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Automated intracranial vessel
segmentation of 4D flow MRI data
in patients with atherosclerotic
stenosis using a convolutional
neural network
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School of Medicine, Chicacgo, IL, United States, 4Department of Experimental Physics V, University of
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Introduction: Intracranial 4D flow MRI enables quantitative assessment of
hemodynamics in patients with intracranial atherosclerotic disease (ICAD).
However, quantitative assessments are still challenging due to the time-
consuming vessel segmentation, especially in the presence of stenoses, which
can often result in user variability. To improve the reproducibility and
robustness as well as to accelerate data analysis, we developed an accurate,
fully automated segmentation for stenosed intracranial vessels using
deep learning.
Methods: 154 dual-VENC 4D flow MRI scans (68 ICAD patients with stenosis, 86
healthy controls) were retrospectively selected. Manual segmentations were
used as ground truth for training. For automated segmentation, deep learning
was performed using a 3D U-Net. 20 randomly selected cases (10 controls, 10
patients) were separated and solely used for testing. Cross-sectional areas and
flow parameters were determined in the Circle of Willis (CoW) and the sinuses.
Furthermore, the flow conservation error was calculated. For statistical
comparisons, Dice scores (DS), Hausdorff distance (HD), average symmetrical
surface distance (ASSD), Bland-Altman analyses, and interclass correlations
were computed using the manual segmentations from two independent
observers as reference. Finally, three stenosis cases were analyzed in more
detail by comparing the 4D flow-based segmentations with segmentations
from black blood vessel wall imaging (VWI).
Results: Training of the network took approximately 10 h and the average
automated segmentation time was 2.2 ± 1.0 s. No significant differences in
segmentation performance relative to two independent observers were observed.
For the controls, mean DS was 0.85±0.03 for the CoW and 0.86± 0.06 for the
sinuses. Mean HD was 7.2 ± 1.5 mm (CoW) and 6.6 ± 3.7 mm (sinuses). Mean
ASSD was 0.15± 0.04 mm (CoW) and 0.22± 0.17 mm (sinuses). For the patients,
the mean DS was 0.85 ±0.04 (CoW) and 0.82 ± 0.07 (sinuses), the HD was 8.4 ±
3.1 mm (CoW) and 5.7 ± 1.9 mm (sinuses) and the mean ASSD was 0.22±
0.10 mm (CoW) and 0.22± 0.11 mm (sinuses). Small bias and limits of
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agreementwereobserved in both cohorts for the flowparameters. The assessment of
the cross-sectional lumen areas in stenosed vessels revealed very good agreement
(ICC: 0.93) with the VWI segmentation but a consistent overestimation (bias ± LOA:
28.1 ± 13.9%).
Discussion: Deep learning was successfully applied for fully automated
segmentation of stenosed intracranial vasculatures using 4D flow MRI data. The
statistical analysis of segmentation and flow metrics demonstrated very good
agreement between the CNN and manual segmentation and good performance
in stenosed vessels. To further improve the performance and generalization,
more ICAD segmentations as well as other intracranial vascular pathologies will
be considered in the future.

KEYWORDS

atherosclerosis, intracranial, segmentation, deep learning, stenoses, 4D flow, stenosis,

convolutional neural network
1 Introduction

Intracranial 4D flow magnetic resonance imaging (MRI) is a

promising imaging modality enabling 3D visualization and

quantification of blood flow values (1), and flow-related

parameters (2). Previous studies already demonstrated that this

phase-contrast (PC) technique can be successfully applied to a

variety of pathologies, for example, to explore the hemodynamic

alterations due to aneurysms (3), cerebral arteriovenous

malformations (4) and intracranial atherosclerotic disease

(ICAD) (5). The quantitative analysis of intracranial 4D flow

MRI, however, still poses several practical challenges due to its

complexity and time-consuming manual 3D segmentation

required for quantification, especially in the presence of

pathologies. Besides the complicated intracranial vessel geometry,

structural and morphological changes due to atherosclerotic

plaque formation can aggravate manual segmentation, thus

leading to low reproducibility. For example, vascular stenoses can

lead to flow artifacts and signal loss, hampering an accurate

segmentation of the vessel. To improve the accuracy,

reproducibility, and robustness of the analysis of hemodynamic

parameters and to accelerate data analysis, an accurate,

automated segmentation algorithm for stenosed intracranial

vessels is required. A large variety of techniques have been

developed to address the problem of semi or fully-automatic

vessel segmentation (6). While previous segmentation approaches

already drastically improve temporal efficiency in comparison to

manual segmentations, they still often require manual labor and

lack robustness and consistency, therefore often requiring user

interactions from the technologist (7).

