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Pneumothorax detection and
segmentation from chest X-ray
radiographs using a patch-based
fully convolutional
encoder-decoder network
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1Computer Vision and Machine Intelligence Group, Department of Computer Science, University of the
Philippines-Diliman, Quezon City, Philippines, 2Department of Mathematics, Ateneo de Manila
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4Department of Radiology, The Medical City, Pasig, Philippines
Pneumothorax, a life-threatening condition characterized by air accumulation in
the pleural cavity, requires early and accurate detection for optimal patient
outcomes. Chest X-ray radiographs are a common diagnostic tool due to their
speed and affordability. However, detecting pneumothorax can be challenging
for radiologists because the sole visual indicator is often a thin displaced
pleural line. This research explores deep learning techniques to automate and
improve the detection and segmentation of pneumothorax from chest X-ray
radiographs. We propose a novel architecture that combines the advantages of
fully convolutional neural networks (FCNNs) and Vision Transformers (ViTs)
while using only convolutional modules to avoid the quadratic complexity of
ViT’s self-attention mechanism. This architecture utilizes a patch-based
encoder-decoder structure with skip connections to effectively combine
high-level and low-level features. Compared to prior research and baseline
FCNNs, our model demonstrates significantly higher accuracy in detection and
segmentation while maintaining computational efficiency. This is evident on
two datasets: (1) the SIIM-ACR Pneumothorax Segmentation dataset and (2) a
novel dataset we curated from The Medical City, a private hospital in the
Philippines. Ablation studies further reveal that using a mixed Tversky and
Focal loss function significantly improves performance compared to using
solely the Tversky loss. Our findings suggest our model has the potential to
improve diagnostic accuracy and efficiency in pneumothorax detection,
potentially aiding radiologists in clinical settings.

KEYWORDS

pneumothorax, automatic image segmentation, deep learning, convolutional neural
network, Vision Transformer, lung pathology detection, chest X-rays, diagnostic radiology

1 Introduction

Semantic segmentation is essential in modern medical image analysis since it fosters

the identification of anatomical structures (1) and the diagnosis of various diseases (2).

In the past decade since the rise of deep learning, fully convolutional neural networks

(FCNNs), especially “U-shaped” encoder-decoder architectures (3, 4), have produced
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state-of-the-art results in a variety of medical semantic

segmentation applications (5, 6), to the extent that they have

become the de-facto standard in the field (7). In a conventional

U-Net (8) architecture, the encoder captures the local and global

context in an image using a stack of convolutional and pooling

layers, and the decoder enables precise localization through

transposed convolutions and upsampling. The superior

performance of U-Net is primarily attributed to its overlap-tile

segmentation strategy and its combination of features from the

encoder with intermediary outputs from the decoder so that a

successive convolutional layer can learn to assemble a more

precise output based on this recovered spatial information.

While the standard U-Net architecture has been effective in

segmentation tasks, its model performance is limited by its hard-

coded receptive field size (9) and the number of hidden layers in

its encoder and decoder. Because of this difficulty in extracting

multi-scale information, the conventional U-Net is limited in

localizing structures of varying non-standard shapes and on

variable positions relative to other regions on the image (10). To

address this drawback, various convolutional modules such as

dilated convolutions (11, 12) have been proposed to capture

contextual information from larger receptive field without

increasing filter size. Moreover, augmenting convolutional layers

with self-attention mechanisms (3, 4) has also shown to better

encode long-range dependencies.

Recently, numerous studies show that transformers can surpass

traditional convolutional neural networks in many generic vision

tasks (13, 14). However, convolutional networks (ConvNets) are

still preferred over transformers for dense prediction (e.g.,

semantic segmentation) on images with rigid structure such as

frontal chest X-rays. First, the inherent translational equivariance

of ConvNets is an important inductive bias for vision tasks on

radiographs and other structured images with repeated markings

located on different parts of the image. Second, as a consequence

of Vision Transformers (ViTs) not inherently exhibiting any

image-specific inductive bias, they require larger model

architecture and larger dataset sizes to learn the desired

equivariance property. ConvNets therefore can outperform

transformers on tasks such as medical image segmentation where

the dataset is costly to annotate and verify. Lastly, ViT’s self-

attention design has a quadratic complexity with respect to the

input size, making it not suitable for situations that require real-

time inference under low-resource constraint (e.g., deployment in

emergency rooms).

In this work, we test the limits of fully convolutional neural

networks (FCCNs) in the task of pneumothorax detection and

segmentation on chest X-rays. Pneumothorax is a condition

where air accumulates in the pleural space around the lungs,

causing the lung to collapse partially or fully (15). It is a

common disease in medical practice that affects young healthy

people with a significant recurrence rate (16). Accurate detection

of pneumothorax on chest X-rays is not always easy in practice

since the disease’s sole visual marking on a radiograph is a thin

displaced pleural line (17). Because of its life-threatening

condition (18) coupled with a shortage of radiologists in

developing countries such as the Philippines (19), there is a need
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to detect pneumothorax in patients accurately and quickly. In

this work, we are interested in automating the detection and

segmentation of pneumothorax on digital chest radiographs.

X-ray is the choice of imaging modality for this study as it

provides a quick and accurate assessment of pneumothorax,

allowing for prompt and appropriate treatment (20). While

computer tomography (CT) scan and ultrasonography have been

found to have higher sensitivity in detecting pneumothorax, X-rays

have been shown to have at-par or even higher specificity over the

two imaging modalities (21–23). Moreover, X-rays are a reliable

and readily-available tool in hospitals and are often the first

modality used to make and rule out the diagnosis of

pneumothorax and to help guide further management decisions (20).

For this study, we introduce a patch-based fully convolutional

encoder-decoder network aptly named as Pneumothorax Detection

and Segmentation on Chest X-rays (P-DeSeRay). We compare our

work with prior art and other FCNNs. Aside from architectural

changes, we also study how the combination of loss functions

affects model performance. We evaluate the effectiveness of our

proposed method on the SIIM-ACR Pneumothorax Segmentation

dataset (24) and our own curated dataset from the Radiology

Department of The Medical City (TMC), a private hospital in

Pasig City, Philippines. P-DeSeRay achieves state-of-the-art

results on both datasets.

Our work’s main contributions are as follows:

• We proposed a fully convolutional encoder-decoder network

using convolution modules deemed equivalent as their

counterparts in Vision Transformers (ViTs) to bypass the

quadratic complexity of the self-attention mechanism in ViTs.

Specifically, we constructed a novel architecture in which (1) a

convolutional encoder directly uses the embedded 2D patches to

effectively capture long-range dependencies; and (2) a skip-

connected decoder combines the extracted representations at

different resolutions and predicts the desired segmentation output.

