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Introduction: This study is a retrospective evaluation of the performance of
deep learning models that were developed for the detection of COVID-19
from chest x-rays, undertaken with the goal of assessing the suitability of such
systems as clinical decision support tools.
Methods: Models were trained on the National COVID-19 Chest Imaging
Database (NCCID), a UK-wide multi-centre dataset from 26 different NHS
hospitals and evaluated on independent multi-national clinical datasets. The
evaluation considers clinical and technical contributors to model error and
potential model bias. Model predictions are examined for spurious feature
correlations using techniques for explainable prediction.
Results: Models performed adequately on NHS populations, with performance
comparable to radiologists, but generalised poorly to international populations.
Models performed better in males than females, and performance varied
across age groups. Alarmingly, models routinely failed when applied to
complex clinical cases with confounding pathologies and when applied to
radiologist defined “mild” cases.
Discussion: This comprehensive benchmarking study examines the pitfalls in
current practices that have led to impractical model development. Key findings
highlight the need for clinician involvement at all stages of model
development, from data curation and label definition, to model evaluation, to
ensure that all clinical factors and disease features are appropriately considered
during model design. This is imperative to ensure automated approaches
developed for disease detection are fit-for-purpose in a clinical setting.
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1 Introduction

The unprecedented clinical need arising from the recent severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) or COVID-19 pandemic prompted considerable

interest from within the artificial intelligence (AI) community. Supported by shared

data repositories, publicly available anonymised datasets, and open-source software,

researchers developed deep learning (DL) systems with the aim of assisting with

COVID-19-related clinical tasks. A large volume of research was published for the

detection of COVID-19 in chest radiographs, with researchers developing deep learning
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solutions to assist with the triaging of patients to prioritise primary

diagnostic resources i.e., polymerase chain reaction with reverse

transcription (RT-PCR) assays or more sensitive imaging

techniques e.g., CT scans. With further research investigating the

potential for automated imaging-based COVID-19 detection

systems as a “second-check” option for cases with suspected false

negative RT-PCR results, a consequence of this test’s well-

documented low sensitivity (1, 2). RT-PCR is also reported to

struggle with false positives in recovered patients during long-

term follow-up (3). The application of CXRs can overcome this

problem, facilitating differentiation between ongoing infection

and resolving infection.

However, upon a closer review of the literature, we observed

serious limitations associated with this area of research. This has

brought into question the credibility of model performance

claims and prompted several critical reviews of the use of

artificial intelligence in this area (4, 5). These reviews identified

the models they considered as being at significant risk of bias

and attribute this to the pervasive use of poor-quality open-

source datasets (5), in combination with insufficient model

evaluation (4). A common limitation of existing studies is a lack

of sufficient reporting regarding data provenance and quality,

and insufficient external validation of developed DL algorithms

i.e., most approaches are validated using data from the same

centre. Whilst a wide variety of approaches have been proposed

for the purpose of identifying risk of bias in models trained on

open-source data, there is an absence of studies that perform

rigorous evaluative comparisons of models trained on multi-

centre hospital data. To address these shortcomings we undertake

a comprehensive benchmarking study that evaluates the

performance of recently published DL models (4).

We validate these models, under clinical guidance, by considering

the practical challenges of interpreting chest x-rays in suspected

COVID-19 cases. Perhaps foremost of these challenges is that

COVID-19 infection often does not always develop into COVID-19

pneumonia, in which case diagnostic features of COVID-19 cannot

be observed in the CXR. Moreover, where COVID-19 pneumonia

can be observed, its heterogeneous presentation mimics a broad

spectrum of lung pathologies, making it difficult to identify

COVID-19 pneumonia due to confounding conditions. The

presence of co-occurring conditions, or comorbidities, can also

complicate the detection of COVID-19, especially in cases where

the disease is mild and features are subtle. Furthermore, the

unpredictable temporal progression of COVID-19 presents a

challenge for radiologists, as unexplained rapid advancements in the

disease and low resolution in chest x-rays (CXRs) contribute to

ambiguity (6). Collectively, these factors lead to substantial

diagnostic uncertainty when using medical imaging for the

detection of COVID-19. We conduct a thorough evaluation of

model error scrutinising these factors to better understand model

failures, the demographics of those affected, and potential avenues

for improvement.

This article presents a comprehensive benchmarking study

comparing state-of-the-art DL methods and conducting

exhaustive model evaluations on independent, multi-national

clinical datasets, with the goal of identifying model strengths and
Frontiers in Radiology 02
weaknesses while assessing the suitability of automated DL

systems as clinical decision support tools in COVID-19 detection.
2 Materials and methods

In this section, we present our methodology, providing detailed

descriptions of the evaluated models, our training procedures, our

evaluation methods, and a thorough review of the datasets used.
2.1 Overview of the experimental approach

We utilise two independent UK-based datasets and a further

dataset from outside the UK. We train a diverse set of deep

learning models on one of the UK-based datasets (NCCID) and

validate national generalisability using data from the other UK-

based dataset, which is from an independent hospital site, the

Leeds Teaching Hospital Trust (LTHT). We consider

international generalisability using open-source data from a

Spanish hospital (COVIDGR).

We investigate model performance variation by patient-level

factors e.g., demographic and smoking history. We also evaluate

model vulnerability to confounding variables, which requires the

use of counterfactual datasets created from a subset of the LTHT

population for whom non-COVID-19 pneumonia status was

recorded. In this population we modified the definition of the

positive and control classes, resulting in two additional

counterfactual datasets. The first dataset referred to as LTHT

PNEUMONIA (P) simulates a pneumonia detection setting where

the positive class includes non-COVID-19 pneumonia cases i.e., no

distinction is drawn between COVID-19 and other pneumonia

types. The second scenario named LTHT NO PNEUMONIA (NP)

replicates a COVID-19 detection scenario where all instances of

non-COVID-19 pneumonia were deliberately excluded.

Following primary evaluation, we identify the top-performing

models for further analysis. We train and validate the best models

on region-of-interest (ROI)-extracted CXRs to test whether overall

performance of COVID-19 detection is improved with the use of

ROIs and if, as is commonly assumed, cropping to the ROI helps

to mitigate any inherent data biases. Furthermore, we apply

explainable AI techniques to examine highlighted features, i.e.,

features significant to model prediction. Identification of certain

features can indicate model reliance on spurious correlations,

which can lead to poor generalisation. The presence of these

“shortcut” features has been identified in prior work on models

trained with open-source data, we evaluate NCCID-trained models

for reliance on similar “shortcut” features (5).
2.2 Data

This study utilises three independent datasets, NCCID,

COVIDGR sourced from a hospital in Spain, and a purpose built

single site dataset derived from Leeds Teaching Hospitals NHS

Trust (LTHT). The NCCID dataset is available upon request,
frontiersin.org
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FIGURE 1

Overall experimental design for multi-centre evaluation of COVID-19 detection models. (A) ROI-cropped CXRs are generated from semantic
segmentations of the left and right lung fields, automated prediction uncertainty-based post-processing is applied to ensure reliable cropping for
both classes of CXR. The red box highlights over-segmentation of the lung fields, post-processing removes this structure prior to extracting the
region of interest. (B) Some models are pre-trained, for these models hyper-parameters are tuned on ImageNet or CheXpert data (domain-
specific dataset). After pre-training, model hyper-parameters are refined for the COVID-19 detection task and trained on full CXRs from the
NCCID. Models are subsequently evaluated on three independent populations: the unseen NCCID population, the LTHT, and COVIDGR. (C)
Following primary training and evaluation, the best performing models are selected for (ii) training and (iii) evaluation on ROI-extracted CXRs.
NCCID, National COVID-19 Chest Imaging Database; LTHT, Leeds Teaching Hospital Trust; ROI, Region of Interest; CXR, Chest x-ray.
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COVIDGR can be found online and the LTHT dataset is not

available publicly, however the hospital has a formal data access

process through which researchers may apply (Figure 1).

