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Purpose: Successful performance of deep learning models for medical image
analysis is highly dependent on the quality of the images being analysed.
Factors like differences in imaging equipment and calibration, as well as
patient-specific factors such as movements or biological variability (e.g., tissue
density), lead to a large variability in the quality of obtained medical images.
Consequently, robustness against the presence of noise is a crucial factor for
the application of deep learning models in clinical contexts.
Materials and methods: We evaluate the effect of various data augmentation
strategies on the robustness of a ResNet-18 trained to classify breast
ultrasound images and benchmark the performance against trained human
radiologists. Additionally, we introduce DreamOn, a novel, biologically inspired
data augmentation strategy for medical image analysis. DreamOn is based on
a conditional generative adversarial network (GAN) to generate REM-dream-
inspired interpolations of training images.
Results: We find that while available data augmentation approaches substantially
improve robustness compared to models trained without any data augmentation,
radiologists outperform models on noisy images. Using DreamOn data
augmentation, we obtain a substantial improvement in robustness in the high
noise regime.
Conclusions: We show that REM-dream-inspired conditional GAN-based data
augmentation is a promising approach to improving deep learning model robustness
against noise perturbations in medical imaging. Additionally, we highlight a gap in
robustness between deep learning models and human experts, emphasizing the
imperative for ongoing developments in AI to match human diagnostic expertise.

KEYWORDS

deep learning, robustness, ultrasound, breast cancer, generative adversarial network,
convolutional neural network
Abbreviations

GAN, Generative Adversarial Network; DL, Deep Learning; REM, Rapid Eye Movement; SDA, Standard
Data Augmentation; BUSI, Breast Ultrasound Images.
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1 Introduction

One of the major factors for reduced cancer mortality is early

detection through imaging-based screening (1). Recently, deep

learning (DL) based methodologies have been employed to

screen medical images (2–7). DL-based screening tools have not

only been shown to feature high classification accuracy (8) and

consistency (9) but also potentially allow for scalability:

automated analysis of medical images significantly speeds up the

diagnostic process and thus renders it possible to scan larger

populations or conduct real-time assessments, thereby aiding in

timely procedures. However, DL-based image analysis requires

extensive training datasets and has been shown to suffer from

generalization issues under distribution shifts (10–12). These

limitations are particularly problematic in medical contexts where

training data often is scarce and the need for robust

generalization is critical due to the substantial variability in

image quality encountered in real-world settings.

Acquiring training data for supervised learning in medical

image analysis poses significant challenges including stringent

privacy regulations, the need for expert annotation, as well as

ensuring that the dataset represents the breadth of pathological

conditions and demographic variations. Furthermore, once

models are trained, learned representations must be generalized

to account for the considerable variability in medical image

quality, which can be affected by diverse factors such as the

technical specifications and calibration of imaging devices across

different healthcare facilities but also patient-specific factors.

Anatomical variations across individuals, along with involuntary

movement during image capture, induce an additional source of

noise. Consequently, ensuring robustness against distribution

shifts is essential for the successful integration of DL models into

the clinical environment (13).

A distribution shift occurs when a classifier encounters an out-

of-distribution test dataset whose statistical properties differ from

those of the training data, posing challenges to the model’s

ability to generalize across new, unseen conditions. In other

words, classification performance can deteriorate sharply, as the

learned representations may overfit to the specific features

present in the training data (10, 14). In clinical settings, this can

lead to a higher rate of misdiagnoses, missed findings, or false

positives. In contrast, the human visual system exhibits

remarkable robustness to variations in image quality, noise, and

other distortions and can therefore maintain high recognition

accuracy even under challenging conditions (10, 15–17).

In deep learning, a common practice to address such

generalization challenges is the use of data augmentation

strategies, whereby additional synthetic data is generated by

applying transformations to existing images—such as rotation,

scaling, and flipping, or by simulating common artifacts and

variations [for reviews on data augmentation techniques used in

medical imaging see (18, 19)]. This approach helps in creating a

more diverse dataset that mimics a wider array of real-world

conditions without the need for extensive new data collection

[e.g., see (20)]. By incorporating augmented data, DL models can

be trained to be more resilient to the natural inconsistencies and
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discrepancies found in medical imaging. Although several reviews

on the effects of data augmentation in medical imagery exist

(18, 19, 21, 22), to the best of our knowledge, no systematic

investigation has addressed how these strategies impact robustness

to distribution shifts. Understanding the robustness impacts of

specific data augmentation strategies is key to ensuring that deep

learning models can reliably adapt to the diverse and

unpredictable conditions encountered in clinical practice.