• We trained our proposed model using a novel combination of

segmentation losses. In particular, we have shown that

training our model on an unweighted mixed loss combining

Tversky and Focal losses resulted to superior segmentation

and detection performance when compared to training our

model using Tversky loss solely.

• We validated the effectiveness of our proposed model on a public

dataset and a locally curated dataset. P-DeSeRay achieves state-of-

the-art detection and segmentation performance on both datasets

compared to other convolutional networks and to radiologists’

diagnostic performance level.
2 Background

2.1 Fully convolutional segmentation
networks

The foundational U-Net (8) has led to a revolution of FCNNs

producing state-of-the-art performance on many medical image

segmentation tasks. Various variants have been proposed, such as
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adding nested skip pathways in UNet++ (25), but the improvement

in segmentation accuracy comes at the expense of more memory

requirement and longer inference time. Replacing the standard

encoder of U-Net with specialized convolutional neural network

architectures for image classification has also been explored, such

as using residual networks (ResNets) (26), squeeze-and-excitation

networks (27), and aggregated residual transformations (28) in

the U-Net encoder architecture.
2.2 Vision transformers

Transformers have lately gained popularity in computer vision

applications. Dosovitskiy et al. (13) used large-scale pre-training

and fine-tuning of a pure transformer to achieve state-of-the-art

performance on image classification datasets. In particular, the

authors developed Vision Transformer (ViT), a model that

converts an input image into a sequence of patches and passes it

to a transformer encoder and a multilayer perceptron to produce

the desired output class.

Five key ideas largely contributed to the superior performance

of ViT on vision tasks, most of which are borrowed from the

original transformer architecture:

1. Patch tokenization: To mimic the sequential nature of the

transformer’s text inputs, the input image is sliced up into

square patches which are flattened into one-dimensional

sequences before applying a linear projection to map each

patch into a desired higher-dimensional embedding.

2. Positional embeddings: ViT uses learnable positional

embeddings which are added to the projected patch

embeddings before they are fed into the transformer encoder.

Since each of the operations in the transformer encoder treats

its inputs as a set (i.e., if the input embeddings are permuted,

the outputs are also permuted, thus the order of patches is

not important for the encoder), positional embeddings learn

the important relative position of the patches with respect to

the original input image.

3. Multi-head attention: The multi-head attention block in the

transformer encoder allows input embeddings to

communicate with each other so that they can share useful

information. Compared to single-head attention, multi-head

attention allows patches to send multiple messages to each

other by performing multiple attention operations in parallel.

4. MLP for local features: Applying a two-layer multilayer

perceptron (MLP) independently on each embedding allows

the embeddings to focus on learning local information they

each possess after they have communicated with each other

through the multi-head attention block.

5. Residual connections: The use of residual connections help with

optimization by avoiding vanishing gradients to help with

gradient flow and by allowing the subunits in ViT to focus

on learning the residual mapping than to optimize the

original, unreferenced mapping.

However, despite the apparent success of ViTs, they have a

couple of disadvantages over FCNNs. First, the self-attention
Frontiers in Radiology 03
mechanism in ViTs and other modern transformers has

quadratic time- and space-complexity with respect to the size of

the input. Keles et al. (29) has mathematically established

quadratic lower bounds on the running time of self-attention.

This quadratic barrier was proven to hold even if windowing,

striding, or committing additive and multiplicative errors in the

computation of self-attention were allowed. This quadratic

runtime translates to slower processing of high-resolution or

large inputs which may inadvertently increase the overall latency

of ML systems that use transformers in their backend.

Another drawback of using ViTs is their requirement of large-

scale pre-training in order to learn locality and translation

equivariance. These two properties are desired model attributes

for vision tasks on images with rigid structure such as chest

radiographs and on images with repeated elements distributed

across different locations. Unlike in ViTs where they still have to

be trained on large datasets just to learn these two properties,

FCNNs inherently have these two strong inductive biases. As

studied in the original paper (13), ViT required over 303 million

images for pre-training before it was able to beat the most

superior CNN in their experiments. Thus, FCNNs are still

preferred in lower-data regimes as not many researchers have

access to very large labeled datasets and enough hardware to run

similar experiments at scale. This is the case for medical image

segmentation tasks where data is costly to collect, annotate,

and verify.

In an effort to address these locality and translational

equivariance issues, hierarchical vision transformers with various

resolutions and spatial embeddings have been proposed recently

(30–32). Borrowing the sliding window approach of FCNNs,

hierarchical ViTs such as Swin Transformers (30) compute self-

attention within a local window rather than globally. They

employ patch merging to gradually lower the resolution of

features in the transformer layers, similar to how the feature

maps of a standard ConvNet increase in number but decrease in

spatial dimension as one goes deeper in the network.
2.3 ConvNeXt models

In the previous section we have seen how models like

hierarchical ViTs have proposed architectural changes to the

original ViT to mimic some desirable behavior of FCNNs such

as locality and translational equivariance. Recent work have tried

the other direction of modernizing FCNNs to make them

resemble transformers. In particular, ConvNeXt (33) is

constructed entirely from standard ConvNet modules while

adopting design choices from ViTs. The authors started with the

standard ResNet-50 model and tweaked it by applying five

techniques. First, they implemented some macro design changes

such as following the stage compute ratio used in Swin

Transformers and replacing the ResNet’s stem cell with a

patchification layer to generate non-overlapping patches just like

in ViTs. Second, the ConvNeXt authors used depthwise

convolution used in ResNeXt (28) models to mix information

solely in the spatial dimension which is comparable to the per-
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channel operation in ViT’s self-attention mechanism. Third, they

implemented a similar inverted bottleneck design used in ViT’s

transformer encoder where the hidden dimension of the MLP

block is four times wider than the input dimension. Fourth, the

authors increased the convolution kernel sizes from 3� 3 to

7� 7, copying the size of the sliding window in Swin

Transformers. Fifth, they also implemented some micro design

changes similar to those in ViTs: they applied fewer activation

functions and normalization layers, replaced Rectified Linear

Unit (ReLU) with Gaussian Error Linear Unit (34) (GELU), and

substituted BatchNorm (35) with Layer Normalization (36) (LN).

We note that ConvNeXt does not require specialized modules

such as shifted window attention and relative position biases

used in Swin Transformers.