With the recent rise of deep learning and convolutional neural

networks (CNN), new algorithms have been proposed, promising

more reliable and less user-dependent vascular segmentation (8).

In particular, the introduction of the U-NET and its variants

(9, 10) led to a broad range of new techniques for vessel

segmentation using clinical vessel imaging techniques, already

achieving very good agreement in comparison to manual

segmentations performed by radiologists (7, 11). For example,

U-NET was successfully applied for segmentations of cerebral
02
vessels in time-of-flight (TOF) magnetic resonance angiography

(MRA) images in patients with cerebrovascular disease (12) and

for digital subtraction angiography (DSA) images in patients with

intracranial aneurysms (13).

However, up to now, most deep learning-based segmentation

approaches for intracranial vessels use TOF or contrast-enhanced

(CE) MRA images, as well as DSA, or computed tomography (CT)

angiography images while there are no approaches based on 4D

flow MRI to the knowledge of the authors at the time of writing

this manuscript. For intracranial 4D flow MRI applications, non-

deep learning algorithms such as centerline processing schemes (5,

14) or using the standard difference of mean velocity (15) were

proposed. The use of 4D flow MRI for deep-learning-based

segmentations, however, would have several advantages in

comparison to other imaging and segmentation modalities: First, no

registration is required to spatially match the segmentation of a

different imaging modality with the 4D flow MRI measurement,

which can be computationally expensive and prone to errors.

Secondly, techniques such as dual-VENC-4D flow MRI enable the

assessment of morphological and functional information of the

complete vascular tree including both the arteries and the veins in

a single measurement (1) while with TOF usually, two separate

measurements (angio- and venograms) are necessary. Finally, the

use of deep learning has the potential to reduce the aforementioned

dependency on user interactions from the technologist.

Recently, Berhane et al. proposed a U-NET-based convolutional

neural network technique for the automated segmentation of the

aorta using phase-contrast angiography (PCMRA) images derived

from aortic 4D flow MRI (16). Here, the automated segmentation

achieved an excellent agreement with manual segmentations,

however, its use for intracranial 4D flow MRI and its performance

in pathology such as intracranial atherosclerotic stenosis still needs

to be investigated.

Therefore, in this study, the neural network developed for aortic

4D flow measurements (16) was re-trained for the automated vessel

segmentation of intracranial 4D flow MRI in healthy controls and

intracranial atherosclerotic stenosis patients. To assess possible

differences in segmentation performance between cases with and

without disease, the results were compared with segmentations of
frontiersin.org
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TABLE 2 Scan parameters for dual-VENC 4D flow MRI.

Parameters\group Controls ICAD
TR [ms] 82.6–85.4 42.0–86–8

TE [ms] 3.25–3.52 3.25–3.41

Voxel size [mm] 0.98 0.98–1.11

Slice thickness [mm] 1.0 1.0–1.2

Number of slices (NSlices) 40–44 26–60

Number of cardiac phases (NCardiacPhases) 5–11 5–18

Winter et al. 10.3389/fradi.2024.1385424
healthy controls. For performance assessment, Dice score, Hausdorff

distance, and average symmetrical surface distance were computed

using two independent manual observers as reference. In addition,

parameters such as peak velocity, flow rate, and flow conservation

error were computed and compared to the manual analyses.

Furthermore, the segmentation performance in stenosed vessels

was analyzed and compared with segmentation results based on

black blood vessel wall imaging (VWI).