Uniform exclusion criteria were applied to the NCCID and

LTHT datasets. CXRs were excluded if case data was insufficient

to confidently assign a COVID-19 label, e.g., missing RT-PCR

swab date or missing RT-PCR test result data for CXRs collected

post-2019. Inclusion criteria was considered using data collected

from Digital Imaging and Communication in Medicine

(DICOM) headers and associated radiology reports. Note that

the international dataset (COVIDGR) did not include RT-PCR

swab date or CXR exam date data. Instead, CXR labels were pre-

defined with CXRs considered positive if acquired 24 h before or

after a positive COVID-19 swab. The labelling schema for all

datasets are described in the Supplementary Materials and

outlined in Supplementary Figure S1. For all datasets, only

frontal CXRs, antero-posterior (AP) and postero-anterior (PA),

were included and only clinical testing (SARS-CoV-2 RT-PCR)

results were used in producing COVID-19 labels, radiological

features indicative of COVID-19 infection were not considered.

Figure 2 presents a CONSORT diagram describing the full

exclusion criteria applied during data preparation for this study.

2.2.1 Pre-training data (ImageNet & CheXpert)
Pre-trained models were trained on either ImageNet natural

images or domain-specific CheXpert CXRs prior to NCCID
Frontiers in Radiology 03
training (as dictated by original model implementations).

ImageNet is a large-scale image classification dataset comprising

14 million annotated natural images from more than 21,000

classes e.g., hummingbird, hen, lion etc. ImageNet is publicly

accessible and available for download. CheXpert is a large dataset

containing 224,316 chest x-rays from 65,240 patients, each image

has recorded outcomes for 14 observations, such as, pleural

effusion, cardiomegaly and consolidation (generated from

radiology reports) (7). CheXpert is also publicly accessible and

available for download.

2.2.2 Training data (NCCID)
The National COVID-19 Chest Imaging Database (NCCID) is

a centralised UK database derived from 26 hospital centres, storing

45,635 CXRs from 19,700 patients across the UK in the form of

DICOM image files and header information (de-identified). To

preserve the independence of our single-site evalution dataset

(LTHT), we excluded from NCCID all cases originating from the

Leeds area, leaving CXRs collected from 25 different hospital

centres. The removed CXRs were neither utilised for model

training nor model evaluation on NCCID. NCCID CXRs are

provided alongside clinical data, including the results of RT-PCR

tests. Dates for both CXR exams and RT-PCR swabs are

provided. If exam date or RT-PCR dates were unavailable, the

CXR was excluded from the study. RT-PCR was used to define

ground truth labels for CXRs. As no standard recognised
frontiersin.org
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FIGURE 2

Exclusion criteria for pre-processing (A) NCCID and (B) LTHT datasets. CXRs were excluded if missing crucial acquisition data (exam date and
submission centre) and if not frontal view (AP or PA). NCCID CXRs were eliminated if submitted from Leeds-based hospitals. CXRs were divided
into two cohorts: pre-2019 and post-2019. Pre-2019 CXRs were automatically labelled COVID-19 negative, while post-2019 CXRs were evaluated
for COVID-19 outcomes. Post-2019 CXRs were eliminated if missing data essential for determining COVID-19 outcome i.e., CXR acquisition date,
RT-PCR swab date or outcome. CXRs were also excluded if exam date fell between diagnostic windows of multiple positive RT-PCR swabs. The
COVIDGR dataset is not subject to the same exclusion criteria due to a lack of patient data. As a pre-prepared dataset, some exclusion criteria is
already applied i.e., COVIDGR includes only PA CXRs. NCCID, National COVID-19 Chest Imaging Database; LTHT, Leeds Teaching Hospital Trust;
AP, Antero-posterior; PA, Postero-anterior; CXR, Chest x-ray.
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definition exists within the literature, we sought expert opinion

from a radiologist, a respiratory physician, and a clinical

oncologist to inform our definition of COVID-19 positive CXRs.

We treated CXRs with a positive COVID-19 RT-PCR test

anywhere from 14 days before to 28 days after image acquisition

as COVID-19 positive. We treated images without a positive RT-

PCR test within this diagnostic window as COVID-19 negative

(Supplementary Figure S1). After data preparation, the NCCID

training dataset consists of 20,515 exams, with 8,337 positive

exams and 12,178 control CXRs. Figure 2 presents a CONSORT

diagram outlining the full exclusion criteria applied to both

NCCID and LTHT datasets.

2.2.3 Testing data (LTHT & COVIDGR)
External validation data is collected from two independent

sources, LTHT, a UK-based hospital in Leeds (nationally-

sourced), and COVIDGR, made up of CXRs from San Cecelio
Frontiers in Radiology 04
University Hospital in Granada, Spain (internationally-sourced).

LTHT provides patient CXR images (DICOMs), with RT-PCR

test results for COVID-19 diagnosis. In LTHT, RT-PCR date is

provided relative to CXR exam date to allow precise classification

of COVID-19 status according to our chosen diagnostic window

(Supplementary Figure S1). The exclusion criteria for LTHT and

COVIDGR datasets is summarised in Supplementary Table S1).

Additionally, for a subset of LTHT patients, non-COVID-19

pneumonia diagnostic status was available, from this subset of

the LTHT population the counterfactual datasets LTHT (P) and

LTHT (NP) were created. To create LTHT (NP) all participants

with recorded non-COVID-19 pneumonia were removed from

the LTHT dataset. To construct the LTHT (P) dataset the image

labelling criteria was changed such that all CXRs positive for

pneumonia (COVID-19 or non-COVID-19 pneumonia) were

labelled positive. We do this to evaluate the models’ capacity to

separate COVID-19 from non-COVID-19 pneumonia cases, a
frontiersin.org

https://doi.org/10.3389/fradi.2024.1386906
https://www.frontiersin.org/journals/radiology
https://www.frontiersin.org/


Harkness et al. 10.3389/fradi.2024.1386906
major confounding pathology. For both LTHT (P) and LTHT (NP)

populations, participants without non-COVID-19 labels were not

considered. The generation of counterfactual datasets is

summarised in Supplementary Figure S2.