Results from the original paper (33) show that the family of

ConvNeXt models can compete favorably with ViT and its

variants in terms of accuracy and scalability while being more

efficient and much simpler in design. Similar to ConvNeXt, we

explore the FCNN design space in this study to come up with a

segmentation model constructed entirely from ConvNet

modules but inspired by ViT techniques. We test our model’s

limits on the dense prediction task of segmenting pneumothorax

on chest radiographs.
2.4 Related studies on pneumothorax
detection and segmentation

Deep learning has already been previously used to both

detect and segment pneumothorax on chest radiographs. While

models can be trained separately for each of the two tasks of

classification and segmentation, models that can perform both

tasks at the same time are preferred in the deployment setting as

these models significantly reduce the memory footprint and

inference time. Jakhar et al. in (37) used a conventional U-Net

with pre-trained weights of a ResNet encoder backbone for

segmenting pneumothoraces. In (38), the authors replaced the

usual concatenation operations in the skip connection of U-Net

with content-adaptive convolution (39), resulting to a 0.68% gain

on the mean Dice similarity coefficient for pneumothorax

segmentation. Hongyu et al. (40) employed a Mask R-CNN (41)

using a ResNet-50 as a backbone feature pyramid network (FPN)

(42) for detecting and segmenting pneumothorax. Whereas, in

(43), Abedalla et al. used weighted averaging of four encoder-

decoder networks based on U-Net which produced significant

increases in classification and segmentation metrics but at the

expense of larger memory footprint due to ensembling. Similar

to (40), Malhotra et al. in (44) used a Mask R-CNN but with a

ResNet-101 as its FPN for segmenting pneumothorax on chest

X-rays. Our study proposes to tackle the dual task of

pneumothorax detection and segmentation using a patch-based

fully convolutional encoder-decoder network that aims to

combine the advantages of FCNNs and ViTs while utilizing only

convolutional modules to bypass the quadratic complexity of

ViT’s self-attention mechanism.
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3 Proposed architecture

This research work proposes a novel architecture that

integrates the patch-based ConvNeXt encoder with the U-Net

decoder, which we name P-DeSeRay, short for Pneumothorax

Detection and Segmentation on Chest X-rays. Figure 1 visualizes

the overall structure of the proposed model. Figure 2 highlights

the operations used in P-DeSeRay and how our model differs

from the seminal U-Net architecture. P-DeSeRay consists of a

sequence of contracting ConvNeXt encoder blocks followed by a

stack of expanding convolutional decoder blocks.

Adopting the transformers’ aggressive transformation of inputs

to a 1D sequence of vector embeddings, we create a 1D sequence of

a 2D input image x [ RH�W�C with resolution (H, W) and C

input channels by applying a convolutional layer with a 4� 4

kernel with stride 4. This non-overlapping convolution forms the

patchification layer in the encoder’s stem. This layer partitions

the input image into P � P patches (P ¼ 4) and projects them

into a K-dimensional embedding space. We patterned our choice

of K ¼ 96 to have the same number of channels as Swin-T

architecture (30). We apply Layer Normalization (36)

(LayerNorm or LN) right after the patch embedding layer

for regularization.

After the encoder’s stem, we apply a stack of ConvNeXt blocks

each comprising of 7� 7 depthwise convolutions followed by

pointwise (1� 1) convolutions. We note that this combination

separates spatial and channel mixing. On one hand, a depthwise

convolution mixes information in the spatial dimension and

operates on a per-channel basis similar to the weighted sum

operation in the self-attention mechanism employed in

transformers. On the other, a pointwise convolution mixes

information in the channel dimension and operates on a per-

pixel basis. This separation of mixing operations is a strategy

exploited in ViTs. We visualize in Figure 2 how depthwise

and pointwise convolutions perform spatial and channel

mixing, respectively.

Two non-linearities are introduced between the depthwise and

1� 1 convolutions. Mimicking one of the regularization

techniques applied in transformers, LayerNorm is used after the

96 7� 7 depthwise convolutions. Gaussian Error Linear Unit

(34) (GELU) is employed as the activation function of the output

from the 384 1� 1 convolutions. Borrowing the identity

mapping strategy introduced in the seminal ResNet, a residual

connection is used between the input filters of the ConvNeXt

block to the output of the last batch of 96 1� 1 convolutions. A

diagram of the ConvNeXt block is shown in Figure 1, and its

operations are visualized in Figure 2. We note how the

ConvNeXt block forms an inverted bottleneck design for the

feature map, expanding the initial 96 channels to 384 (an

expansion ratio of 4) before squeezing the features back to 96

channels. This inverted bottleneck design is widely used in

Transformers and in advanced ConvNet architectures such as

MobileNetV4 (45).

Similar to Swin-T, the ConvNeXt blocks are grouped into

stages following a compute ratio of 1:1:3:1. In particular, the
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FIGURE 1

The encoder-decoder architecture of P-DeSeRay for pneumothorax detection and segmentation.

FIGURE 2

The same encoder-decoder architecture highlighting the operations used in the P-DeSeRay model.
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TABLE 1 Detailed architecture specifications for P-DeSeRay.

Module/Layer Operations Output size
Image (3, D, D)

Encoder stem (E-stem,
“patchify” layer)

4� 4, 96, stride 4
LN

(96, D=4, D=4)

Encoder stage 0 (E-0) d7� 7, 96, LN
1� 1, 384, GELU, sc

1� 1, 96, res

2
4

3
5� 3

(96, D=4, D=4)

Encoder stage 1
(E-1)

LN
2� 2, 192, stride 2

(192, D=8, D=8)

d7� 7, 192, LN
1� 1, 768, GELU, sc

1� 1, 192, res

2
4

3
5� 3

Encoder stage 2
(E-2)

LN
2� 2, 384, stride 2

(384, D=16, D=16)

d7� 7, 384, LN
1� 1, 1536, GELU, sc

1� 1, 384, res

2
4

3
5� 9

Encoder stage 3 LN (768, D=32, D=32)

2� 2, 768, stride 2

d7� 7, 768, LN
1� 1, 3072, GELU, sc

1� 1, 768, res

2
4

3
5� 3

Decoder stage 0 Upsample (256, D=16, D=16)

Skip connection w/ E-2 out

3� 3, 256
BN, ReLU

� �
� 2

Decoder stage 1 Upsample (128, D=8, D=8)

Skip connection w/ E-1 out

3� 3, 128
BN, ReLU

� �
� 2

Decoder stage 2 Upsample (64, D=4, D=4)

Skip connection w/ E-0 out

3� 3, 64
BN, ReLU

� �
� 2

Decoder stage 3 Upsample (32, D=2, D=2)

Skip connection w/

upsampled E-stem out

3� 3, 32
BN, ReLU

� �
� 2

Decoder stage 4 Upsample (16, D, D)

Dumbrique et al. 10.3389/fradi.2024.1424065
number of blocks in each of the 4 stages are 3, 3, 9, and 3

respectively. To adopt the hierarchical feature construction

implemented in conventional CNNs and Swin Transformers, a

2� 2 convolutional layer with stride 2 is used for spatial

downsampling at the start of each encoder stage except the first

one. A LN layer is applied before each downsampling to help

stabilize training.