Here, we evaluate the robustness of three common data

augmentation strategies to distribution shifts introduced by

different types of parametric noise. The chosen data

augmentations range from basic transformations to more

complex strategies. Simple augmentations include rotation,

flipping, and brightness & contrast adjustments, which provide

varied versions of the original images. More advanced methods

include Pixel-space Mixup (23), and Manifold Mixup (24).

Pixel-space Mixup creates new training samples by blending

pairs of images and their labels directly in pixel space, helping

the model learn smoother decision boundaries. Manifold

Mixup, extends this concept further by blending representations

in deeper network layers rather than raw pixel data, thereby

introducing intermediate states at a feature level. Additionally,

to determine how well the augmented models align with human

diagnostic abilities under distribution shifts, we tested four

trained radiologists on the out-of-distribution data (840

collected psychophysical trials in total) and compared their

performance against the models. The involvement of medical

professionals serves as a valuable benchmark for the models’

diagnostic accuracy, allowing us to directly compare the

effectiveness of DL-augmented interpretations with that of

human experts when confronted with out-of-distribution data.

As a second contribution, we present DreamOn, a novel

generative adversarial network (GAN) based data augmentation

approach designed to enhance model robustness. GANs have

previously gained recognition as a data augmentation strategy in

various domains, especially in medical imaging [e.g., (25, 26)].

This has been motivated by a lack of available large, labeled

training datasets for certain medical imaging modalities or

specific medical conditions. However, in this study, we extend

the traditional use of GANs by implementing a novel

interpolation technique between classes, rather than simply

generating synthetic samples. This was inspired by the process of

dreaming in humans, where episodic memories are recombined

to generate novel visual experiences during REM (Rapid Eye

Movement) sleep [e.g., (27)]. We mimic this process by first

teaching a GAN to create images of a single class. Once trained,

we introduce a pair of classes to the Generator, with the classes

being combined in varying proportions rather than being

weighted equally. This prompts the Generator to synthesize

images that blend characteristics from both classes. This

interpolation process is crucial because it generates additional

images that sit near the decision boundaries between classes,

making these images more challenging to classify. Previous

studies [e.g., (28)] have demonstrated that training a classifier on

challenging images near decision boundaries can help the model

establish more robust boundaries. This approach reduces the
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likelihood of overfitting to specific features and minimizes the

influence of spurious correlations within the data. Consequently,

this should help the model generalize better, particularly in high-

noise environments, where maintaining performance is typically

more difficult.

Aligning with this prediction, DreamOn-augmented datasets

resulted in across the board substantial improvements in image

classification accuracy under high-noise conditions as compared

with other data augmentation strategies. While expert radiologist

outperformed all models in high-noise settings, DreamOn

augmentation helped to narrow the gap between expert radiologists

and deep learning models when handling out-of-distribution data.
2 Materials and methods

The experimental design was structured to compare different off-

the-shelf data augmentations and to test the hypothesis that

DreamOn enhances model robustness compared to other data

augmentation strategies. This was achieved by evaluating

classification performance on the publicly available Breast

Ultrasound Image Dataset [BUSI, see (29)], consisting of 780

labelled breast ultrasound images. As a comparison to DreamOn,

we employed Manifold Mixup, Pixel-space Mixup, and more

straightforward techniques such as rotation, flipping, and brightness

& contrast changes. To assess the impact on the robustness of

these augmentation techniques, we introduced three types of

parameterized noise—Gaussian, speckle, and salt & pepper—each

applied at seven intensity levels to get different test sets featuring a

distribution shift. The different models were compared based on

their ability to maintain high balanced accuracy and low expected

calibration error (ECE) across noise levels. Additionally, the

inclusion of the DreamOff control dataset allowed us to determine

whether the observed improvements were due to the interpolation

strategy used in DreamOn rather than just adding GAN-generated

images to the training set. Lastly, four trained radiologists served as

a benchmark by evaluating a subset of the test data, allowing us to

put the model results into perspective. This comparison provided a

clearer understanding of the deep learning models’ robustness

relative to human expertise, especially under high-noise conditions.
2.1 Off-the-shelf data augmentation