The COVIDGR dataset provides a total of 852 CXRs sourced from

the San Cecelio University Hospital in Granada, Spain. The dataset is

balanced, containing 426 positive and 426 negative CXRs. In the

creation of the COVIDGR dataset CXRs were chosen through

manual selection. COVID-19 CXRs are defined by a positive RT-

PCR test, conducted within 24 h of the CXR exam. All CXRs were

pre-cropped prior to being compiled into COVIDGR. COVIDGR

includes only postero-anterior (PA) views which were acquired with

the same scanner type. In addition, RALE severity scores are

provided for all positive cases, as well as 76 CXRs in which COVID-

19 is not observed (NORMAL-PCR+), 100 mild (MILD), 171

moderate (MODERATE) and 79 serious (SEVERE) cases.
2.3 Models

The models we selected for this benchmarking study are

diverse in design and leverage different learning paradigms i.e.,

supervised, transfer, semi-supervised and self-supervised learning

(Table 1 and Supplementary Figure S3). We found that the

majority of proposed DL methods for COVID-19 detection in

CXRs rely on supervised or transfer learning. Here we define

supervised models as models trained for COVID-19 detection

from randomly initialised weights. All transfer learning

approaches used weights pre-trained on either ImageNet or

CheXpert and were later fine-tuned in a fully supervised manner

on the training dataset (NCCID) for the task of COVID-19

detection. Further details on model selection criteria and model

training procedures can be found in the Supplementary Materials.

Within the supervised learning category, we explored the use of

various well-established deep convolutional neural network (CNN)

backbones. Of these, we identified XCEPTION NET (8) and

ECOVNET (9) from highly cited publications as influential models

of interest. Similar approaches place emphasis on domain-specific

tuning, rather than applying a pre-defined deep CNN backbone.

For example, COVIDNET (10) is defined by a generative neural
TABLE 1 Summary of the evaluated models.

Model Refe

Deep CNN generated by NAS (

Multiscale attention guided network with soft distance regularisation (

Vision transformer (

Ensemble of deep CNNs (

Deep CNN with Xception backbone

Deep CNN with residual connections and attention component (

Deep CNN with EfficientNet backbone

Convolutional capsule network (

Convolutional autoencoder with classifier (

Deep CNN with attention mechanism, pre-trained under self-supervised conditions (

Models are described and presented alongside source reference, pre-training status an

DL, Deep Learning; NAS, Neural Architecture Search; Params., Parameters.
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architecture search (NAS) for optimal COVID-19 detection

performance. Other deep CNN approaches employ unique designs

to encourage the recognition of domain-specific features, such as

RES. ATTN. (11) which incorporates attention mechanisms, and

MAG-SD (12) which uses hierarchical feature learning. Although

all of these approaches share some similarities training strategies

differ. For each model, we reproduce the pre-training strategies

outlined in their respective studies in order to maintain

consistency with first reported implementations. Under the

supervised learning category, we also include a vision transformer

(XVITCOS), a deep CNN-ensemble network (FUSENET) (13),

and a capsule network (CAPSNET) (14).

We select CORONET (15) as an example of semi-supervised

learning. CORONET relies on a two stage process to classify

images, comprising a convolutional autoencoder in the first stage

and a standard CNN classifier in the second stage (Supplementary

Figure S3). First, the convolutional autoencoder is trained to

reconstruct COVID-19 negative CXRs from learned low-

dimensional latent representations. The classifier is then trained to

predict CXR outcomes taking images comprising the pixel-wise

differences between original CXRs and autoencoder reconstructions

(residual images) as inputs. The intuition is that the reconstructions

of CXRs from the unseen class (COVID-19 positive) will fail to

preserve radiographic features of COVID-19 infection, which will

appear in residual images. Other approaches like SSL-AM (16),

follow a self-supervised pre-training strategy. In SSL-AM,

representations learned during pre-training are enhanced through

2D transformations, such as, distortion, in-painting and perspective

transformations. During pre-training, SSL-AM is comprised of a

UNet-style network architecture which learns domain-specific

features independent of the disease class. Following pre-training, the

decoder portion of the UNet is subsequently discarded, while, the

encoder and its pre-trained, domain-specific weights are

incorporated into a COVID-19 classifier.
2.4 Model training

We apply a pre-defined training protocol designed to facilitate

uniform comparison in model performance. We train models on
rences Abbrvs. DL type Pre-trained [Y/N] Params.

(Data) (#)
10) COVIDNET Supervised Y (CheXpert) 50,150,485

12) MAG-SD Supervised Y (ImageNet) 23,835,968

17) XVITCOS Supervised Y (CheXpert) 86,537,477

13) FUSENET Supervised Y (ImageNet) 17,245,921

(8) XCEPTION NET Supervised Y (ImageNet) 21,331,753

11) RES. ATTN. Supervised N 5,476,673

(9) ECOVNET Supervised Y (ImageNet) 7,304,737

14) CAPSNET Supervised Y (CheXpert) 523,072

15) CORONET Semi-supervised Y (ImageNet) 11,230,978

16) SSL-AM Self-supervised Y (CheXpert) 6,753,905

d deep learning category. Models are referred to by their designated abbreviations.
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NCCID training data across 5-fold cross-validation experiments,

each of which comprises a balanced number of COVID-19

negative and COVID-19 positive cases. Prior to training we,

where necessary, adapt the original models for our task of binary

classification of CXRs, i.e., to accommodate larger image

resolution (than was used in the original implementation of any

of the selected models) or to predict two classes instead of three.

We used the CheXpert dataset for models that required pre-

training on domain-specific datasets. Specifically, model weights

were optimised for the task of predicting lung pathologies in CXRs.

Models that required pre-training on natural images were pre-

trained on ImageNet. The choice of dataset, and if pre-training is

even required, is dictated by the original model implementation. For

all training stages, images were resized to 480x480 and standard

image transformations were applied. We also tune the learning rates

for each model, at each stage of training, using Optuna which is an

open source hyperparameter optimisation framework (for further

details see Supplementary Materials). As models are identified from

pre-existing, published works we accept model architecture hyper-

parameters as fixed and do not tune these to the training datasets.

2.4.1 Lung segmentation (ROI)
Automatic segmentation of lung fields is often applied to mitigate

the influence of confounding variables and background artefacts/

noise. To test this, the top three performing models are also trained

using CXRs cropped to the lung fields, which have been separated

from background tissue using semantic segmentation. To generate

these segmentations we trained a UNet++ model on the open-

source dataset COVID-QU-Ex, containing 33,920 COVID-19,

pneumonia, and normal CXRs, all with ground truth segmentation

masks (further details provided in the Supplementary Material)