Flip angle [°] 15 15

Low venc/high venc [m/s] 0.5-0.6/1.0–1.2 0.5–0.6/1.0–1.2

MRI system Prisma Fit Skyra
2 Methods

2.1 Study cohort

As part of a clinical ICAD protocol at Northwestern Memorial

Hospital, 4D flow MRI scans were acquired in ICAD patients. 35

cases expressed severe stenosis with >70% constriction, 25 cases

expressed moderate stenosis with >50% and <70% constriction,

and 5 cases had mild stenosis with <50% constriction. Additional

3 cases didn’t have a significant stenosis. The data acquired

between 2014 and 2022 were retrospectively selected (n = 68,

n = 30 women) for this institutional review board (IRB) approved

study. All ICAD-related stenoses were confirmed using the

clinical electronic medical record, MRI/MRA, and MR vessel wall

imaging review by two interventional neuroradiologists (RA, SAA).

In addition, 4D flow MRI data of healthy volunteers (n = 86,

n = 43 women) was included in this study. Informed consent was

obtained from all volunteers. An overview of all patients and

volunteers can be found in Table 1 (White background: all cases.

Shaded background: Testing cohorts only).
2.2 MRI

Patients were scanned using a clinical MRI protocol including

4D flow MRI and VWI with 3D-T1-SPACE (17) (sampling
TABLE 1 Sex, median age, BMI, and heart rate (max and min values in
brackets) for the control and ICAD group, respectively (top: all cases.
Bottom: testing cases).

Group N Age
(years)

BMI
(kg/m2)

Heart rate
(bpm)

Controls (all) 86
(43 female)

55 (19–76) 27.3
(19.4–49.1)

78.1
(50.0–121.1)

ICAD (all) 68
(30 female)

64 (34–85)*** 28.0
(19.9–41.3)

86.4
(69.1–138.1)**

Controls (test) 10
(7 female)

30 (23–76) 26.5
(19.4–38.7)

90.8
(66.0–121.1)

ICAD (test) 10
(6 female)

64 (36–76)† 29.7
(21.9–35.9)

86.4
(69.1–138.2)

The heart rate was determined with HR ¼ 1=period, using the estimation

period ¼ (NCardiacPhases þ 1) � TR for the cardiac periods. Statistical significance

between controls and ICAD (all cases).

All results are stated as median values (in bold) and range values (in brackets).

*p < 0.05.

**p < 0.01.

***p < 0.001. Statistical significance between controls and ICAD (test cases).
†p < 0.05.
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perfection with application-optimized contrasts using different

flip angle evolutions). In addition, 4D flow MRI scans were

acquired in healthy volunteers. The VWI parameters were:

Spatial resolution 0.52 mm × 0.52 mm × 0.70 mm, TR = 800 ms,

TE = 23 ms. The relevant scan parameters for the 4D flow scans

can be found in Table 2. For both cohorts kt-GRAPPA

accelerated (R = 5) dual-VENC 4D Flow MRI was utilized (1).

The field of view (FOV) was positioned to cover the circle of

Willis (CoW), including the basilar artery (BA), left and right

internal carotid arteries (ICA), middle cerebral arteries (MCA),

anterior cerebral arteries (ACA), the posterior cerebral arteries

(PCA), the posterior communicating arteries (PCOM), the

superior cerebral arteries (SCA), the vertebral arteries (VA) as

well as the superior sagittal sinus (SSS), straight sinus (STR) and

left and right transverse sinus (TS). All measurements were

performed at 3 T using a Prisma Fit or Skyra (both Siemens

Healthineers Inc., Erlangen, Germany).
2.3 Post-processing

A custom-built MATLAB (The MathWorks, Natick, USA) tool

was used for Eddy current correction, noise masking, and anti-

aliasing of the phase difference images (1, 18). Phase-contrast

MRA images (PCMRA) were calculated using the pseudo-

complex difference method (Equations 1, 2) (1, 3):

PCMRA ¼

1
N

XN
i¼1

IMag
i � sin p � vi

VENC

� �
� vi,

1
N

XN
i¼1

IMag
i ,

vi ,
2
3
VENC

otherwise

8>>>>><
>>>>>:

(1)

with

vi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2x,i þ v2y,i þ v2z,i

q
(2)

Here, IMag
i denotes the magnitude images derived from the 4D

flow measurement, i the index and N the total number of cardiac

phases (1, 3).