We implemented and evaluated three common data

augmentation strategies known to enhance the robustness of DL

classifiers. Firstly, in what we call standard data augmentation

(SDA), we applied random rotation (–15° to +15°), random

horizontal flip as well as random adjustments in brightness and

contrast to training images, as reported to be among the most

effective ones in medical imaging (21). Random rotations and

horizontal flips were included to simulate variations in patient

positioning and imaging angles. Brightness and contrast are

parameters that depend on the patient and examined tissue, but

they can also be adjusted by the physician to some extent on the

ultrasound device and may vary between different devices. Note
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that vertical flips were not used here, as this would not have

been consistent with the shape of ultrasound images (i.e., an

increase in the field of view with increasing depth, displayed

from top to bottom).

Secondly, pixel-space Mixup where training examples are

created by linearly interpolating between random pairs of

samples across classes on the pixel level and their corresponding

labels (23). Lastly, Manifold Mixup extends pixel-space Mixup to

the feature level, interpolating between representations at various

latent layers of the network (24). Note that this was done during

training and therefore with changing weights. The mixing

proportions were determined by

l(x, y) ¼ l � x þ (1 � l) � y

where λ is a random value drawn from a Beta distribution λ∼ Beta

(α, α), x and y are two inputs.
2.2 DreamOn data augmentation

In addition to these off-the-shelf data augmentations, we evaluate

a novel approach that combines the use of GANs to generate novel

synthetic data with a biologically inspired idea: during REM sleep it

is thought that previous episodic memories are recombined to

internally generate novel visual experiences [e.g., see (27, 30)]. Here

we mimic this process by feeding the generator of a fully trained

conditional GAN with interpolated class labels and segmentation

masks. To find out whether standard data augmentation can be

combined with DreamOn to further improve the robustness, we

also applied standard data augmentation (as described above) to the

DreamOn images (DreamOn+ SDA).

To implement DreamOn, we closely followed the approach

proposed by Iqbal and Ali (31) where a GAN is trained on

medical images. However, we augmented the method described

by a conditional GAN model similar to Odena et al. (32),

allowing input of the desired class label, so newly generated

synthetic images preserve a given target class. This is because the

dignity of ultrasound imagery is not solely conveyed by the mass

shape but also by other factors. Providing the generator with

class information therefore allowed the learning of such.

Additionally, the segmentation mask that was fed to the

generator was synthesized by a separate GAN trained only on the

BUSI segmentation masks. This enabled the synthesis of

interpolated segmentation masks.

To generate interpolated images, two non-zero weights were

assigned to two classes such that they sum up to 1. See Figure 1

for three examples. Since the classes of the BUSI dataset are not

balanced, assigning uniformly random weights to classes when

synthesizing DreamOn images could potentially lead to an unfair

advantage compared to the other data augmentation methods.

To account for this potential confounder, we constructed the

image generation pipeline such that the average weight input per

class over the whole DreamOn dataset matched the true

proportions of the BUSI dataset (normal: 17%, benign: 56%,
frontiersin.org
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FIGURE 1

Example images generated by the proposed DreamOn data augmentation method. A sample interpolation for each pair of classes is shown in
fractional steps where the weight of the third, unused class was set to zero. On each end, only one class was used as input (DreamOff). Upon
close inspection, there are checkerboard artifacts present in the synthesized images. Such artifacts are common in images generated by
convolutional neural networks [e.g., see (32)]. Note that the same artifacts are also found in images used for DreamOff (left side and right side).