(18). To improve segmentation robustness and reduce the risk of

introducing a segmentation quality bias to the downstream

classification task, we applied a novel epistemic uncertainty-based
FIGURE 3

Example of unsupervised lung segmentation post-processing algorithm
segmentation of the left and right lung field. Monte Carlo dropout is
calculated and frequency of uncertainty is evaluated for Bimodality with H
required manual inspection and prediction uncertainty is bimodal so au
structures are identified and the density of uncertainty is calculated per str
removed, with the most uncertain structures removed first. A ROI is gen
selected to be the minimum bounding box around the segmented lung fie
Database.
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post-processing algorithm to revise predictions or flag predictions

for manual inspection where necessary. For the task of lung field

segmentation, correct segmentations are expected to comprise two

connected components, each component corresponding to the left

or right lung field. Additionally, successful segmentations are

assumed to have corresponding pixel-wise prediction uncertainty

maps that are unimodal with uncertainty predominantly

concentrated along the borders of the lungs. This is what we would

expect to observe if a panel of radiologists were tasked with

outlining lung fields in CXRs (and inter-rater variability/uncertainty

was quantified). Thus, we also assume that a bimodal uncertainty

frequency is evidence of erroneous segmentation outside normal

inter-rater variability. If predicted segmentation masks are found to

have more than two unconnected components, their corresponding

uncertainty maps were then assessed for Bimodality using

Hartigans’ dip test. Predictions that produce bimodal pixel-wise

uncertainty frequency distributions, and give a total uncertainty

below an empirically defined threshold, are highlighted as likely

erroneous predictions and excess structures are iteratively

eliminated according to greatest total uncertainty per segmented

area i.e., structures with the greatest density of uncertainty are

removed first. Predictions that exceed the total uncertainty limit are

put forward for manual inspection. As a result of preliminary

experiments, we applied a total uncertainty limit of 800, which we

found facilitated selection of the best candidates for post-processing.

Once this process is applied, we crop CXRs to the remaining

segmented areas, this produces our region of interest (ROI). We

use ROI instead of semantic segmentation for added robustness and

to ensure that all clinically significant thoracic structures are

included e.g., the mediastinum (Figure 3).

With a total uncertainty threshold of 800, region of interest

(ROI) prediction Dice scores improved from 0.96 to 0.98. While

improvements in scores on data from the same training

distribution are modest, it is expected that applying the proposed
on NCCID data. The UNet++ model is used to generate semantic
applied to approximate uncertainty of prediction, total uncertainty is
artigans’ test. In this example, uncertainty is less than the threshold for
tomatic post-processing is applied. In post-processing, unconnected
ucture. Excess structures (more than the two lung fields) are iteratively
erated from the post-processed semantic segmentation, the ROI was
lds. ROI, Region of interest; NCCID, National COVID-19 Chest Imaging
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uncertainty-based post-processing algorithm will help improve

overall ROI-extraction accuracy for CXR data from unseen

domains. Qualitative evaluation of segmentations performed on

the NCCID training data showed that applying the post-

processing algorithm improved the accuracy and robustness of

predicted ROIs (Supplementary Figure S4).
2.5 Performance evaluation

We evaluated predictive performance onmultiple independent test

populations, with classification thresholds set to 0.5 for ease of

comparison. To compare the classification performance of all models,

we evaluated performance metrics, such as, accuracy, precision, recall,

F1, and AUROC. To consider average performance over all iterations

of the 5-fold cross-validation, we calculated confidence intervals for

all ROC curves and mean + standard deviations for classification

metrics. Models were ranked according to their individual

performance metrics and all metric rankings were considered equally

to give an overall model ranking. We perform Tukey’s honestly

significant difference (HSD) statistical test to compare model

performance. We investigated model explanation techniques,

including GradCAM and guided backpropagation visualisation

methods. Additionally, we trained the top-performing models on

ROI-extracted CXRs, allowing us to directly compare these ROI-

trained models with their counterparts trained on the entire CXR.

2.5.1 Model evaluation in national and
international hospital populations

Model capacity to generalise to national populations was evaluated

using external NHS hospital data from LTHT. With this evaluation we

estimate how the models perform in an unseen hospital trust, in which

patient demographics and clinical practices may vary.

Furthermore, we conducted an assessment of model

generalisability to international hospital populations, utilising data

from the Grenada Hospital in Spain (referred to as COVIDGR).

Note that our evaluation of international generalisability is limited

due to an uncontrollable label shift across patient populations (a

consequence of different labelling strategies).

2.5.1.1 Model performance under counterfactual
conditions
We also created counterfactual datasets from a subset of LTHT

data for which we also have non-COVID-19 pneumonia labels.

We adjusted the definition of the positive and control classes in
TABLE 2 Overview of individual dataset use throughout this study, including

NCCID (TRAIN) NCCID (TEST
Lung segmentation model training & testing

Model training ✓

Model performance evaluation ✓ ✓

Sub-population analysis

Counterfactual evaluation

RALE-dependent performance evaluation

For evaluation of models under counterfactual conditions we used a subset of LTHT w

Imaging Database; LTHT, Leeds Teaching Hospital Trust; ROI, Region of Interest; RAL
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LTHT data, resulting in the creation of two alternative scenarios

for comparison of model performance under counterfactual

conditions. The first scenario, referred to as LTHT (P),

encompasses a general pneumonia detection scenario where the

positive class includes non-COVID-19 pneumonia CXRs. The

second scenario, named LTHT (NP), represents a COVID-19

detection scenario where all instances of non-COVID-19

pneumonia were excluded. We evaluate models according to

standard performance metrics and perform sub-population

analysis under counterfactual conditions.
2.5.1.2 Model performance variation by patient-level
factors
Sub-population analysis was performed on LTHT data. We

assessed model performance across different patient sub-

populations, grouped according to ethnicity, age, sex, smoking

status, and the presence of comorbidities within the CXR. To

create CXR-observable comorbidity subgroups we convert patient

recorded comorbidities into a binary label that describes whether

the comorbidity is likely observable in the CXR. More detail on

this is available in Supplementary Materials. Moreover, ethnic

subgroups are defined according to NHS ethnic categories, which

we in turn group into five larger populations: Black, White,

Asian, Multiple and Other. “Other” describes any ethnicity that

does not fall under the aforementioned ethnic categories, cases

with unknown ethnicity are not considered in our analysis.

We perform one-way analysis of variance (ANOVA) tests to

evaluate the statistical significance of differences in model

performance across different subgroups. We also assessed model

error rate and its correlations with various clinical and

demographic factors. We examined the effects of CXR projection,

RALE-defined CXR severity, and proximity to the COVID-19

diagnostic window on the rates of false positive and false

negative predictions. Refer to Table 2 for a summary of which

dataset is used for each specific task.
3 Results

In this section we present the results of our study, providing

a comprehensive description of the key findings and

observations drawn from the analysis of the considered models

and datasets.
ROI-extraction, model training and evaluations.

) LTHT COVIDGR COVID-QU-Ex
✓

✓ ✓

✓

✓(subset w/known pneumonia outcomes)

✓

ith recorded non-COVID-19 pneumonia status. NCCID, National COVID-19 Chest

E, Radiographic Assessment of Lung Edema.
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3.1 Evaluation of model performance in
national and international hospital
populations

All models generalised well to a national-level but perform

poorly when applied to international datasets. Table 3 shows that

there is a marginal decrease in model performance when applied

beyond the training domain (NCCID) to the unseen NHS trust

population (LTHT).

During LTHT population testing AUROC scores ranged from

0.65 to 0.78. XCEPTION NET (8), XVITCOS (17) and SSL-AM

(16) emerged as top-performing models, with AUROCs between

0.74 and 0.78. We identify RES. ATTN. (11), CAPSNET (14),

and FUSENET (13) as the poorest performing models. Table 3

shows that RES. ATTN., the only model without a pre-training

strategy, gives the lowest performance across all evaluated

metrics. RES. ATTN., FUSENET and CAPSNET AUROCs scores

are lower than all other models, this is statistically significant to

a confidence interval of 95% (Tukey multiple comparisons tests,

p , 0:05; Supplementary Table S4).