Akin to U-Net’s strategy of learning to assemble more precise

outputs through the insertions of recovered spatial information at

different resolutions from the encoder, the output of each

encoder stage serves as an additional input to a decoder stage via

skip connections. In addition, the encoder stem is also connected

to a decoder stage. Because of the aggressive downsampling of

our input image in the stem’s patchification layer, we needed to

upsample the stem’s output feature map by a factor of 2 for it to

match the dimensions of the feature map of its skip-connected

decoder stage.

At the last encoder stage, we use a deconvolutional layer to its

output feature map to resize its resolution by a factor of

2. Afterwards, we concatenate the upsampled feature map with

the output of the previous encoder stage, and feed them to a

decoder stage which consists of two decoder blocks each

comprising a 3� 3 convolutional layer followed by a BatchNorm

(35) layer and a Rectified Linear Unit (46) (ReLU) activation.

This procedure is repeated for all subsequent stages including the

encoder stem’s output feature map. The output from the stem’s

connected decoder stage is then upsampled by a factor of 2 and

fed into a final decoder stage before applying a 3� 3

convolutional layer in order to yield pixel-wise segmentation

maps. Table 1 summarizes the architecture of P-DeSeRay. In the

table, sc refers to the scaling of the output by a learnable

gamma vector while res stands for the residual connection

employed between the input of the encoder stage and its

preliminary output.
3� 3, 16
BN, ReLU

� �
� 2

Segmentation head 3� 3, 1 (1, D, D)
4 Materials and methods

4.1 Data collection and annotation

For this study, chest X-ray images were collected from the

Radiology Department of The Medical City (TMC) in Pasig City,

Philippines. Three radiologists (two board certified radiologists

and one radiology resident in training) collected X-rays in Digital

Imaging and Communications in Medicine (DICOM) format

retrospectively from patients who had their chest radiographs

taken at the hospital from 2017 to 2022. The radiologists

anonymized the DICOM files by removing personal identifiers

such as the patient’s name, ID, birth date, sex, and age. The de-

identified data from the hospital’s picture archiving and

communication system (PACS) were then exported to a key-

value DICOM database. We extracted important metadata from

each DICOM file such as the accession number, the study date,

the path to the DICOM file, and the projection used which is

either posteroanterior (PA) or anteroposterior (AP). We stored

these metadata in a relational database.
Frontiers in Radiology 06
The radiographs were then meticulously annotated by our

partner radiologists to generate their ground-truth masks. Prior

to annotation, the images were extracted from the DICOM files

using the Python package Pydicom (47). The images were then

resized to a standard size of 2,048 � 2,048 using bicubic

interpolation and the pixel values were normalized to a range of

0 to 255. We performed quality assurance on the labeled data to

ensure that there are no duplicates and labeling errors.

We developed our own radiograph annotation tool using

Amazon SageMaker Ground Truth (48). Three radiologists used

the in-house annotation tool to map out the ground-truth masks

of the chest X-rays diagnosed with pneumothorax. These masks

indicate the presence, location, and severity of pneumothorax on

the dataset. For each radiograph, the consensus of the three

radiologists’ annotations was used as the reference standard. The
frontiersin.org
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FIGURE 3

The data collection and annotation pipeline we implemented to generate our novel local dataset.

Dumbrique et al. 10.3389/fradi.2024.1424065
resulting ground-truth masks were reshaped to 1,024 � 1,024

images and were then converted to run-length encodings (RLEs)

for efficient, lossless compression. These RLEs were added to our

metadata database. Figure 3 visualizes our data collection and

annotation pipeline.
4.2 Data splitting

For initial model training, we used the publicly available

SIIM-ACR Pneumothorax Segmentation dataset (24), which

contains 9,378 (77.8%) normal chest radiographs and 2,669

(22.2%) chest X-rays diagnosed with pneumothorax and their

corresponding binary segmentation masks. For comparison

with other works on the same dataset, the official train-test

split imposed by SIIM-ACR was used. We further divided the

SIIM train dataset into training and validation set using

stratified cross validation which split the dataset into 5 folds

with each fold having the same class distribution. P-DeSeRay’s

initial parameters were derived using the SIIM training set. In

order to prevent the issue of overfitting, the model was

evaluated on the validation set to check whether the parameters

were already optimized with regard to the loss function. In

selecting which of the candidate models produces the highest

segmentation and classification metrics, each model was tested

on the separate SIIM test set which has not yet been seen by

the model during its training phase.

The local TMC dataset was split into training and test sets

using an 80%–20% ratio while preserving the class distribution

across the two subsets. Transfer learning was conducted on the

local training dataset. After fine-tuning, P-DeSeRay was evaluated

on the local test set.
Frontiers in Radiology 07
4.3 Data augmentation

Several data augmentation techniques were applied on the

SIIM training and validation sets and on the TMC training

dataset to make the segmentation model more robust. These

include one of three exposure transformations (Contrast Limited

Adaptive Histogram Equalization, Random Gamma Contrast, or

Random Brightness Contrast), one of three blurs (Standard,

Motion, or Median), Horizontal Flip, and affine transformations

(translation, scaling, and rotation). All X-ray images were

standardized into a 512� 512 size and their RGB pixel values

were normalized. The specific hyperparameters used for each

data augmentation technique are summarized in Table 2.
4.4 Baseline fully convolutional networks

To compare the performance of P-DeSeRay with prior art, we

constructed fully convolutional networks with U-Net as the base

architecture. We sequentially introduced incremental

architectural changes to the encoder in three stages:
1. ResNet-101 Encoder: We first replaced the conventional U-Net

encoder with ResNet-101 (26), a deep convolutional neural

network architecture implementing residual learning. The

network comprises 101 layers organized into multiple

residual blocks, each employing identity mappings with skip

connections. The identity mappings allow gradients to flow

directly through the network, effectively mitigating the

vanishing gradient problem and enabling training of

networks with unprecedented depth.
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TABLE 2 The hyperparameters used for the data augmentation
techniques applied on the SIIM training and validation set and on the
local training dataset.