FIGURE 2

Image generation pipeline of DreamOn. The Generator Gm was
trained on the segmentation masks of the BUSI dataset, and Gs

both on the segmentation masks and the corresponding BUSI
sonography images. The two GANs were trained separately and
combined only afterward; Gm is used to generate a segmentation
mask that is fed to the Generator Gs together with a class vector
[1, 3] and a noise vector [1, 400] to generate a synthetic image
characterizing the given mixture of class attributes (in this
example: 0% normal, 20% benign and 80% malignant). The class
vector was then set to be the ground-truth label of the generated
image.
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malignant: 27%). The ground truth label of the DreamOn dataset

was identical to the two non-zero weights used for its generation,

the third unused class was set to zero. The whole DreamOn

pipeline is depicted in Figure 2. As it has been shown before,

introducing such out-of-distribution (o.o.d.) data to training

imagery can itself lead to improved robustness (33). To test

whether a potential increase in robustness can be linked to

interpolations rather than simply adding o.o.d. data, we

employed an additional dataset of images created by the

DreamOn architecture except for only using one class per image
Frontiers in Radiology 04
as input. We call this control data set DreamOff. For the detailed

model architecture and training pipeline, see Figures S1 and S2

in the Supplementary Material. The code is available at

https://github.com/lucle4/DreamOn.
2.3 Datasets

The BUSI dataset consists of 780 labelled (normal: 133, benign:

437, malignant: 210) images of breast ultrasound images, each with

its corresponding segmentation mask (34). We randomly split the

dataset into training (600), test (90), and validation (90) subsets. To

enable maximal comparability between different data

augmentation strategies, all training datasets consisted of two

parts: first, the 600 original (non-augmented) images; and

second, 600 augmented images which we manipulated/generated

according to the respective approach (SDA, pixel-space Mixup,

Manifold Mixup, DreamOn, DreamOn + SDA). Overall, we note

that data augmentation approaches operating on the feature level,

such as Manifold Mixup and DreamOn, can interpolate features

at higher semantic levels of the information compared to pixel-

wise data augmentation methods. For comparison, we also

included a dataset that contains only original BUSI images (no

data augmentation used; referred to hereafter as Vanilla). The

composition of all training datasets is given in Table 1. In all

datasets (including testing and validation), the class proportions

were held constant (normal: 17%, benign: 56%, malignant: 27%).
2.4 Test datasets

To test model robustness, we created three different test datasets

by applying different noise types—gaussian, speckle, and salt &

pepper—each with six intensity levels to the test dataset. These

noise types were specifically chosen because they are representative

of common distortions encountered in ultrasound imaging.
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TABLE 1 Composition of the different ResNet-18 training datasets.

Dataset Composition
DreamOn

600 BUSI images +

600 generated images (2 classes per image)

DreamOn + SDA 600 generated images (2 classes per image) with SDA

DreamOff (no interpolation) 600 generated images (1 class per image)

Manifold Mixup (24) 600 BUSI images with Manifold Mixup (α = 0.8)

Pixel-space Mixup (23) 600 BUSI images with pixel-space Mixup (α = 0.8)

Standard Data Augmentation 600 original images with standard data augmentation

Vanilla No data augmentation

SDA, standard data augmentation.

Note that all models except the vanilla model were trained on 1,200 images in total (the original BUSI images plus an augmented set of 600 additional images).
α denotes the parameter of the Beta probability distribution that was used for Mixup. Note that usually, lower values of α yield better results [e.g., (24)]. We settled on a higher value since here,

Mixup is implemented on only half of the dataset.
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Gaussian noise simulates random fluctuations that can occur due to

electronic interference, speckle noise reflects granular noise patterns

typical in coherent imaging systems like ultrasound, and salt &

pepper noise models impulse noise that can result from sudden

disturbances or transmission errors. By using these noise types, our

robustness evaluation is designed to closely mimic the challenges

faced in real-world ultrasound imaging, ensuring that our model’s

performance is assessed under conditions that are likely to be

encountered in practical scenarios [see (35)]. See Figure 3 for some

examples. With each ascending level, there’s a doubling in noise

intensity, with the highest level calibrated such that most models

perform at chance level (i.e., with ∼33% accuracy).
2.5 Classifier models

Each training dataset (see Table 1) was used to train a ResNet-

18 model from scratch [for architectureal details, see (36)] in

Pytorch (37). As has been shown before, ResNet-18 can be

successfully used for classifying medical imagery (38). We used

the Adam optimizer and cross-entropy loss with common
FIGURE 3

One randomly chosen test image for each category is shown with all three no
intensity doubles. The original image with no noise is shown on top.
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hyperparameters (epochs = 100; batch size = 20; learning rate = 0.001;

β1,2 = 0.9, 0.999) without any finetuning. Model parameters

were initiated randomly. Each ResNet-18 was trained for five

runs to account for random variations. The checkpoint that

reached the highest balanced accuracy on the validation dataset

was used for testing. Balanced accuracy, which is calculated as

the average accuracy per class to account for class imbalance,

serves as our primary metric for model performance. We report

and compare the median balanced accuracy across the five

training runs for each training strategy to draw our main

conclusions. Training of classifiers as well as the GAN was

performed on UBELIX (http://www.id.unibe.ch/hpc), the HPC

cluster at the University of Bern using an NVIDIA A100 GPU.