Even top-performing models are susceptible to returning high

rates of false positives, as evidenced by universally low precision

scores (Table 3). However, even without classification threshold

tuning, the top-performing models detect COVID-19 in LTHT

populations similarly to radiologist performance in a variety of

performance metrics. Model accuracy scores ranged from 0.69 to

0.75 and one study reports the average accuracy scores of

radiologist groups as between 0.76 to 0.84, depending on

professional experience (19). Comparison with another study

shows that the best performing model AUROCs exceed

radiologist performance, with scores of 0.78 compared to 0.71 (20).

Figure 4 shows a significant drop in performance when models

are applied to an international dataset (COVIDGR). We found

CORONET gives the most substantial decrease in performance,

with model recall halving from LTHT (0.52) to COVIDGR

(0.26). This decline in performance is further evidenced by a

large drop in AUROC values from 0.70 in the national

population (LTHT) to 0.60 in the international population

(COVIDGR) (Table 3).
3.2 Model performance under
counterfactual conditions

Our exploration of model performance in counterfactual

scenarios gives insight into the impact of confounding disease

features on COVID-19 detection i.e., non-COVID-19 pneumonia.

In LTHT (NP) which removes other pneumonia types from the

population, we observed clear improvements. All models achieve

near perfect precision scores, ranging from 0.95 to 0.98, as well

as substantially improved AUROC and recall scores (Figure 4

and Table 3). XCEPTION NET, the best-performing model in

real-world LTHT cohorts, further improved with increases in

AUROC scores from 0.78 to 0.88, recall scores from 0.65 to 0.73,

and precision scores from 0.34 to 0.98 (Table 3).
Frontiers in Radiology 08
When evaluating models under the alternative counterfactual

scenario, using LTHT (P) where both COVID-19 and non-

COVID-19 pneumonia are treated as the positive class i.e.,

models become general pneumonia classifiers, model

performances diverge relative to performance on LTHT. Top-

performing models in real-world data (LTHT) decrease in

performance, as evidenced by especially reduced recall scores

(Table 3). Of the best performing models we observe the greatest

decline in AUROC in SSL-AM, from 0.74 (LTHT) to 0.66,

suggesting that SSL-AM is best able to isolate features of

COVID-19 pneumonia from non-COVID-19 pneumonia. The

worst performing models (RES. ATTN., ECOVNET, CAPSNET

and CORONET) all demonstrate improved performance on

LTHT (P), suggesting that these were unable to learn to separate

features of COVID-19 pneumonia from other pneumonia types.

When comparing top-performing models with their ROI-

trained counterparts, the reduction in their performance under

this counterfactual is greater. For example, XCEPTION NET

(ROI) AUROC falls from 0.77 to 0.71, while the decrease in

XCEPTION NET performance is less substantial. This indicates

that ROI-trained models, compared to their full CXR trained

counterparts, may have improved capacity for separating

COVID-19 from non-COVID-19 pneumonia (Figure 9B).
3.3 Subgroup analysis

During sub-population analysis with independent NHS

hospital data (LTHT), we observe disparities in model

performance across demographic subgroups. We consider sex,

ethnicity, age, smoking, and subgroups with comorbidities that

are likely observable in a CXR. We report smoking and

comorbidity analysis together due to overlap in clinical interest.

Subgroups are described in detail in Section 2.

3.3.1 Sex
We found that, according to AUROC values, models perform

better in male populations compared to female populations

(Figure 5 and Supplementary Table S5). There is a consistent

pattern of increased false negative predictions in the female

population i.e., a greater proportion female COVID-19 cases are

missed (Figure 6). Statistical significance in model AUROC

disparities is confirmed in 5 out of 10 models (One-way

ANOVA, p , 0:05; Supplementary Table S6).

Sex bias persists even under counterfactual conditions; with the

exception of XVITCOS, we observe this bias in models when

applied to populations without alternative pneumonia types,

LTHT(NP). This suggests that this bias cannot be due to

differences in the prevalence of the non-COVID-19 pneumonia

across the sexes. Upon further examination using real-world data

(LTHT), we see that sex bias is not mitigated by ROI-extraction,

the ROI-trained version of XVITCOS returns a higher rate of

false negatives in the female population compared to the male

population which is reflected in a larger recall scores in males

(0.75) compared to females (0.62) (Supplementary Table S5

and Figure 6).
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3.3.2 Ethnicity
We also see statistically significant model performance

disparities across ethnic subgroups (One-way ANOVA, p , 0:05;

Supplementary Table S6). XCEPTION NET AUROCs vary from
FIGURE 4

(Continued)
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0.72 to 0.91 (Supplementary Table S5). All models appear to

perform better when applied to Black and Asian groups, with

significantly fewer false negatives. Supplementary Table S5 shows

all models return higher precision score when applied to Black
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FIGURE 4

ROC curves of COVID-19 detection. Each row presents a different model, the first of each row presents ROC curves for all test data, the following
columns present direct comparison between NCCID ROC curves and the dataset of interest, corresponding AUROC values can be found in
Table 3. Shaded regions correspond to 95% confidence interval. (A–E) ROC curves of COVID-19 detection. (F–J) ROC curves of COVID-19
detection. ROC, Receiver Operating Characteristic; NCCID, National COVID-19 Chest Imaging Database; LTHT, Leeds Teaching Hospital Trust;
AUROC, Area Under the Receiver Operating Characteristic.
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FIGURE 5

ROC curves of COVID-19 detection in smoker, sex, ethnicity and age subgroups for top-performing models: (A) XCEPTION NET, (B) SSL-AM, and (C)
XVITCOS. The top row presents model performance in the real-world scenario and the bottoms rows present model performance under
counterfactual conditions, LTHT (P) and LTHT (NP). Subgroup population size is referred to by n. Subgroups that do not exist in LTHT (P) or LTHT
(NP) populations are excluded. Shaded regions correspond to 95% confidence intervals. (A) ROC curves of XCEPTION NET performance in
smoker, sex, ethnicity and age subgroups. (B) ROC curves of SSL-AM performance in smoker, sex, ethnicity and age subgroups. (C) ROC curves of
XVITCOS performance in smoker, sex, ethnicity and age subgroups. ROC, Receiver Operating Characteristic; AUC, Area Under Curve; LTHT, Leeds
Teaching Hospital Trust.
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and Asian groups compared to White groups. XCEPTION NET

precision falls from 0.73 (Black) and 0.52 (Asian) to 0.37

(White). This disparity of performance is also observed in the

counterfactual without other pneumonia types, LTHT (NP). The

performance gap between White, and Black and Asian groups, is

unchanged with the use of ROI-trained models i.e., training on

ROI CXRs has no effect.