For the creation of training and validation data, the

PCMRA images were manually segmented in MIMICS (Mimics,
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Materialise, Belgium). This was achieved by applying a threshold to

remove noisy voxels. Subsequently, the neurovascular architecture

was identified using the region-growing tool in MIMICS to select

areas of intracranial vessel voxels. Noisy voxels captured with the

region-growing processes were manually removed from the

segmentation. All cases were subsequently edited by a second

investigator of more than 10 years of experience (PW). This

second step was to achieve consensus segmentations so that these

Observer 1 segmentations can serve as “ground truth”. Due to

the lack of availability of the commercial software MIMICS, the

second user changed to the open-source software 3DSlicer (Slicer

5.2.2., SlicerCommunity) ensuring repeatability. All initial

segmentations were performed by operators with at least 2 years

of experience (MA, JM, AR).
FIGURE 1

(A) Layer structures of the CNN. A symmetrical design is used based on the 3
are implemented into each layer. Dense blocks enable the regulation of th
through the CNN by using concatenation after each convolution layer. D
activation with a linear rectifier unit (ReLu) a 3 × 3 × 3 convolution, and a d
patient and control data into the training and validation datasets.
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2.4 Automated segmentation using
convolutional neural networks

For the automated segmentation, the CNN developed by

Berhane et al. was used (16). The network consists of a 3D

U-Net [(10), see Figure 1A]. The original convolution layers were

replaced by dense blocks (19), as described previously (16). For

each dense block, batch normalization, a linear rectifier unit

(ReLu), a 3D convolution (3 × 3 × 3), and a dropout layer

(dropout rate 0.1) were computed. For the training, the

calculated PCMRA images [see Equation (1)] were center-

cropped or padded to obtain a fixed dimension of 224 × 192 × 64

and used as input for the CNN. No patching of the data was

used. Instead, center-cropping was applied to reduce dimensions,
D U-Net architecture. Different from the original approach, dense blocks
e growth of the CNN while efficiently applying feature maps extracted
ense blocks consist of the serial application of batch normalization,
ropout layer (dropout rate 0.1). (B) Chart illustrating the splitting of the
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since the intracranial vessels are always located around the center.

Furthermore, no data augmentation was performed since the

intracranial 4D flow scans are always acquired in the same

orientation. To increase efficiency, all prior feature maps were

concatenated and used as inputs for the subsequent layers (16).

In the encoding part of the U-Net (see left-hand side of

Figure 1A), a max-pooling layer is applied for downsampling

while transposed convolution is used for upsampling in the

decoding part (see right-hand side of Figure 1A). In the final

layer, a 1 × 1 × 1 convolution and a softmax function are

applied. The last step generates a binary value for each voxel of

the input image (0: background, 1: foreground). Segmentation

masks were created by selecting the class with the highest

probability per voxel. For the training, a composite loss

function (softmax-cross entropy and Dice loss), a batch size of

1, a learning rate of 0.0001, and 300 epochs were used. All

computations were performed in Python 3.6.13 (Python

Software Foundation, Beaverton, OR) with Tensorflow 2.4.0 on

a 13th Gen Intel Core i7-13700 (2,100 MHz, 16 Cores) CPU

with an NVIDIA GeForce RTX 4070 Ti GPU with 16 GB

VRAM. A cohort of 134 randomly selected cases (76 controls,

58 ICAD patients) were used for the training while the

remaining 20 cases (10 controls, 10 ICAD patients: four with

severe, four with moderate, one with mild, one without

significant stenosis. See Table 1 for group statistics) were used

for testing (see Figure 1B).
2.5 CNN performance analysis

To compare the performance between the manual and

automated segmentation, the Dice score (DS), Hausdorff distance

(HD), and average symmetrical surface distance (ASSD) were

calculated using (Equations 3–5) (20):

DS(X, Y) ¼ 2�jX > Y j
jXj þ jY j (3)

HD(X, Y) ¼ max max
y[Y

min
x[X

d(x, y)

� �
, max

x[X
min
x[X

d(x, y)

� �� �
(4)

ASSD(X, Y) ¼ 1
jXj þ jYj
� � XX

x¼1

min
y[Y

d(x, y)þ
XY
y¼1

min
x[X

d(x, y)

 !
(5)

Here, X and Y are binary segmentation masks and d is the

Euclidian distance between both segmentations. For the

segmentation analysis, DS, HD, and ASSD were computed for:

(a) CoW and sinuses.