The code for the different training strategies is available at

https://github.com/lucle4/DreamOn.
2.6 Human observers

To benchmark the performance of the different models against

human experts, we presented noisy images to n = 4 trained
ise types and their intensity levels applied. With each step (1–6), the noise

frontiersin.org
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radiologists from the University Hospital of Bern. Of the

participating radiologists, 2 were female and 2 were male, with a

median experience of 18 years (SDexp = 15.1). In a forced-choice

image classification task, they had to classify 210 Gaussian noise

images (30 images per noise level). Gaussian noise was used for

testing due to its standard use in assessing robustness, therefore

providing a reliable benchmark for comparing the performance

of deep learning models and human experts in a controlled

environment [e.g., (33)].
2.7 Performance metrics

We assessed model robustness using two main performance

metrics: balanced accuracy and expected calibration error (ECE).

Balanced accuracy is defined as the mean over the average accuracy

per class, accounting for class imbalance in the dataset. It is a

suitable metric for our study because it evaluates model

performance across all classes, ensuring that improvements in

robustness are not biased by the predominant class. The ECE

measures the difference between the predicted confidence levels and

the actual outcomes, providing insight into how well-calibrated the

model’s predictions are. Well-calibrated predictions indicate that

the model’s confidence aligns with its accuracy, an important factor

in medical imaging where decision-making should reflect a reliable

estimation of uncertainty. Both metrics were used to assess the

stability of model performance under various noise levels, which

serve as a proxy of robustness against real-world image distortions.

To establish a threshold above which model performance could

be considered significantly better than chance, we used the

Clopper-Pearson method to calculate the upper bound of the

95% confidence interval around chance-level accuracy. For each

noise condition, we compared the model’s balanced accuracy

against this threshold, considering performance significant if it

exceeded this value.
3 Results

Across all three noise types and for all models, the balanced

accuracy decreases as a function of noise intensity (Figure 4).

However, this was not the case for the radiologists, for whom the

performance increased from noise levels 1–3. Looking at the results

in more detail, several patterns emerged. First, on original

images (i.e., no noise), all DL models outperformed radiologists in

terms of their median accuracy, indicating that in an environment

with no added noise, model predictions are more accurate than

human judgments. In this setting (original images), the Manifold

Mixup and standard data augmentation outperform the other

data augmentation strategies as well as the vanilla model. Second,

in the low noise regime (level 1–3), Mixup approaches as

well as standard data augmentation approaches continue to

dominate—outperforming DreamOn and the vanilla model as well

as radiologists. Third, in the high noise regime (level 4–6) however,

the tables turn: here, radiologists outperform all DL models,

indicating a robustness gap between human experts and models.
Frontiers in Radiology 06
Compared to all other evaluated data augmentation

approaches, DreamOn features the highest median balanced

accuracy in the high noise regime (best performing in 6 out of 9

high noise levels, see Table 2), thereby reducing the robustness

gap between human observers and models. Notably, there is a

clear superiority of DreamOn compared to DreamOff. It can,

therefore, be safely argued that it is the interpolation that led to

better performance rather than the introduction of GAN artifacts

and therefore merely o.o.d. data. Interestingly, adding SDA to

DreamOn images does not lead to further improvement in

robustness. Quite in contrary, for high noise levels, this model

performs among the worst.

While DreamOn may not achieve the highest accuracy in low-

noise and no-noise conditions, it exhibits the greatest robustness

against noise, with the lowest drop in accuracy as noise levels

increase, and consistently outperforms other methods in the high

noise regime, where maintaining stable performance is crucial for

real-world medical imaging applications.