Transformation
class

Specific
technique

Hyperparameters

Exposure (p ¼ 0:5)

Contrast Limited Clip limit ¼ 4:0

Adaptive Histogram Tile grid size ¼ (4, 4)

Equalization (CLAHE) p ¼ 0:9

Random Gamma Gamma limit ¼ (60, 120)

Contrast p ¼ 0:9

Random Brightness limit ¼ 0:2

Brightness Contrast limit ¼ 0:2

Contrast p ¼ 0:9

Blur (p ¼ 0:5)

Standard Blur Blur limit ¼ 4, p ¼ 1

Motion Blur Blur limit ¼ 4, p ¼ 1

Median Blur Blur limit ¼ 3, p ¼ 1

Flip (p ¼ 0:5) Horizontal Flip –

Affine (p ¼ 1)

Translation Shift limit ¼ 0:2

Scaling Scale limit ¼ 0:2

Rotation Rotation limit ¼ 20

p indicates the probability that the specific transformation was applied.
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2. Squeeze-and-Excitation ResNet-101 (SE-ResNet-101) Encoder:

We further enhanced the ResNet-101 encoder by incorporating

squeeze-and-excitation (SE) blocks (27). SE blocks adaptively

recalibrate channel-wise feature responses by explicitly

modeling interdependencies between channels. The SE

mechanism works in two steps: (i) squeeze operation, which

aggregates feature maps globally to capture channel-wise global

context, and (ii) excitation operation, which learns channel-

wise attention weights. This allows the network to dynamically

adjust feature representation importance.

3. Squeeze-and-Excitation ResNeXt-101 (SE-ResNeXt-101)

Encoder: As a final architectural modification, we integrated

aggregated residual transformations (ResNeXt) (28) with SE

blocks. The ResNeXt architecture introduces the concept of

cardinality, where multiple parallel transformation paths are

aggregated within a block. In our implementation, we used

internal dimension d ¼ 4 and cardinality C ¼ 32, which

creates multiple grouped convolutions that capture diverse

feature representations. By combining ResNeXt’s multi-path

aggregation with SE blocks’ channel-wise attention, we

created a more expressive and adaptive encoder.
The initial weights of the three encoders were pre-trained on

ImageNet (49) and obtained from the Segmentation Models

PyTorch package (50). All our models were trained using the

same training process presented in the following section.
4.5 Training procedure

Each model was trained with a linear combination of Tversky

and Focal Losses (51, 52). The Tversky loss LTversky is calculated

using the Tversky similarity index T , which is a generalization of

the Dice similarity coefficient (DSC) that allows for flexibility in

balancing false positives and false negatives. The Tversky loss
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aggregates across all N pixels in the image and is given by

LTversky(b) ¼ 1� T(b)

where

T(b) ¼
PN

i¼1 p0ig0iPN
i¼1 p0ig0i þ b

PN
i¼1 p0ig1i þ (1� b)

PN
i¼1 p1ig0i

,

such that in the model’s output, p0i is the probability that pixel i

has pneumothorax and p1i ¼ 1� p0i is the probability that pixel

i does not have pneumothorax. Also, the ground truth label g0i is

1 if pixel i has pneumothorax and is 0 if pixel i does not have

pneumothorax, and vice versa for g1i. The Tversky index

incorporates a penalty hyperparameter b [ [0, 1] that penalizes

false positives more than false negatives with higher values. The

Tversky index simplifies to DSC when b ¼ 0:5.

The focal loss, on the other hand, is a variant of the widely used

binary cross-entropy (CE) loss. Tuning a focusing hyperparameter

g � 0 in the focal loss allows the model to prioritize learning from

difficult, misclassified samples over simple ones. As the value of g is

increased, the down-weighing of the loss contributions of easy,

well-classified examples strengthens. When g ¼ 0, the focal loss

reduces to the binary CE loss. For the focal loss LFocal applied to

our semantic segmentation task, we calculate the per-pixel focal

loss and get the mean across all the pixels:

L Focal(g) ¼ 1
N

XN
i¼1

�(1� pi,t)
g log (pi,t)½ �,

where

pi,t ¼ p0i if pixel i has pneumothorax (g0i ¼ 1)
p1i if pixel i does not have pneumothorax (g0i ¼ 0)

�
:

Finally, the mixed loss Lmixed we used for training our models is the

sum of the Tversky and focal losses:

Lmixed ¼ L Focal þ LTversky:

We evaluated the impact of different loss functions on model

performance in our experiments. Specifically, we compared the

mixed loss Lmixed to the Tversky loss LTversky . We employed

b ¼ 0:5 for both losses and used the optimal value g ¼ 2 (52)

for the focal loss component of the mixed loss. Adam (53) was

used as the optimizer in all of the models, with an initial

learning rate of 0.0005 that is progressively decreased until the

loss function reaches a plateau. P-DeSeRay and the modified U-

Net-based models were trained with a batch size of 8, while the

conventional U-Net model was trained with a batch size of 16.

The training data was shuffled for each epoch and early stopping

was imposed by selecting the model checkpoint that produced

the smallest validation loss.
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A sigmoid function was applied pixelwise on the output

segmentation mask from the model. The resulting probability

map was turned into a binary mask through thresholding at

p ¼ 0:5. For the detection task, pneumothorax is deemed to be

present on the input chest X-ray if the output 512� 512 binary

mask has at least 3,500 (1:34%) activated pixels. Otherwise, the

X-ray is predicted to not have pneumothorax. We used the

open-source platform MLflow (54) to track our experiments

and the various versions of our models and hyperparameters.

Pertinent details on our training procedure are summarized

in Table 3.
4.6 Evaluation metrics

To assess the performance of our model on the test data sets,

the mean Dice similarity coefficient (DSC) (51) and the mean

Intersection over Union (IoU) were used as segmentation metrics

while the sensitivity, specificity, F1, and F2 scores were calculated

to quantify the binary classification performance. The specific

formulas for these metrics are as follows:

1. Dice similarity coefficient

DSC ¼ 2 � jX > Y j
jXj þ jY j ,

where X and Y are the sets representing the predicted and

actual binary masks of a chest radiograph respectively, and

the operation j � j indicates the cardinality of a set (i.e., the

number of nonzero pixel-wise labels in a binary mask).

2. Intersection over Union (Jaccard index)

IoU ¼ jX > Y j
jXj þ jY j � jX > Yj ,

where X and Y are defined similarly as in the previous DSC

metric.
TABLE 3 Training procedure details for P-DeSeRay and the baseline
models.

Parameter Value
optimizer Adam

learning rate

0.0005

gradually reduced when the loss

function has plateaued

batch size 8 or 16

epochs

50

training data are shuffled every epoch,

early stopping: picked the model

checkpoint with lowest validation loss

threshold for binary mask 0.5

threshold for pneumothorax detection
�3,500 activated pixels

(�1.34% of the 512 � 512 mask)
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3. sensitivity (true positive rate, recall)

Sensitivity ¼ TP
TP þ FN

,

where TP is the number of true positives (on an image level)

and FN indicates the number of false negatives.

