cancerimagingarchive.net/
pages/viewpage.action?pageId=157288106

DR4 Pediatric Brain Tumor Atlas The Pediatric Brain Tumor Atlas (PBTA) is a collaborative project that
aims to accelerate discoveries for treating brain tumors in children by
providing comprehensive datasets including genomic, clinical, imaging,
and histology data, which can be accessed through the Gabriella Miller
Kids First Data Resource Portal and analyzed using the Cavatica
platform, with funding support from over 50 foundations.

Y https://cbtn.org/pediatric-brain-tumor-
atlas

DR5 Br35H—Brain Tumor
Detection 2020

This dataset includes 3000 axial T1-weighted MRI images (in jpeg
format) annotated as either tumorous or nontumorous

N https://www.kaggle.com/datasets/
ahmedhamada0/brain-tumor-detection

DR6 CBTN-CONNECT-DIPGr-
ASNR-MICCAI BraTS-PEDs
2023

This is a large dataset of annotated high-grade glioma in children, using
manually annotated MRI scans to evaluate predicted tumor
segmentations generated by algorithms submitted to the CBTN-
CONNECT-DIPGr-ASNR-MICCAI BraTS-PEDs 2023 Challenge.

Y https://www.synapse.org/#!Synapse:
syn51156910/wiki/622461

DR7 BraTS 2020—Brain Tumor
Segmentation

The BraTS multimodal scans consist of native, post-contrast
T1-weighted, T2-weighted, and T2 Fluid Attenuated Inversion Recovery
(T2-FLAIR) volumes, which were obtained from multiple institutions
using different protocols and scanners, and are available as NIfTI files.
These scans were manually segmented by one to four raters following an
approved annotation protocol by experienced neuro-radiologists,
including the GD-enhancing tumor (ET), peritumoral edema (ED), and
the necrotic and non-enhancing tumor core (NCR/NET) labels, and
have undergone pre-processing to ensure consistency in spatial
resolution (1 mm3) and skull-stripping. Note: this is one example of
many BraTS datasets that are available

N https://www.kaggle.com/datasets/awsaf49/
brats2020-training-data
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5.6 Measuring usability and benefits with
UCD tools

To ensure scientific rigor, UCD is recommended to follow an

explicit hypothesis testing approach. This involves specifying the

hypothesis and testing methods. Table 4 provides a selection of

UCD tools that can be used to measure the usability and benefit

of software solutions. For those looking for a comprehensive

toolkit of explainable artificial intelligence (XAI) methods, UC

Berkeley’s website uxai.design is a great resource. This website

has extensive information on defining user groups, including

decision-makers, affected users or patients, regulatory bodies, and

internal stakeholders. The toolkit provides XAI methods

thoughtfully categorized into “what,” “why,” “why not,” “what

if,” “how,” “how to be,” “how to be still,” “how confident,” “what

data,” “what outputs,” and “how it works” to help facilitate

design decisions. These methods are further discussed in the

context of onboarding, regular interaction, system errors, and

system updates. Additionally, the website discusses methods like

ante hoc or post hoc approaches and global or local explanations.

Evaluation guidance includes functional, operational, usability,
Frontiers in Radiology 09
and safety requirements. Finally, validation is conducted using

the Dolshi-Velasquez structure, with functionally grounded,

human, and application-level evaluation.
6 Discussion and conclusion

XAI tools are becoming increasingly important in clinical settings,

but their reliable implementation is hindered by mistrust and other

challenges, such as usability, validity, and utility. Co-creating AI

technology with clinicians can increase trust and help meet their

expectations. A user-centered design approach can target existing

and newer methods of AI technology for improved implementation.
6.1 Multi-disciplinary skills are essential for
designing and developing successful
clinical neuro-oncology AI systems

The goal of utilizing UCD to steer clinical AI development is

for computer scientists, engineers, and medical experts to
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TABLE 4 Evaluation methods related to UCD of clinical XAI systems.