Additionally, we were interested in determining the extent to

which models can sustain a performance significantly above

chance under increasing levels of noise. Treating single image

classification trials as independent Bernoulli trials, we calculated

binomial 95% confidence intervals using the Clopper-Pearson

method (39). This statistical approach enables us to establish the

minimum performance threshold above which models can be

considered to significantly exceed chance performance. For a

chance level of p ¼ 1=3 (depicted as dotted horizontal lines in

Figure 4), and n = 90 classification trials (corresponding to the

size of the test dataset), the upper bound of the one-tailed 95%

confidence interval is ∼0.411 (depicted as solid horizontal lines

in Figure 4). Comparing median model performances with this

threshold, we find that DreamOn performs significantly above

chance for all but one (salt and pepper level 6) noise levels (see

Table 1). Remarkably, under extreme noise conditions (noise

level 6), no other model surpassed the chance level threshold,

with the sole exception of the SDA model. However, it is

important to note that the SDA model’s performance did not

consistently exceed chance across most other high noise conditions.

To further quantify robustness, we calculated the difference

between the highest and lowest reached median balanced accuracy

for each model (Δ, Figure 4). This metric provides a direct

quantification of how consistent a model’s performance is across

varying datasets. A smaller difference indicates that the model

maintains its accuracy level regardless of changes in the data,

signifying higher stability. When comparing this relative drop in

median accuracy (Δ) across data augmentation strategies, we find

that DreamOn features the lowest difference irrespective of the

noise type, and thus shows the most stable performance. This lines

up with the radiologists, who show an even lower delta in the

gaussian noise condition.

When examining the ECE, we find a similar pattern as with the

balanced accuracy (see Figure S3 in the Supplementary Materials).

Across all noise types and models, the ECE increases with

increasing noise intensity, indicating reduced model calibration

as a function of noise intensity. In practical terms, this means

that under higher noise levels, the confidence scores provided by
frontiersin.org
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FIGURE 4

Boxplots of balanced accuracies for each data augmentation strategy (different colors) per noise level (0–6, boxes with identical colors) for all three
noise types (different panels). Each box summarizes the test results of five training runs (radiologists: n= 4). Wrt. the boxes, the dotted line depicts the
mean, and the straight line the median. Note that radiologists only rated images with Gaussian noise. The Δ annotations depict the difference between
the highest and lowest median accuracy overall noise levels, with lower Δ values indicating a more stable model. A visual example to clarify the Δ value
is given for DreamOn in the Gaussian noise condition. Bold horizontal lines indicate chance performance (dotted) and the upper bound of the 95%
confidence interval (solid), i.e., all median and mean values above the horizontal bold solid line indicate classification performance that is significantly
above chance. SDA, standard data augmentation.

Lerch et al. 10.3389/fradi.2024.1420545

Frontiers in Radiology 07 frontiersin.org

https://doi.org/10.3389/fradi.2024.1420545
https://www.frontiersin.org/journals/radiology
https://www.frontiersin.org/


TABLE 2 Median balanced accuracies (over five runs) in high-noise settings (levels 4–6).

DreamOn DreamOff DreamOn+
SDA

SDA Pixel-space
Mixup

Manifold
Mixup

Vanilla Radio
logists

Gaussian 4 0.551* 0.464* 0.418 0.518* 0.544* 0.531* 0.442* 0.667*

5 0.447* 0.444* 0.360 0.353 0.380 0.469* 0.413* 0.617*

6 0.453* 0.373 0.333 0.333 0.340 0.400 0.347 0.584*

Speckle 4 0.620* 0.438* 0.509* 0.607* 0.496* 0.569* 0.487*

5 0.509* 0.433* 0.424* 0.447* 0.400 0.482* 0.480*

6 0.433* 0.378 0.360 0.431* 0.367 0.393 0.404

Salt &
Pepper

4 0.571* 0.513* 0.404 0.560* 0.524* 0.587* 0.487*

5 0.467* 0.393 0.347 0.387 0.373 0.424* 0.427*

6 0.367 0.356 0.333 0.333 0.333 0.393 0.351

For each noise level, the highest accuracy is displayed in bold text. In six out of nine cases, DreamOn performs best (excluding radiologists), in the other cases, it performs second best.

DreamOn performs in all high noise settings except one (eight out of nine) significantly above chance.