(b) Only the CoW.

(c) Only the sinuses.

The calculation of segmentation metrics was performed in

MATLAB (DS) and Python (HD and ASSD). For visual

presentations of the segmentation masks, Ensight 10.02 (CEI,

inc., USA) was used.
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2.6 Flow analysis

Magnitude, velocity, and segmentation data were imported into

a semi-automatic MATLAB analysis tool (5). First, centerlines were

created automatically and perpendicular analysis planes were

placed equidistantly along the vessels at a 0.25 mm distance.

Subsequently, lumen cross-sectional areas, peak velocity, and flow

rates were extracted for all analysis planes. Planes close to

branches and bifurcations were excluded to avoid systematic

errors in the flow estimation. The same analysis planes were used

for both the manual and the automated segmentations. For

statistical comparisons between manual and automated

segmentations, the median cross-sectional area, peak velocity,

and temporally averaged flow rate values were calculated over all

analysis planes for each vessel of interest. The vascular analysis

was subdivided into:

(a) large arteries (BA, ICA, MCA),

(b) small arteries (ACA, PCA, PCOM, SCA, VA),

(c) sinuses (TS, STR, SSS).

In addition, the internal consistency of the flow rate was assessed

by determining the flow conservation error (fce) for the arteries

(Equation 6) (4):

fce ¼ 1� total flow in ACAs, MCAs, PCOMs
total flow in ICAs

����
���� (6)
2.7 Performance analysis in stenosed
vessels

For an analysis of the segmentation performance in stenosed

vessels, one ICAD patient with moderate stenosis (>50%

constriction in the right MCA, male, 80 years old) and two

patients with severe stenosis (>70% constriction in the right

MCA, female, 68 years old, >70% constriction in the right ICA,

female, 61 years old) were additionally validated with

segmentations obtained from black blood VWI.

For comparison with VWI, rigid registration was applied using

the SPM12 MATLAB tool box (21) to align the 3D-T1-SPACE

images with the 4D flow images. Subsequently, 3D volume

analysis of the black blood images was performed using a home-

built 3D framework (22, 23). Based on an interactive specialized

Dijkstra algorithm (24), the centerline, vessel volume and vessel

wall were extracted and visualized. Beforehand, the black blood

images were processed in multiple steps: First, a prior median

filter (3� 3� 3) was applied to reduce noise and to enhance the

contrast for the Dijkstra-searching algorithm, which was

introduced by manually set seed points. In the next step, the

volume of the stenosed vessel was extracted along the centerline.

In addition, a vertex model of the desired vessel structure was

generated using a Marching Cube algorithm (25). Subsequently,

the volume was imported to MATLAB. Since the SPM12

co-registration was not perfect and a few voxels off, a second

rigid registration using the FLIRT (flexible image reconstruction
frontiersin.org
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toolbox) MATLAB tool box (26) was applied to co-register the

VWI segmentation with the 4D flow segmentations.

Using the VWI segmentation as reference, DS, HD and

ASSD were calculated for both manual segmentations and the

automated segmentation. In addition, the lumen cross-

sectional area profiles determined with the 4D flow

segmentations were compared with segmentations obtained

from the T1-SPACE images. Within a region of interest around

the stenosis, the time-resolved median flow rates were

determined for the automated and the Observer 1 and

Observer 2 segmentations, respectively.
2.8 Interobserver study

For interobserver comparisons of standard manual

segmentations, all datasets from the testing cohort (10 controls, 10

ICAD) were segmented by an additional observer (Observer 2)

with medical background and one year of experience with 4D flow

MRI, who was not part of the original segmentation instance (JW).

The second observer was blinded to the original segmentations of

the testing cases. All segmentations were performed in 3DSlicer

and the segmentations were verified by a second investigator (PW)

to avoid systematic errors with the segmentation process. Using

the original manual (Observer 1) and the automated segmentation

as a reference, DS, HD, and ASSD were computed and compared

with the results from the automated segmentation vs. Observer 1

analysis. In addition, flow parameters and cross-sectional areas

were compared using the same analysis planes as for the CNN

segmentation and the segmentation performance was analyzed in

the three stenosis cases described in section 2.7.
2.9 Statistical analysis

Cross-sectional areas, as well as flow metrics (peak velocity,

flow rate, fce) derived from the automated segmentation and the

second observer, were compared with results from the Observer

1 segmentation using correlation and Bland-Altman analysis.