Name Description Approach Abstraction
level

Evaluation
level

System usability
score (SUS)

The SUS measures the perceived usability of a system through a 10-statement
questionnaire. Participants rate their agreement on a five-point scale, with scores
converted to a standardized score ranging from 0 to 100. SUS is widely used in industry
and academia to evaluate software and websites

Survey Human grounded Usability

NASA task load
index (TLX)

The TLX measures mental workload across six dimensions, including demand,
performance, effort, and frustration. It helps researchers understand how tasks affect
cognitive and physical demands and improve system design and human performance

Survey Human grounded Workload

ICE-T The ICE-T equation is a value equation that includes four components: T, I, E, and C. “T”
represents a visualization’s capacity to answer a broad range of questions about data in a
minimal amount of time. “I” pertains to a visualization’s ability to stimulate insights or
thought-provoking inquiries about data. “E” refers to a visualization’s essence, its capacity
to convey an overall impression or summary of the data. “C” represents a visualization’s
ability to instill confidence, knowledge, and trust about the data, domain, and context

Survey Human grounded Comprehension

Model performance Different metrics are used to evaluate an AI model’s performance depending on the task
and objective. Accuracy is commonly used for classification tasks, while precision and
recall are used for imbalanced classes. The F1 score is used to balance precision and recall.
For regression tasks, mean squared error and mean absolute error are used, with root
mean squared error providing a more interpretable value. AUC is used in binary
classification and mAP in object detection. Cross-validation can give a more reliable
estimate of performance. The choice of metric depends on the specific task and
requirements

Quantitative Application
grounded

Performance
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collaboratively create solutions that directly meet the needs of

medical experts. By formalizing and following a UCD process,

we can include visual analytics engineers, user experience

designers, and computer scientists in the discussion, emphasizing

artistic creativity backed by scientifically rigorous functionality.

Previously, AI development was primarily performed by

computer scientists with limited or no clinical expertise.

Designing a successful clinical AI system necessitates a

multidisciplinary team skilled in various areas, including clinical

medicine, computer science, software engineering, artificial

intelligence, design, observational studies, and other mixed

methods. This team must work together to tackle the technical

and humanistic challenges of the endeavor, such as devising a

solution tailored to the target clinical user base and

understanding how to set expectations for the system’s function

and benefits. The complex computational environments needed

to handle medical data, build interactive AI systems, and deploy

and evaluate these systems hinder the development and

standardization of UCD clinical AI systems. As such, a wise

starting point for the multi-disciplinary research community

would be to formally define a flexible software ecosystem to serve

as the foundation for development.
6.2 User-centered design can help mitigate
AI-induced biases in clinical decision-
making, resulting in systems that improve
patient outcomes and clinical workloads

Implementing clinical AI for MRI interpretation in neuro-

oncology patient management requires standardized imaging

protocols, data sharing for generalizability, and federated

learning. Standardization ensures consistency and accuracy in

images acquired across different settings. Generalizability allows
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for inferences for a large population by studying a smaller

sample, while federated learning enables collaboration on model

training without sharing sensitive patient data.

Clinical AI applications have the potential to introduce bias

into medical decisions, impacting accuracy, fairness, and patient

safety. Bias stemming from data, algorithmic, and human factors

can lead to skewed AI results. It is important to consistently

review and update datasets to mitigate bias and uncertainty in AI

and ensure diversity, representativeness, and transparency.

Moreover, it is crucial to critically examine AI to prevent the

perpetuation of existing inequalities and to offer clear

explanations for AI decisions accessible by clinicians, thus

mitigating concerns about bias. However, this is only part of

the solution.

Emerging research indicates that human experts variably

incorporate AI information into their decision-making,

sometimes over- or underweighting predictive information,

deviating from normal decision-making processes (16). This

human behavior highlights the need for UCD to create clinical

AI tools (12, 89). Through UCD, we can define, anticipate, and

mitigate these deviations, ensuring clinical AI solutions are

seamlessly embedded in existing workflows and meet

stakeholder expectations.