*Indicate classification performance that is significantly above chance performance.
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the models do not reliably reflect the true probability of a correct

prediction, mostly leading to overconfident classifications. While

model calibration generally declines in high-noise settings,

DreamOn produces comparably well-calibrated probability

estimates, with confidence levels that closely align with actual

prediction accuracy even under noise. Only Manifold Mixup

performs similarly in these challenging conditions. Taken

together, maintaining above-chance performance in high-noise

settings and preserving calibration indicate that DreamOn

enhances the model’s ability to make accurate predictions with

reliable confidence estimates even under distribution shifts.
3.1 Consistency among radiologists

To investigate the inter-rater reliability of the radiologists, we

calculated the Fleiss’ Kappa (40). For noise levels 0–4, κ was between

0.544 (noise level 4) and 0.681 (noise level 2) per level, corresponding

to moderate up to substantial agreement. For noise levels 5 and 6, κ

was 0.464 and 0.380, corresponding to fair up to moderate agreement

(41). Thus, this consistency analysis indicates that the agreement

among radiologists generally decreases as a function of noise

intensity. This pattern suggests that even experienced professionals

can struggle to maintain diagnostic accuracy. The observed variability

among human raters can result from factors such as the complexity

of certain images, the potential for increased subjective interpretation,

and the noise’s impact on key features critical for diagnosis.

Nevertheless, in high-noise scenarios, even the worst-performing

radiologist performs better than all DL models evaluated in this study.

This indicates that while DreamOn effectively narrows the robustness

gap between expert radiologists and deep learning models, the

remaining gap is not a mere product of differences among

radiologists but highlights the fundamental challenges in replicating

human diagnostic resilience in adverse conditions.
4 Discussion

We conducted a comprehensive investigation of different

popular data augmentation strategies on the robustness of a
Frontiers in Radiology 08
ResNet-18 model trained to classify breast ultrasound images.

We also compared the model’s performance with human experts

in the field. Our results indicate that DreamOn—our proposed

GAN-based data augmentation method that generates REM-

dream-inspired synthetic data—can notably improve the model’s

robustness, thus narrowing the gap between human observers

and DL models in the high noise regime.

While all models experienced a decline in accuracy with

increasing noise, DreamOn consistently outperformed other

methods in the most challenging noise settings, demonstrating a

notable improvement in robustness compared to standard

approaches. It was the only method that maintained performance

significantly above chance across nearly all noise levels. This

robustness, coupled with its stability (evidenced by the smallest

decrease in performance from no-noise to high-noise conditions, Δ),

positions DreamOn as a well-suited strategy for enhancing deep

learning models in noise-intense medical image analysis.

However, despite DreamOn’s robust performance in high-

noise environments, we observed a drop in accuracy in low-noise

regimes. This reduction in performance could be attributed to

the introduction of unnecessary complexity, where the

challenging interpolations generated by DreamOn might lead the

model to overfit on ambiguous examples rather than optimizing

for cleaner, more straightforward cases. In such settings, the

model could become overly specialized in handling difficult

scenarios, resulting in a trade-off where robustness in high-noise

environments comes at the expense of accuracy in low-noise or

clean data conditions.

Although DreamOn’s performance in low-noise and no-noise

settings is not as strong as some other augmentation methods, this

should be viewed in the context of real-world medical imaging

scenarios, where noise is often unavoidable. A model that excels in

clean environments but rapidly deteriorates under noisy conditions

may not be as useful in practice. DreamOn’s strength lies in its

ability to maintain accuracy as noise levels increase, exhibiting the

lowest drop in performance across varying noise intensities. This

robustness is critical in medical image analysis, where the ability

to produce reliable results under suboptimal conditions is often

more valuable than peak performance in ideal scenarios.

Therefore, DreamOn’s superior performance in high-noise
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environments suggests it is a more reliable choice for applications

where image quality cannot always be guaranteed.

Additionally, when combining DreamOn with Standard Data

Augmentation (SDA), we noticed a performance drop compared

to using either strategy alone. This may be due to conflicting

learning signals: while DreamOn encourages the development of

robust decision boundaries by creating difficult, boundary-

challenging cases, SDA introduces broader variability through

transformations like rotations and flips, which do not necessarily

increase difficulty. The model might struggle to reconcile these

different types of data, leading to suboptimal performance when

both strategies are employed together. These observations

highlight the complex interactions between different data

augmentation techniques and underscore the need for further

investigation into their combined effects.