4. specificity (true negative rate)

Specificity ¼ TN
FP þ TN

,

where TN is the number of true negatives and FP indicates the

number of false positives.

5. F1 score

F1 score ¼ 2 � Precision � Sensitivity
Precisionþ Sensitivity

,

where precision is calculated as

Precision ¼ TP
TP þ FP

:

6. F2 score

F2 score ¼ 5 � Precision � Sensitivity
(4 � Precision)þ Sensitivity

Similar to F1 score, the F2 score combines precision and

sensitivity into one metric but it puts more weight on

sensitivity than precision.
5 Results and discussion

5.1 Data collection and annotation results

Employing our multi-stage data collection approach, we

constructed a novel dataset comprised of 1,039 de-identified

chest radiographs obtained from patients admitted to TMC

during the period 2017–2022. Out of these, 229 chest X-rays

were diagnosed with pneumothorax as verified by their respective

clinical reports. The other 810 radiographs were diagnosed as

normal. In this section, we analyze the radiographs in the SIIM

and TMC datasets in terms of (i) the laterality of pneumothorax,

(ii) the size of the affected area, (iii) the radiograph’s projection.

Our analysis of the TMC dataset revealed a laterality

distribution of pneumothorax similar to the SIIM dataset

(Figure 4). In the TMC data, 61.1% of detected pneumothoraces

affected the right lung only, compared to 35.4% affecting the left

lung only and 3.5% being bilateral. The SIIM dataset exhibited a

comparable distribution, with 55.3% of pneumothoraces affecting

the right lung only, 36.8% the left lung only, and 7.8% bilateral.
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FIGURE 4

Laterality of pneumothorax on the affected chest X-rays in the SIIM and TMC datasets.

FIGURE 5

Sizes of pneumothorax (% of total image pixels) on the affected chest X-rays in the SIIM and TMC datasets.
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On the other hand, the distribution of pneumothorax sizes in the

SIIM and TMC datasets is visualized in Figure 5. Pneumothorax size

was defined as the ratio of the ground-truth mask area to the total

image area (i.e., the number of pixels with pneumothorax divided

by the total image pixels). The TMC dataset exhibited statistically

larger pneumothoraces (m ¼ 3:23, s ¼ 3:84) compared to the

SIIM dataset (m ¼ 1:37, s ¼ 1:57).

Moreover, the TMC dataset exhibited a distinct projection

distribution compared to the SIIM dataset (Figure 6). In the

TMC data, 87.3% of chest radiographs with pneumothorax were

acquired using an anteroposterior (AP) view, while only 12.7%

were captured in the posteroanterior (PA) projection. Conversely,

the SIIM dataset showed a predominance of PA views (63.6%)

for pneumothorax cases, with 36.4% acquired using the AP view.
5.2 Results on the SIIM test dataset

Table 4 summarizes the segmentation and detection

performance of various models on the SIIM test dataset. As
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shown, P-DeSeRay achieved state-of-the-art segmentation

performance with mean Dice Similarity Coefficient (mDSC) and

mean Intersection over Union (mIoU) of 85.8% and 83.7%,

respectively. This surpassed prior art models (37, 38, 40, 43, 44)

and baseline U-Net models trained with Tversky loss, even with

the implemented encoder modifications. We investigated the

impact of these modifications on the U-Net architecture. A

conventional U-Net model achieved an mDSC of 79.5% and an

mIoU of 77.6%. Replacing the U-Net encoder with a ResNet-101

encoder improved the mDSC and mIoU to 81.6% and 80.5%,

respectively (a gain of 2.1% and 2.9%). Further incorporating a

squeeze-and-excitation block in each residual block of the

ResNet-101 encoder resulted in a marginal increase of 0.3% for

both mDSC and mIoU. Finally, adding aggregated residual

transformations with an internal dimension of d ¼ 4 and

cardinality C ¼ 32 led to a more substantial improvement of

1.3% and 1.2% in mDSC and mIoU, respectively. However,

despite these architectural enhancements that boosted the

baseline U-Net’s segmentation performance by 3.7% and 4.4% in

mDSC and mIoU, P-DeSeRay trained with the Tversky loss
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FIGURE 6

Projection of the chest X-rays diagnosed with pneumothorax in the SIIM and TMC datasets.

TABLE 4 The models’ number of trainable parameters, segmentation and detection performance metrics (in %) on SIIM test dataset.

Models #Params mDSC mIoU F1 F2 Sensitivity Specificity
Baseline: U-Net (original) 7.8M 79.5 77.6 67.1 66.4 65.9 91.9

+ ResNet101 encoder 51.5M 81.6 80.5 66.9 64.8 63.4 93.0

+ squeeze-and-excitation blocks 56.3M 81.9 80.8 67.9 68.5 69.0 90.9

+ aggregated residual 55.9M 83.2 82.0 73.5 67.8 64.5 97.0

transformations

(d ¼ 4, C ¼ 32)

+ focal loss (g ¼ 2) 55.9M 85.6 83.7 73.8 68.8 65.9 96.6

P-DeSeRay (Ours) 31.9M 85.8 83.7 76.5 70.4 66.9 97.9

+ focal loss (g ¼ 2) 31.9M 86.7 84.7 77.1 73.6 71.4 96.3

Mostayed et al., 2019 (38) 7.1M 76.0 – – – – –

Hongyu et al., 2020 (40) – 82.0 81.0 60.0 – 78.0 78.0

Abdella et al., 2021� (43) 25.6M – 80.3 63.2 – 56.9 –

Jakhar et al., 2019� (37) – 84.3 82.6 – – – –

Malhotra et al., 2022 (44) – – 82.9 – – – –

Bold values highlight the highest performance score in each column.
�Indicates that the reference work tested on a subset of the SIIM train set rather than on the official SIIM test set.
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function still outperformed the most complex modification (U-Net

with SE-ResNeXt-101 encoder) by a significant margin of 2.6% and

1.7% in mDSC and mIoU, respectively.

P-DeSeRay also achieved state-of-the-art performance in

binary classification metrics, surpassing all models trained with

the Tversky loss function and previously published models. P-

DeSeRay trained solely with Tversky loss achieved an F1 score of

76.5%, an F2 score of 70.4%, sensitivity of 66.9%, and specificity

of 97.9%. The conventional U-Net model served as a baseline,

achieving F1, F2, sensitivity, and specificity scores of 67.1%,

66.4%, 65.9%, and 91.9%, respectively. Replacing the U-Net

encoder with a ResNet-101 encoder improved specificity by 1.1%

but came at the expense of F1, F2, and sensitivity scores, which

decreased slightly. Further architectural modifications yielded

mixed results. Incorporating squeeze-and-excitation blocks

improved F1, F2, and sensitivity scores but decreased specificity.