Using the Observer 1 segmentation as a reference, interclass

correlation coefficients (ICC), relative bias, and limit of

agreement (LOA) were assessed for all parameters. Normality

was tested using a Shapiro–Wilk test. Depending on normality,

a Mann–Whitney U-test or an unpaired t-test was utilized for

statistical evaluations. A p-value <0.05 was considered

statistically significant. All statistical analyses were performed

in MATLAB.
3 Results

3.1 Performance of the automated
segmentation

The training took approximately 10 h and the time required

for a single CNN segmentation was 2.2 ± 1.0 s. Figure 2 displays
Frontiers in Radiology 06
exemplary results for Observer 1 (red) and CNN (blue)

segmentations of a control case (Figure 2A) and an

ICAD case (Figure 2B). Difference maps indicate regions of

over- (blue) and underestimation (red) of the

automated segmentation.

Table 3 displays the median values and the range of the DS,

HD and ASSD for a comparison between the CNN

segmentation and the original manual segmentation. No

significant differences were observed when comparing the DS

and HD values of the control group with the ICAD group

(p ≥ 0.19). The average DS values were (mean ± STD) for

CoW + sinuses: 0.86 ± 0.04 (controls) and 0.83 ± 0.04 (ICAD,

p = 0.31). For CoW only: 0.85 ± 0.03 (controls) and 0.85 ± 0.04

(ICAD, p = 0.81). For sinuses only: 0.86 ± 0.06 (controls) and

0.82 ± 0.07 (ICAD, p = 0.19). Average HD values were for

CoW + sinuses: 7.8 ± 1.6 mm (controls) and 7.9 ± 1.9 mm

(ICAD, p = 0.89). For CoW only: 7.2 ± 1.5 mm (controls) and

8.4 ± 3.1 mm (ICAD, p = 0.28). For sinuses only: 6.6 ± 3.7 mm

(controls) and 5.7 ± 1.9 mm (ICAD, p = 0.65).

For the ASSD values, significant differences between the

control and ICAD group were observed for the CoW+ sinus

segmentation (0.14 ± 0.05 mm vs. 0.21 ± 0.08 mm, p = 0.02) and

the CoW-only segmentation (0.14 ± 0.04 mm vs. 0.22 ± 0.10 mm,

p < 0.05). However, for the sinuses-only segmentation, average

ASSD values were 0.17 ± 0.08 mm (controls) and 0.22 ± 0.11 mm

(ICAD, p = 0.23).
3.2 Flow metrics

Cross-sectional areas, peak velocity values, and flow rates

were determined in the small and large arteries and the

sinuses for both cohorts, respectively. Tables 4–6 display the

median, range, relative bias, and limits of agreement of all of

the above parameters for the automated segmentation vs.

Observer 1 and the Observer 1 vs. Observer 2 comparisons.

Furthermore, the p-values are shown for the Observer 1 vs.

automated segmentations, the Observer 1 vs. Observer 2, and

the automated segmentation vs. Observer 2 comparison. The

top half of each table shows the results for the control group

while the bottom half displays the results of the ICAD group.

The correlation and Bland-Altman plots can be found in

Supplementary Figures S1–S3 in the supplement. No

significant differences for all parameters were observed when

comparing the Observer 1 with the automated segmentation

(p ≥ 0.40 for all vessels). The average cross-sectional areas

determined with the automated segmentation were (mean ±

STD) for the large arteries: 13.3 ± 4.4 mm2 (controls) vs. 12.1

± 4.8 mm2 (ICAD, p = 0.20). For the small arteries: 5.7 ±

2.1 mm2 (controls) vs. 5.3 ± 1.1 mm2 (ICAD, p = 0.32). For the

sinuses: 19.8 ± 11.6 mm2 (controls) vs. 22.1 ± 10.0 mm2

(ICAD, p = 0.48). The average peak velocity values were for

the large arteries: 0.61 ± 0.15 m/s (controls) vs. 0.53 ± 0.16 m/s

(ICAD, p = 0.06). For the small arteries: 0.45 ± 0.14 m/s

(controls) vs. 0.41 ± 0.13 m/s (ICAD, p = 0.16). For the
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FIGURE 2