Furthermore, the superior robustness of DreamOn compared to

other data augmentation methods highlights the potential of

GAN-based techniques in enhancing the generalization capabilities of

deep learning models in medical imaging [for a review, see (42)]. The

interpolation of class labels and segmentation masks enables the

model to learn from a range of image variations not provided by

traditional augmentation methods. The improvement in model

robustness indicates that DreamOn could assist in preparing models

to manage the inconsistencies and variability found in clinical

settings. This enhanced robustness in high-noise environments

suggests that such AI-driven tools could be particularly valuable as

complementary aids to radiologists. By integrating models like

DreamOn into diagnostic workflows, it is possible to develop AI

systems that can assist in analyzing challenging cases where image

quality is compromised, thereby enhancing the overall diagnostic

accuracy and confidence of radiologists. However, it is important to

note that it is uncertain how well the findings related to the employed

noise types can be generalized to real-world noise stemming from

different imaging equipment and protocols, or patient-specific factors

such as movements or biological variability (e.g., tissue density).

While radiologists outperformed all models at higher noise

levels, this emphasizes the ongoing importance of human

expertise in medical image analysis. However, the lower accuracy

of radiologists on original images without added noise

perturbations might reflect the model’s ability to detect subtle

patterns not readily apparent to the (trained) human eye.

We also note that, similarly to REM dreams, the semantic

meaning of produced interpolations might not directly correlate

with reality. This is because diagnostic work-up is done along the

lines of specific guidelines that assign findings to discrete

categories. There are benign lesions that mimic malignancy and

vice versa, and some lesions indeed have an intermediate

appearance between malignant and benign (what ultimately makes

them suspicious). But there is no continuum between these

categories (43) such as is the case with DreamOn. Nonetheless,

such augmented samples help in enhancing model robustness and

act as an effective regularization component (21, 44, 45). We

advocate that for clinical setups, while accuracy is important for

deep learning models, their robustness and reliability might be

even more important to ensure time-effective and trustworthy

human-in-the-loop AI-assisted clinical workflows. In this regard,
Frontiers in Radiology 09
the proposed DreamOn data augmentation proposes a promising

starting point to develop a stable framework for clinical situations

where suboptimal imaging conditions occur.
4.1 Limitations and future research

In the present study, we only investigated the robustness of one DL

architecture (ResNet-18) and only employed a single medical dataset.

Even though clinically relevant, the BUSI dataset is relatively small

(780 unique images). Future research should thus focus on

employing the DreamOn augmentation strategy for a wider variety of

DL models, medical datasets, and additional types of perturbations to

assess its robustness across more varied and complex noise

conditions. It is also important to note that other advanced data

augmentation strategies, such as additional GAN-based methods [e.g.,

(46)], further Mixup variants [e.g., (47)], and data augmentation with

transformers [e.g., (48)], were not covered in this study. Future

research should explore these strategies to further validate and

potentially enhance the robustness of our approach. Furthermore, the

DreamOn approach could be improved by integrating other

generative approaches such as diffusion models (49). Additionally, it

would be ideal to develop a model that not only exhibits increased

robustness in high-noise regimes but also maintains high accuracy

across the board, including in low-noise and no-noise conditions.

One limitation worth noting is that radiologists’ data was

exclusively obtained for gaussian noise, with other noise types

not being covered. Nevertheless, it is known that humans

typically perform well across different noise types in image

classification tasks [e.g., (10)]. Therefore, we anticipate that the

radiologists’ performance on the additional noise types would be

similar to their performance on gaussian noise.
5 Conclusion

In conclusion, the present study illustrates that REM-dream-

inspired conditional GAN-based data augmentation through class

and segmentation mask interpolation presents a promising

approach to enhancing the robustness of deep learning models

against noise perturbations in medical imaging. By benchmarking

different data augmentation strategies against expert radiologists

on out-of-distribution data, our study reveals a persistent gap in

robustness between models and human experts, underscoring the

need for continued advancements in AI to match human

diagnostic proficiency. As the field continues to advance,

incorporating biologically inspired data augmentation strategies

could play a significant role in supporting radiologists and

improving diagnostic accuracy in clinical settings.
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