Adding aggregated residual transformations led to substantial

gains in F1 score and specificity but decreased F2 score and

sensitivity. Overall, these changes on the U-Net resulted in net
Frontiers in Radiology 11
improvements in F1, F2, and specificity but a slight decrease in

sensitivity. Importantly, despite these enhancements to the U-Net

architecture, the patch-based P-DeSeRay model still

outperformed these baseline models in pneumothorax detection

across all classification metrics. P-DeSeRay trained with Tversky

loss significantly surpassed the most complex U-Net modification

(with SE-ResNeXt-101 encoder) by a margin of 3.0%, 2.6%, 2.4%,

and 0.9% in F1, F2, sensitivity, and specificity scores, respectively.

Notably, P-DeSeRay also outperformed the F1, sensitivity, and

specificity scores reported in previous studies (40, 43).

Our ablation study (Table 4) examined the effect of different

loss functions. Training models with an unweighted mixed loss

combining Tversky and Focal losses improved both segmentation

and detection performance compared to Tversky loss alone. P-

DeSeRay trained with the mixed loss achieved superior

segmentation performance, with gains of 0.9% and 1.0% in

mDSC and mIoU, respectively. Notably, P-DeSeRay also

exhibited improved classification with the mixed loss, achieving

increases of 0.6% and 3.2% in F1 and F2 scores. However, as
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expected with these metrics, the mixed loss increased P-DeSeRay’s

sensitivity by 4.5% but decreased its specificity by 1.6%, reflecting

the known trade-off between the two (55).

The positive impact of the mixed loss and the sensitivity-

specificity trade-off observed with P-DeSeRay were also evident

in the baseline U-Net models (refer to Table 4). Notably,

employing the mixed loss alongside architectural changes

significantly improved the U-Net’s mDSC and mIoU by 2.4%

and 1.7%, respectively, with minimal reductions in specificity

(0.4%). However, P-DeSeRay trained solely with Tversky loss still

surpassed the performance of these U-Net models even when

they leveraged the mixed loss. This finding underscores the

significant contribution of our proposed patch-based fully

convolutional encoder-decoder architecture to pneumothorax

segmentation and detection.

P-DeSeRay offers not only superior performance but also

improved computational efficiency. While achieving state-of-the-

art results, P-DeSeRay is a medium-sized network with only 31.9

million parameters, significantly less than the modified baseline

U-Net models, each exceeding 51.5 million parameters. This

translates to a reduction in computational complexity of over

38%. P-DeSeRay’s efficiency advantage persists even when

compared to similar-sized models from prior art, such as the one
TABLE 5 Segmentation and classification performance (in %) of P-DeSeRay
on the TMC test dataset.

Metric Radiologists’
level (56)

P-DeSeRay

mDSC – 90.9

mIoU – 88.6

Sensitivity 45.7 83.8

Specificity 99.6 98.6

F1 – 88.9

F2 – 85.8

Precision – 94.6

Accuracy – 95.4

FIGURE 7

A representative case in the TMC test set with its corresponding ground-truth
predicted output mask (in red color) with a DSC of 93.7% and IoU of 88.2%
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presented in (43). In conclusion, our P-DeSeRay model, trained

with an unweighted combination of Tversky and focal losses,

delivers superior segmentation and classification performance on

the SIIM dataset while maintaining computational efficiency.
5.3 Results on the TMC test dataset

Table 5 summarizes P-DeSeRay’s performance after fine-

tuning on the TMC training data. P-DeSeRay achieved state-of-

the-art segmentation performance on the TMC test set, with a

mDSC of 90.9% and a mIoU of 88.6%. P-DeSeRay also

demonstrated exceptional pneumothorax detection capabilities,

achieving a specificity of 98.6%, precision of 94.6%, and accuracy

of 95.4%. Notably, the F1 and F2 scores for detection were 88.9%

and 85.8%, respectively. Furthermore, P-DeSeRay’s sensitivity of

83.8% significantly surpasses the reported pooled sensitivity of

radiologists (45.7%) for pneumothorax detection on X-rays (56).

The model efficiently processed radiographs from the local test

set with an average inference time of 0.3184 s per image.

A representative case from the TMC dataset is visualized in

Figure 7, showcasing a sample de-identified chest X-ray, its

ground-truth mask, and the predicted output mask generated by

our model. When compared to the ground-truth mask,

P-DeSeRay’s output is smoother in outlining the affected area

around the lung apex.
5.4 Understanding P-DeSeRay’s superior
performance: a look at key architectural
components

P-DeSeRay’s superior performance in pneumothorax

segmentation and detection can be attributed to several key

architectural components that draw inspiration from Vision

Transformers while maintaining the efficiency of fully
binary mask (in green color) as assessed by radiologists and P-DeSeRay’s
. PA, posteroanterior.
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convolutional neural networks: (1) the use of patchification layer,

(2) the separation of spatial and channel mixing, (3) the inverted

bottleneck design in our encoder blocks and (4) the use of the

patch embeddings as decoder inputs.
5.4.1 P-DeSeRay’s patchification layer and
embeddings

Unlike standard FCNNs that process the entire image at once,

P-DeSeRay introduces a unique change in input representation

through its patchification layer. This layer strategically divides the

input image into smaller, non-overlapping patches. These patches

are then linearly embedded into a higher dimensional space,

allowing the network to capture richer localized features crucial

for pneumothorax detection. Finally, the resulting patch

embeddings are directly fed into our encoder blocks for further

processing. This approach shares similarities with the successful

use of tokenization and embedding in Transformer architectures.

Like Transformers and ViTs that tokenize their inputs before

feeding them to self-attention layers, P-DeSeRay leverages

patchification and embedding to prepare the input for efficient

processing by the subsequent encoder blocks.
5.4.2 Separation of spatial and channel mixing
P-DeSeRay employs a distinct approach compared to standard

FCNNs in how it mixes information within the network. Unlike

FCNNs that rely on traditional 2D convolutions for both spatial

(across pixels) and channel-wise (across feature maps) mixing, P-

DeSeRay separates these operations. This separation strategy is

implemented in ViT through its self-attention operation which

performs the spatial mixing, and the succeeding MLP which

executes the channel mixing. P-DeSeRay implements a similar

separation strategy through depthwise separable convolutions to

avoid the quadratic complexity inherent in ViT’s self-attention

mechanism. As visualized in Figure 2, these convolutions consist

of two sequential steps:

• Depthwise convolution: This step focuses on spatial mixing,

applying filters to each channel independently, preserving

spatial information.