Exemplary results for manual (red) and CNN (blue) segmentations of a control case (A) DS = 0.89, HD = 5.09mm, ASSD = 0.11 mm) and an ICAD case
(B) DS = 0.84, HD = 3.77mm, ASSD = 0.15mm). Difference maps on the right indicate regions of over- (blue) and underestimation (red) of the
automated segmentation. Orange arrows mark the location of a severe stenosis in the left MCA.

TABLE 3 Performance results for the automated segmentation
framework.

Parameter/location Automated vs. Observer 1

DS Controls ICAD
CoW+ sinus 0.87 (0.78–0.92) 0.85 (0.70–0.87)

CoW 0.85 (0.79–0.92) 0.85 (0.81–0.91)

Sinus 0.87 (0.74–0.94) 0.84 (0.65–0.87)

HD [mm] Controls ICAD
CoW+ sinus 7.6 (5.1–10.3) 8.4 (3.8–10.4)

CoW 7.0 (4.4–9.5) 8.3 (3.1–15.2)

Sinus 6.3 (3.0–10.3) 5.9 (3.2–9.5)

ASSD [mm] Controls ICAD
CoW+ sinus 0.12 (0.08–0.23) 0.21 (0.14–0.39)*

CoW 0.13 (0.08–0.24) 0.21 (0.06–0.35)*

Sinus 0.15 (0.05–0.28) 0.21 (0.13–0.51)

For calculation of DS, HD and ASSD, always the original manual segmentation was

used as reference. Analysis of the statistical significance between the control and

ICAD group: *p < 0.05. All results are stated as median values (in bold) and range

values (in brackets).

Winter et al. 10.3389/fradi.2024.1385424
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sinuses: 0.33 ± 0.14 m/s (controls) vs. 0.27 ± 0.12 m/s

(ICAD, p = 0.15).

For the flow rates, a significant difference was observed

between both cohorts in the large arteries: 3.9 ± 1.7 ml/s

(controls) vs. 2.7 ± 1.2 ml/s (ICAD, p < 0.01). For the small

arteries, the mean values were 1.4 ± 0.8 ml/s (controls) vs. 1.0 ±

0.5 ml/s (ICAD, p = 0.064). For the sinuses, the flow values were:

3.6 ± 2.6 ml/s (controls) and 3.1 ± 1.9 ml/s (ICAD, p = 0.58).

When analyzing the Observer 1 segmentation, significant

intergroup differences were observed for the flow rates in the

large arteries (p < 0.01) and small arteries (p = 0.044) but not for

the sinuses (p = 0.67). Using the flow rate values, the flow

conservation error was determined for the manual and

automated segmentation, respectively. For the control group, the

fce was 0.16 ± 0.09 (manual) and 0.15 ± 0.10 (automated). For the

ICAD group, the fce was 0.18 ± 0.12 (manual) and 0.20 ± 0.13

(automated). No significant differences were observed between

the manual and CNN segmentation (p≥ 0.80 for both groups).
frontiersin.org

https://doi.org/10.3389/fradi.2024.1385424
https://www.frontiersin.org/journals/radiology
https://www.frontiersin.org/


TABLE 4 Cross-sectional area values: comparison of the automated and the Observer 2 segmentation with the Observer 1 segmentation.

Controls (n = 10) Large arteries Small arteries Sinuses Segmentation
Median (range) [mm2] 11.9 (6.1–20.1) 5.5 (2.6–9.8) 15.5 (2.4–41.6) Observer 1