To effectively mitigate AI-induced biases, using robust

quantitative metrics, it is essential to assess the performance and

suitability of XAI systems in clinical decision-making. Key

metrics include accuracy and precision, which measure the

correctness of the model’s predictions. Fidelity assesses how

explanations reflect the model’s decision-making process, while

comprehensibility quantifies the ease with which clinicians

understand these explanations. Trust and satisfaction scores,

gathered through clinician surveys, gauge the system’s acceptance

and usability. Time efficiency measures the time required for

clinicians to interpret explanations and make decisions, ensuring
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practicality in fast-paced environments. Using tools like confusion

matrices and Receiver Operating Characteristic curves, error

analysis evaluates error types and frequencies, providing insights

into the model’s reliability.

In addition to these metrics, leveraging established metrics from

Human-Computer Interaction (HCI) and social sciences can further

enhance the evaluation of XAI in clinical settings. HCI metrics, such

as time, error rates, and comprehension, are essential for evaluating

the efficiency and effectiveness of XAI systems. Social science

metrics, including communication and trust, are crucial for

understanding the interaction between clinicians and AI systems.

While some metrics, such as accuracy and error rates, are

straightforward to collect, others, like trust and communication,

may require more sophisticated methods, including surveys and

observational studies, to gather meaningful quantitative data.

These metrics collectively provide a comprehensive framework

for evaluating XAI systems, ensuring they meet high clinical

standards. However, more work is needed to expand these

quantitative metrics to develop even more comprehensive XAI

systems in the future.
6.3 User-centered XAI tools aim to improve
clinicians’ performance and fundamentally
differ from AI solutions that aim to
complete automation and replace humans
in decision-making

Contrary to the prevailing notion in many studies, we believe AI

is not meant to replace human experts in radiology but to enhance

their capabilities. AI should empower experts to make more

informed, efficient, and accurate decisions. Guided by UCD, AI

applications can be tailored to specific clinical decisions, improving

patient management. It is critical to fully assess the risks associated

with AI errors within the human expert’s workflow.

Generative AI systems are being studied for their benefits in

ambient audio and video recording within clinical settings,

enhancing record-keeping and shared decision-making and

theoretically improving efficiency in neuro-oncology care. They

are also being explored to expedite MRI acquisition and generate

realistic MR scans for neuro-oncology patients who struggle to

remain still. However, generative AI is prone to hallucinations,

where the AI generates incorrect or misleading information that

is difficult or impossible for humans to perceive. These

hallucinations can lead to inaccurate records, misinformed

clinical decisions, increased liability, flawed images, incorrect

diagnoses, repeat scans, increased clinician workload, patient

stress, and overall healthcare costs.

In visual analytics, generative AI is being studied to create

personalized user interfaces that help users efficiently distill large

volumes of data. Although functional, hallucinations at this stage

could decrease clinical productivity and hinder expert adoption.

Generative AI can also generate radiology impressions,

potentially increasing efficiency in patient management. However,

AI-generated text with random measurement values can lead to

incorrect treatments and confound clinical trials. Synthetic MR
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models are being explored to speed up imaging, preserve patient

privacy, and predict patient treatment response. Still,

hallucinations in these images can pose significant risks for

accurate diagnosis and treatment planning.

Each example carries a unique risk profile, but none are excluded

from real-world applications. AI tools developed with a UCD focus

improve human performance through AI support rather than

replacing humans and concentrating solely on AI performance.