• Pointwise convolution (1x1 convolution): This step performs

channel-wise mixing, combining information across channels

while maintaining the spatial resolution obtained in the

depthwise step.

This separation of spatial and channel mixing allows P-

DeSeRay to potentially learn more intricate relationships between

features in the image. By focusing on spatial information first,

the network might be better equipped to capture subtle spatial

patterns indicative of pneumothorax, ultimately leading to

improved segmentation and detection performance.
5.4.3 Inverted bottleneck design in encoder
blocks

P-DeSeRay utilizes an inverted bottleneck design within its

encoder blocks. This design differs from the standard

bottleneck design used in ResNet, SENet, and ResNeXt blocks we
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employed in our modified U-Net models. Here’s a breakdown of

the key differences:

1. Standard Bottleneck: In a standard bottleneck, the input

features are first compressed to a lower dimension and then

expanded back to a higher dimension.

2. Inverted Bottleneck: P-DeSeRay’s inverted bottleneck design

takes the opposite approach. The input features are initially

expanded to a higher dimension using an expansion ratio of

4 in this case. This expansion allows the model to extract

richer channel-dependent information. Subsequently, the

features are projected back to a lower dimension, effectively

aggregating the channel-wise dependencies and retaining the

most important information.

We note that ViTs and other advanced ConvNet architectures

such as MobileNetV4 also use an inverted bottleneck. In particular,

Vision Transformers implements it in their MLP layers, expanding

the channel dimension by a factor of 4 before projecting back. The

inverted bottleneck design offers several benefits to our P-DeSeRay

model. First, the initial expansion facilitates the extraction of more

intricate channel-dependent features within the intermediate

higher-dimensional space. Second, the subsequent channel

reduction effectively aggregates this information, ensuring that

the most critical details are retained. Third, the inverted

bottleneck design allows P-DeSeRay to extract complex features

from patches while maintaining computational efficiency. This is

particularly advantageous for medical image analysis tasks like

pneumothorax segmentation, where preserving detail is crucial

for accurate diagnosis.
5.4.4 Patch embeddings as decoder inputs
After processing by the encoder blocks, P-DeSeRay leverages

the patch embeddings as inputs to the decoder block. To

accommodate this, P-DeSeRay employs an upsampling step to

increase the resolution of the patch embeddings by a factor of 2

before concatenation with the feature map from the

corresponding decoder stage (see Figure 1). The patchification

layer at the beginning of P-DeSeRay’s architecture performs a

significant downsampling step. This initial downsampling serves

two key purposes:

• Increased Receptive Field: It increases the effective receptive

field size, allowing the network to capture long-range

dependencies in the image. This is crucial for efficiently

performing spatial mixing on distant pixel locations.

• Information Retention: Despite the downsampling, P-DeSeRay’s

patchification process retains substantial information from

the X-ray image due to the rich content within the

patch embeddings.

By concatenating the upsampled patch embeddings with the

decoder block’s feature maps, P-DeSeRay can reconstruct the

spatial relationships between the processed image patches. This is

particularly beneficial for pneumothorax segmentation, where

preserving the spatial context of features is critical for accurate

delineation of the collapsed lung region.
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Overall, P-DeSeRay’s distinct architectural components work

synergistically to achieve superior performance in pneumothorax

segmentation and detection. The patchification layer, separation

of spatial and channel mixing, inverted bottleneck design, and

use of patch embeddings as decoder inputs all contribute to the

network’s ability to extract meaningful features and reconstruct

an accurate segmentation map.
6 Conclusion and recommendations

This study investigated the development and evaluation of a

deep learning model for automatic pneumothorax segmentation

and detection in chest radiographs. Pneumothorax is a life-

threatening condition that can affect individuals of any age and

health background, often with a significant recurrence rate. Early

and accurate detection is crucial for optimal patient outcomes.

However, diagnosing pneumothorax solely based on chest X-rays

can be challenging due to the subtle visual cues, such as a thin

displaced pleural line. Furthermore, determining the severity and

location of pneumothorax on the X-ray is critical for guiding

treatment decisions. By automating these tasks, our research has

the potential to improve diagnostic accuracy and efficiency,

particularly in resource-limited settings with radiologist shortages.

In this work, we propose P-DeSeRay, a patch-based fully

convolutional encoder-decoder network composed of a

convolutional encoder that directly utilizes the embedded 2D

patches and a skip-connected decoder that combines extracted

representations at different resolutions from the encoder. P-

DeSeRay surpassed the state-of-the-art in pneumothorax

segmentation and detection on both a public dataset and an

independent dataset we curated from The Medical City’s

Radiology Department. Our model outperformed not only other

ConvNets but also prior research and even the reported

sensitivity of radiologists on chest X-rays.

Demonstrating its suitability for real-world deployment, P-

DeSeRay is computationally efficient. It boasts a reduction in

complexity of over 38% compared to modified U-Net models and

requires only 0.3184 s for average inference per image. This study

demonstrates the effectiveness and efficiency of modern ConvNets

like P-DeSeRay for medical image segmentation and classification

tasks. Unlike ViTs, P-DeSeRay relies solely on standard

convolutional modules, avoiding the quadratic complexity

challenges associated with ViT’s self-attention mechanism.

In order to make our study cost-efficient in a data-scarce

setting, we applied transfer learning from a public dataset to a

smaller locally curated dataset. Moreover, ablation studies show

that training P-DeSeRay using an unweighted linear combination

of Tversky and Focal losses has significantly increased the

segmentation and detection performance when compared to

using Tversky loss solely. These training strategies, coupled with

the proposed novel architecture, have shown significant

contributions to P-DeSeRay’s performance.

This study hopes to contribute to the growing evidence of the

effectiveness of deep learning models in performing modern

medical imaging and radiological tasks. P-DeSeRay demonstrated
Frontiers in Radiology 14
fast and reliable detection and segmentation of pneumothorax on

chest radiographs. When deployed to the clinical setting, our

model has the potential to significantly increase the radiologists’

diagnostic performance and reduce backlogs by optimizing the

reading time per radiograph. Furthermore, P-DeSeRay has the

potential to reduce diagnostic errors in pneumothorax detection

for radiology residents by providing a second opinion and

highlighting subtle pneumothoraces that might be missed on

visual inspection.

For future work, we aim to integrate P-DeSeRay into a

computer-aided diagnosis software prototype. This would serve

as a valuable clinical decision-support tool for radiologists and

radiology residents, especially those located in developing

countries with resource limitations. Conducting multi-center

studies with diverse patient populations would also be beneficial

in generalizing our findings and in paving the way for wider

clinical adoption.
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