3.3.3 Age
We can observe similar statistically significant disparities in

model performance across different age groups (One-way

ANOVA, p , 0:05; Supplementary Table S6). Generally, models

perform best in the 50–74 age group, which is in line with

COVID-19 prevalence by age group in the training data
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(Table 4). However, we observe that top-performing models

appear more likely to return false negatives for the 75–99 age

group, an age group at greater risk of adverse COVID-19

outcomes (Figure 6). Under counterfactual conditions, where all

pneumonia types are included in the positive class, we see

XCEPTION NET and XVITCOS models improve in performance

in the 75–99 age group, indicating a reduced ability to separate

COVID-19 pneumonia from non-COVID-19 pneumonia in older

age groups (Figure 6). These comparisons should be interpreted

cautiously, considering that the prevalence of non-COVID-19

pneumonia differs among subgroups.

Figure 6 shows that models return the lowest false positive rate

in the youngest age group i.e., 0–24 years, although this may be due

to low prevalence of COVID-19 in this age group as indicated by
frontiersin.org
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FIGURE 6

Average FPRs and FNRs of top-performing models, (A) XCEPTION NET, (B) SSL-AM, and (C) XVITCOS, and their ROI-trained counterparts in LTHT
subgroups. Subgroup population size is referred to by n. Error bars correspond to standard deviation across cross-validations. FNR, False Negative
Rate; FPR, False Positive Rate; ROI, Region of Interest; LTHT, Leeds Teaching Hospital Trust.
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combined low false positive rates and low precision scores

(Supplementary Table S5). XVITCOS (ROI) gives improved

performance in this age group compared to XVITCOS, with

AUROC scores rising from 0.73 to 0.79. However, other ROI-

trained models show a trend in reduced performance in this age

group when compared to full CXR-trained counterparts, more so

than other age groups (Figure 6). Comparison of SSL-AM and

SSL-AM (ROI) shows a drastic fall in AUROC scores from 0.78

to 0.56 (Supplementary Table S5). Moreover, under the

counterfactual condition in which models become general

pneumonia classifiers, LTHT (P), we find that models perform

particularly poorly in this age group (Figure 5); which could be
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interpreted as evidence of better separation of COVID-19 from

non-COVID-19 pneumonia. We also observe that under LTHT

(NP) conditions, with non-COVID-19 pneumonia removed,

models perform better than in real-world populations of this

subgroup (LTHT) e.g., XVITCOS AUROC scores increase from

0.73 to 0.96 (Figure 5).

3.3.4 Smoking status & comorbidities
We observe a universal decline in model performance in the

subgroup with CXR observable comorbidities. For 9 out of 10

models we evaluate statistically significant differences in model

performance (AUROC) in these groups (One-way ANOVA,
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TABLE 4 Demographic subgroups of training and test data.

Sex (n) Age Ethnicity (n)

Male Female Unknown Asian Black Multiple Other White Unknown

NCCID
Positive 61% (5,113) 38% (3,215) 0% (9) 67+ 17 13% (1,120) 8% (739) 1% (118) 4% (379) 67% (5,592) 5% (389)

41% (8,337)

Negative 58% (7,122) 42% (5,054) 0% (2) 70+ 17 14% (1,687) 7% (913) 2% (230) 3% (421) 70% (559) 3% (3,680)

59% (12,178)

N ¼ 20,515

NCCID TEST
Positive 71% (190) 29% (78) 0% (0) 66+ 15 11% (29) 7% (19) 1% (4) 5% (13) 72% (192) 4% (11)

33% (268)

Negative 64% (357) 36% (199) 0% (0) 69+ 16 12% (67) 8% (42) 3% (14) 4% (20) 71% (392) 4% (21)

67% (556)

N ¼ 824

LTHT
Positive 17% (1,061) 14% (691) 0% (0) 72+ 16 10% (177) 7% (125) 1% (8) 3% (47) 67% (1,171) 13% (224)

16% (1,752)

Negative 83% (5,034) 86% (4,417) 0% (1) 63+ 26 6% (549) 2% (117) 1% (64) 1% (113) 59% (5,566) 32% (2,983)

84% (9,452)

N ¼ 11,204

Age is presented as mean+ standard deviation. Sex and ethnicity are presented both as absolute counts (n) and as percentages relative to the COVID-19 positive/negative

cohort. NCCID, National COVID-19 Chest Imaging Database; LTHT, Leeds Teaching Hospital Trust; ROI, Region of Interest.
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p , 0:05; Supplementary Table S6). However, model performance

on these subgroups could not be evaluated under counterfactual

scenarios due to a lack of data.

In addition, we find that all models perform worse when applied

to subgroups with a history of smoking (both former and current

smokers) e.g., XCEPTION NET AUROC falls from 0.79 in

subgroups without any smoking history to 0.73 and 0.51 in former

and current smoker subgroups, respectively (Supplementary

Table S5). We see increased false negative rates in these groups

compared to non-smokers (Figure 6). Under counterfactual

conditions where non-COVID-19 pneumonia is removed from the

population, we see that model performance disparities between

groups of different smoking status do not decrease. Models still

perform best when applied to subgroups without any history of

smoking, and performance disparities between former smoker and

current smoker groups is sustained (Figure 5).
3.4 Model error analysis

We explore the influence of clinical and experimental factors on

model error rate. As the best performing model, we used

XCEPTION NET predictions for this analysis. During NCCID test

population evaluation, we examined the relationship between the

frequency of false positives and the recorded distance from CXR

exam date to swab date-derived diagnostic window. According to

this analysis, COVID-19 negative CXRs acquired in close

proximity to the COVID-19 diagnostic window are more

frequently predicted as COVID-19 compared to those obtained

further away, with XCEPTION NET delivering the most false

positives for CXRs 1-5 days before or after the diagnostic window

(Figure 7A). We examine the correlation of incorrect COVIDGR
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predictions with radiologist-defined CXR severity. For this

evaluation we characterised each CXR according to RALE criteria

(21), labelling as “NORMAL-PCR+”, “MILD”, “MODERATE” and

“SEVERE”. We observe a strong pattern of increasing frequency of

false negative predictions for CXRs with milder features of

COVID-19 disease i.e., MILD CXRs are more frequently missed.

As expected, we find that 99% NORMAL-PCR+ CXRs are missed

i.e., cases in which radiologists were unable to identify COVID-19

features. Even MILD and MODERATE COVID-19 CXRs exhibit

high rates of false negatives, with COVID-19 being missed �94%

and �70% of the time (Figure 7B). We find that CXRs categorised

as SEVERE are less frequently missed, yet 32.9% are still falsely

classed as COVID-19 negative.

With XCEPTION NET predictions, we evaluate the relationship

between the projection view of the CXR and the frequency of false

positive predictions. We found AP projected CXRs are more

commonly misidentified as COVID-19 compared to PA projected

CXRs (Figure 7C). Figure 7C also shows that ROI-trained

XCEPTION NET makes more false positive predictions in AP

projected CXRs than the full CXR trained XCEPTION NET.
3.5 Explainable AI highlights reliance on
spurious correlations

To investigate model reliance on spurious features, we create

saliency maps using GradCAM and gradient backpropagation

and examine the features that have the most influence on model

predictions for both full CXR and ROI-trained models. We

explore true positive COVID-19 predictions made by

XCEPTION NET (Figure 8). Review of GradCAM saliency maps

shows model reliance on both COVID-19 pathology and
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FIGURE 7

Analysis of XCEPTION NET prediction error. Frequency of (A) false positive predictions on NCCID TEST data according to proximity of CXR exam date
to the diagnostic window, (B) false negative predictions on COVIDGR according to RALE-defined CXR severity and (C) false positive predictions on
LTHT data according to CXR projection, alongside evaluation of ROI-trained XCEPTION NET false positive frequency. RALE, Radiographic
Assessment of Lung Edema; ROI, Region of Interest; CXR, Chest x-ray; AP, Antero-posterior; PA, Postero-anterior.