Following UCD principles allows us to define and weigh these

risks among stakeholders, setting expectations and leading to a

more efficient allocation of resources and capital to create AI

systems that can swiftly and effectively impact patient management.
6.4 Designing XAI systems for clinical
decision-making involves navigating the
trade-off between model accuracy and
transparency

Accuracy and transparency are crucial for ensuring patient safety

and clinician trust in high-risk environments. To define clinical XAI

requirements, it is essential to consider the specific needs and

constraints of the clinical environment, including understanding

clinical workflows, decision types, and the impact on patient

outcomes. Increasing model accuracy often reduces transparency,

as complex models like deep neural networks are less interpretable

than simpler models such as decision trees. For critical decisions,

where transparency is paramount, simpler models can build trust

and ensure clinicians understand the decision-making process. For

less critical decisions, more complex models can maximize

performance. Hybrid models, which combine interpretable models

with high-performance models, can balance transparency and

accuracy by leveraging both strengths. Post-hoc explanation

techniques, such as LIME and SHAP, provide insights into

complex models without altering their structure, maintaining high

performance while offering transparency.

To effectively implement these strategies, it is imperative to

conduct comprehensive user research to understand clinicians’

needs and preferences regarding explanations. Additionally, we

can utilize the existing clinical decision-support literature to

identify and further enhance best practices for evaluating clinical

XAI tools (90). Developing a modular explanation system

offering high-level summaries with detailed drill-down options

can help balance transparency and performance. Continuous

learning and adaptation mechanisms allow the system to evolve

based on new data and user interactions, maintaining a balance

between transparency and performance. Ensuring regulatory

compliance and usability is essential, as the system must meet

healthcare regulations and integrate seamlessly into clinical

workflows. By employing these strategies, it is possible to design

XAI systems that effectively balance accuracy and transparency,

ensuring they are both practical and trustworthy in clinical

decision-making. This approach provides a comprehensive

framework for developing XAI systems that meet the high

standards required in clinical environments, fostering trust and

reliability among users.
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6.5 Establishing a standardized UCD
process for designing and evaluating
AI-based healthcare technologies across
different contexts will help to inform
effective and safe solutions

UCD emphasizes that the development, design, and evaluation

process is as important as the resulting software. This importance is

warranted because clinical settings are variable depending on the

country and general accessibility to healthcare resources. Due to

this observation and general regulatory trends, we do not foresee

a generalizable AI solution being implemented across all settings;

instead, we envision a landscape in which AI functionality will

need to be packaged for each clinical application. Therefore, we

must adopt a rigorous scientific approach in our UCD efforts to

derive reusable clinical AI design templates. In addition to

providing a means for quick and reliable deployment of clinical

AI tools, such a process would also enable a method to evaluate

clinical AI scientifically at a global level. Understanding this

process is crucial in developing effective technologies that

improve medical outcomes and patient safety.

Guidelines like INTRPRT, designed to enhance transparency in

AI and machine learning systems, must be regularly updated to

remain relevant amidst rapid technological advancements.

Establishing a schedule for periodic reviews and updates is

crucial. This can be facilitated by a dedicated committee

comprising clinicians, AI researchers, ethicists, and regulatory

experts. Community involvement through workshops,

conferences, and online forums ensures that the guidelines reflect

the latest developments and best practices. Developing adaptive

frameworks allows for flexible and targeted updates, ensuring the

guidelines can quickly incorporate new techniques and findings.

Continuous education and training programs keep clinicians and

developers informed about the latest advancements and updates,

fostering a culture of continuous learning. Leveraging automated

tools to monitor research publications, regulatory changes, and

technological advancements can provide timely alerts for

necessary updates. Establishing a feedback loop with end-users,

such as clinicians and developers, ensures that the guidelines

remain practical and applicable in real-world settings. These

strategies collectively ensure that guidelines like INTRPRT stay

current and effective, supporting transparency and best practices

in clinical decision-making.
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In conclusion, XAI tools are available to support more accurate

and efficient clinical decision-making, especially in neuro-

oncology. UCD principles can ensure user trust and reduce bias

and discrepancies, resulting in a flexible software ecosystem

tailored to clinical end-user needs. Ultimately, UCD has the

promise to increase the translational efficacy of clinical AI

solutions to support clinicians and improve patient care.
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