FIGURE 8

Saliency maps of correct XCEPTION NET predictions of COVID-19 positive CXRs. CXRs are sourced from the LTHT dataset and saliency maps are
generated with (A) Gradient backpropagation and (B) GradCAM. LTHT, Leeds Teaching Hospital Trust; CXRs, Chest x-rays.
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undesirable “shortcut” features. We found that clinically-relevant

regions were consistently highlighted, with regions of significance

often localised to the lower lung areas, as well as the heart

margins of the cardiac silhouette. We observed similar activations

in gradient backpropagation saliency maps. However, with this

improved granularity we also observe highlighted support devices

(i.e., heart monitor wiring, portacaths or endotracheal tubing)

and radiograph annotations, possibly representing reliance on

spurious “shortcut” features (Figure 8B).
3.6 Comparative validation of the impact of
lung segmentation on model performance

We find that training models on ROI-extracted CXRs does not

improve model performance. Against expectation, ROI-trained

model performance is marginally worse compared to full CXR

trained models when testing in NHS centre populations (LTHT).

Notably, for XCEPTION NET and XVITCOS models, we find

that training on ROI CXRs does not worsen performance in
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international population, instead performance marginally

improves (Figure 9).

Manual inspection of the ROI-extracted CXRs showed that,

with the use of a post-processing algorithm, lung regions were

preserved (Supplementary Figure S4). Without loss of clinical

features, we propose that the decrease in model performance is

linked to the exclusion of non-clinical “shortcut” features, such

as radiograph annotations, which have been identified in saliency

maps of full CXR-trained models (Figure 8). These “shortcut”

features are typically located outside the thoracic area, and are

cropped out during ROI extraction (Supplementary Figure S4).

However, while non-clinical features that exist outside the lung

fields can be removed by cropping to the ROI, general health

indicators e.g., presence of support devices, bone density, etc.,

remain in view and are highlighted in saliency maps, suggesting

influence over model predictions (Figure 10).

Moreover, we find that ROI-trained models are worse at

distinguishing COVID-19 from other pneumonia types, as

evidenced by our evaluation of ROI-trained models in a subset of

the LTHT populations with known pneumonia outcomes: LTHT
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FIGURE 9

ROC curves of (A) SSL-AM, (B) XCEPTION NET, and (C) XVITCOS model evaluations on each dataset and their ROI-trained counterparts. Shaded
regions correspond to the 95% confidence intervals. ROC, Receiver Operating Characteristic; AUC, Area Under Curve; ROI, Region of Interest.

FIGURE 10

Gradient backpropagation feature attribution maps of true positive COVID-19 predictions. Saliency maps are generated for (A) XCEPTION NET
predictions and (B) XCEPTION NET (ROI) predictions. XCEPTION NET (ROI) is trained and evaluated on CXRs cropped to the region of interest,
while XCEPTION NET is trained on full CXRs. LTHT, Leeds Teaching Hospital Trust; CXRs, Chest x-rays; ROI, Region of Interest.
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(P) and LTHT (NP). ROI-trained models produce a much higher

error rate in non-COVID-19 pneumonia populations. We

observe that the ROI-trained version of XCEPTION NET

performs much worse than its full CXR trained counterpart, with

error rates of 0.51 compared to 0.40.
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4 Discussion

The main goal of this research is to evaluate the use of deep

learning approaches for the detection of COVID-19. We aim to

identify the limitations of existing models to improve model
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readiness for implementation into clinical settings in the event of

future sudden outbreaks.

When comparing our main findings with the existing literature

we found that the model performances evaluated in this study

contradict initial reports of model performance in many of the

source publications, many of which report AUROC scores as

exceeding 0.90. We identify several methodological flaws in this

literature. Roberts et al. (4) considered 62 studies, including

many of the studies selected for this benchmarking, and

identified substantial limitations that placed the majority of

models at high risk of bias (4). The main limitations considered

by Roberts et al. (4) were the use of inappropriate training data,

inadequate external validation and lack of subgroup evaluation

(4). An additional critical analysis identifies that the data used in

source publications put deep learning models at high risk of

learning spurious “shortcuts” (5). Our retrospective study

corrects these issues, with the use of multi-centre hospital data

and extensive model validation on independent datasets. We

report new findings in deep learning model performance and

consider the major pitfalls in the development of deep learning

models for clinical application.

Radiologists achieve performances of 0.78 AUROCS, as

reported in (20). Although direct comparison between radiologist

performance and model performance is inappropriate due to

differences in test populations, at face-value deep learning models

show promise as an assistive tool for use in future pandemics.

A comparison of model performance shows that the best

performances on the real-world LTHT population are achieved

by supervised deep CNN models that employ transfer learning.

Pre-trained with ImageNet weights, top-performer XCEPTION

NET can be characterised by the application of depth-wise

separable convolutional operations for more efficient use of

model parameters. The SSL-AM and XVITCOS models give the

next strongest performances. SSL-AM is pre-trained with

CheXpert data under self-supervised conditions to fully leverage

the underlying data structures of a common domain. XVITCOS

is a vision transformer, pre-trained on CheXpert, this approach

uses positional embedding and self-attention to learn efficient

CXR representations that incorporate both local features and

global dependencies. In contrast, RES. ATTN. is the only model

that does not apply pre-trained weights, and records the lowest

performance metrics out of all evaluated models. From this we

can speculate that transfer learning, domain-specific or otherwise,

is needed to achieve strong model performance.

While classification metrics indicate adequate model

performance, this study gives conclusive evidence that DL

models perform poorly on clinically complex cases i.e., where

comorbidities/confounding features are present, and frequently

fail at separating COVID-19 from non-COVID-19 pneumonia.

For example, decreased model performance is observed in

populations with an increased incidence of clinically relevant

underlying conditions e.g., the 74–99 age group, active/previous

smokers, etc., these complex cases are disproportionately

represented in hospital populations. Therefore, our findings

suggest that existing COVID-19 detection models have limited

value as an assistive tool for frontline radiologists, who are tasked
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with making challenging diagnoses for high risk patients that

require urgent treatment.

These model failings can, in part, be attributed to inadequate

data. In the absence of labels for alternative pathologies/classes

supervised DL models are not equipped to learn to separate the

similar features of different pathologies, e.g., non-COVID-19

pneumonia, emphysema, lung cancer, etc. Where pathologies co-

occur more frequently with the class of interest than the negative

class, models are vulnerable to blindly learning these features as

“shortcuts” (5). Scarcity of multi-label datasets and widespread

inadequacies in model validation highlight the need for clinicians

and deep learning researchers to address the current shortfalls in

data collection and to define criteria for clinically-oriented DL

model development.

We tested models on the COVIDGR dataset to evaluate

performance in international populations (Spain) where typical

NHS clinical pathways and data acquisition protocols do not

apply. Evaluation in COVIDGR shows that models generalise

poorly outside NHS populations. However, in addition to

changes in population characteristics, there are critical differences

in how COVID-19 was defined. The diagnostic window we use

to define COVID-19 cases in the NHS populations (�14=þ 28

days around RT-PCRþ swab) was decided under clinical

guidance taking into consideration: the importance of early

detection; poor RT-PCR sensitivity, particularly with low viral

load as is observed in early stages of infection; and, typical time

for CXR resolution post-infection. This is in stark contrast to

COVIDGR which was pre-defined with a much shorter

diagnostic window of 24 h before or after a positive RT-PCR

swab. This raises the issue that without a standardised COVID-

19 labelling protocol, which should balance technical feasibility

with clinical utility, detection models are vulnerable to poor

generalisability as a consequence of label shift. The likely use of

open-source datasets in emergent pandemic situations, which can

be compiled with inconsistent labelling as seen with COVID-19,

highlights the importance of pro-active collaboration. For

example, without clinical input deep learning researchers may

unintentionally adopt a disease definition that maximises

quantitative metrics i.e., accuracy, precision, recall etc., at the

expense of clinical utility.

Moreover, we observe increased rates of false positive predictions

in negative COVID-19 CXRs acquired close to the diagnostic

window. With this evidence of increased diagnostic uncertainty

and the understanding that, for a large portion of COVID-19

CXRs, disease features persist for a long time after infection, we

suggest that current labelling strategies result in a noisy ground

truth. A portion of post-COVID-19 resolved CXRs are either

incorrectly considered COVID-19 or persistent disease features

enter the control population. To reconcile this source of label

noise, we propose the use of an additional category of COVID-19

disease which would separate chronic changes, i.e., persistent

disease features post-infection, from active COVID-19 infection.

Additionally, the detection of COVID-19 through RT-PCR is

flawed with low sensitivity and high rates of false negatives.

Therefore, deriving COVID-19 status from RT-PCR testing alone

adds further noise to the ground truth labels. In practice, the
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clinical diagnosis of COVID-19 takes into account more than just

RT-PCR outcomes, e.g., clinical signs and symptoms, recent

exposures, and patient medical history. In fact, 20% of

symptomatic patients receive a clinical diagnosis of COVID-19

despite negative RT-PCR testing (22). We further propose a multi-

modal labelling approach that would incorporate all relevant

patient data, this would drastically reduce ground truth noise and

benefit deep learning models, particularly supervised models.

In evaluating model performance awareness of bias and

fairness is critical. Inadequate evaluation can allow biased deep

learning models to amplify systemic healthcare disparities in

under-served communities. Our evaluation of the models shows

varied performance across different sub-populations, with top-

performing models exhibiting obvious demographic biases,

including unequal performance depending on ethnicity, sex and

age. However, clinical evidence suggests that observed model

performance disparities may be a consequence of varied disease

severity between demographics. Generally, models perform better

when applied to demographics which experience COVID-19

more severely, e.g., ethnic minorities, males, and older age groups

(23, 24). The clinical factors affecting the severity of COVID-19

infection are still not fully understood. Before clinical

implementation, a greater understanding is required to determine

if these disparities in model performance might result in greater

health inequity.

Crucially, our findings show that ROI-extraction was

insufficient to prevent these disparities. Therefore, if bias is

identified researchers should be cautioned against applying

segmentation techniques with the assumption that the removal of

background noise will fully mitigate the bias. Additionally, we

find that cropping CXRs to the ROI prior to training does not

improve overall model performance. This contradicts previous

studies in which ROI-trained models performed better (25). A

key difference between their approaches and ours is that we

undertake a more rigorous methodology in which our

segmentation model is trained on an external dataset. Whereas

conflicting studies typically use the same data for both

segmentation training and classification training, an approach

that is not supportable in a clinical setting (25).

We evaluated the impact of CXR projection on model

predictions, as recommended by Roberts et al. (4). AP projected

CXRs are used when the patient is not able to get into the

correct position for the standard PA projection, for example, if

the patient is too ill or is in isolation (26). As a result, algorithms

are at risk of learning to associate COVID-19 with projection rather

than the clinically-relevant CXR features. We observe over-

representation of AP CXRs in the disease class of the training

data, 83% of positive COVID-19 images were AP projected,

whilst only 65% of negative COVID-19 images were AP

projected. Saliency maps provide evidence that projection may

have been a spurious shortcut features, as they consistently

highlight features around heart borders, a region of the CXR that

varies greatly depending on projection. Moreover, AP CXRs

predictions are more commonly false positive.

Our evaluations of a wide range of models suggests CXRs alone

may not be sufficient to detect COVID-19. In a head-to-head
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comparison, performance metrics indicate that the top models

are unable to compete with the gold standard clinical test, RT-

PCR. Models often fail to separate COVID-19 from other

pneumonia types and are unable to detect COVID-19 in RALE-

defined NORMAL-PCR+ cases, in which 99% of COVID-19

positive CXRs are missed. Here, it is important to note that not

all COVID-19 infections develop into COVID-19 pneumonia, in

which case diagnostic features of COVID-19 cannot be observed

in the CXR and even the very best DL models would be unable

to detect COVID-19 infection.

In practice, it is rare for a disease diagnosis to be wholly

determined by a single test. In fact, reducing the source of

diagnostic information to a single modality risks losing

diagnostic features of a disease. Where imaging is incongruous

with patient health, clinicians often rely on additional sources of

information. The incorporation of multi-modal information e.g.,

exposure data, symptoms, medical history, etc. during data

curation should be more widely adopted to facilitate

the development of improved DL models for the detection

of COVID-19.
5 Conclusion

To conclude, clinical guidance is essential for the development

of reliable predictive models, for disease diagnosis and medical

image interpretation. In particular, we highlight the need for

early and consistent disease definition, in order to ensure model

generalisablity across international and jurisdictional populations.

Disease definitions should also be continually reviewed for

clinical utility, for instance, we suggest COVID-19 detection

models could be improved by the separation of CXRs that

exhibit long-term changes as a result of prior infection from

CXRs of patients with active infection. To the extent that

comparison is possible, the deep learning models evaluated detect

COVID-19 with apparent similar performance to radiologists.

However, both fall short of the gold standard clinical test, RT-

PCR. Moreover, COVID-19 detection models have extreme

difficulty identifying COVID-19 in complex clinical cases, as

demonstrated by our evaluation of models in subgroups with

higher incidences of confounding pathologies and comorbidities.

Models are also vulnerable to learning “shortcut” features.

Neither of these issues are mitigated by the use of lung

segmentation. Ultimately, we suggest that a multi-modal

approach under clinical guidance, where additional clinical

factors are incorporated, is required to improve model

performance; with the aim of developing a reliable assistive tool,

on par with the existing gold standard, to help mass diagnosis in

possible future outbreaks.
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