Median (range) [mm2] 12.5 (5.5–23.4) 5.7 (1.9–10.4) 17.2 (2.3–42.8) Automatic

Bias ± LOA [%] 4.6 ± 24.4 2.4 ± 37.8 2.7 ± 35.5

ICC 0.93 0.86 0.91

p-value (reference: Observer 1) 0.64 0.72 0.79

Median (range) [mm2] 12.5 (5.4–22.8) 5.3 (1.9–9.7) 18.3 (4.9–40.7) Observer 2

Bias ± LOA [%] 4.1 ± 20.1 −1.7 ± 36.3 −2.8 ± 32.7

ICC 0.96 0.85 0.96

p-value (reference: Observer 1) 0.53 0.80 0.86

p-value (reference: automated) 0.97 0.82 0.83

ICAD (n = 10) Large arteries Small arteries Sinuses Segmentation
Median (range) [mm2] 9.8 (3.9–24.2) 5.3 (3.1–8.4) 22.5 (5.9–49.8) Observer 1

Median (range) [mm2] 11.4 (3.3–25.4) 5.4 (3.4–7.9) 23.8 (6.9–42.0) Automatic

Bias ± LOA [%] 4.9 ± 29.1 2.0 ± 31.4 −7.2 ± 46.9

ICC 0.87 0.71 0.86

p-value (reference: Observer 1) 0.40 0.69 0.56

Median (range) [mm2] 10.8 (4.5–20.8)* 5.1 (2.0–9.2) 20.5 (3.8–42.4) Observer 2

Bias ± LOA [%] −2.9 ± 36.3 −6.8 ± 53.2 −10.0 ± 54.9

ICC 0.89 0.57 0.86

p-value (reference: Observer 1) 0.87 0.19 0.47

p-value (reference: automated) 0.25 0.16 0.56

All results are stated as median values (in bold) and range values (in brackets).

Statistical significance between the control and ICAD group.

*p < 0.05.

TABLE 5 Peak velocity values: comparison of the automated and the Observer 2 segmentation with the Observer 1 segmentation.

Controls (n = 10) Large arteries Small arteries Sinuses Segmentation
Median (range) [m/s] 0.56 (0.37–0.91) 0.43 (0.25–1.0) 0.28 (0.13–0.67) Observer 1

Median (range) [m/s] 0.56 (0.40–0.91) 0.43 (0.25–1.0) 0.29 (0.12–0.67) Automatic

Bias ± LOA [%] 0.85 ± 4.0 −0.88 ± 13.5 0.21 ± 1.1

ICC >0.99 0.95 >0.99

p-value (reference: Observer 1) 0.82 0.96 0.94

Median (range) [m/s] 0.55 (0.40–0.91) 0.43 (0.22–1.0) 0.28 (0.12–0.63) Observer 2

Bias ± LOA [%] 0.68 ± 4.3 −2.5 ± 19.7 −0.06 ± 1.1

ICC >0.99 0.89 >0.99

p-value (reference: Observer 1) 0.82 0.64 0.94

p-value (reference: automated) 0.99 0.91 0.89

ICAD (n = 10) Large arteries Small arteries Sinuses Segmentation
Median (range) [m/s] 0.57 (0.27–0.87) 0.41 (0.23–0.92) 0.27 (0.08–0.75) Observer 1

Median (range) [m/s] 0.57 (0.27–0.87) 0.40 (0.23–0.93) 0.27 (0.08–0.54) Automatic

Bias ± LOA [%] 0.04 ± 0.43 −0.03 ± 1.2 −0.01 ± 0.31

ICC >0.99 >0.99 >0.99

p-value (reference: Observer 1) 0.98 >0.99 0.67

Median (range) [m/s] 0.56 (0.27–0.86) 0.39 (0.23–0.93) 0.27 (0.08–0.53) Observer 2

Bias ± LOA [%] 0.33 ± 3.5 0.06 ± 1.09 −0.08 ± 0.75

ICC >0.99 >0.99 >0.99

p-value (reference: Observer 1) 0.82 0.97 0.75

p-value (reference: automated) 0.84 0.90 0.90

All results are stated as median values (in bold) and range values (in brackets).
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3.3 Interobserver comparison

The segmentation time of an individual manual segmentation

performed by Observer 2 was 1,103 ± 347 s. On the left of

Table 7 the results for the DS, HD, and ASSD for the Observer 2

segmentation values are displayed using the Observer 1
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segmentation as a reference. The right side of the table shows the

performance analysis of the automated segmentation vs.

Observer 2 comparison. No differences were observed when

comparing the DS values from the automated segmentation vs.

Observer 1 comparison in Table 3 with the Observer 1 vs.

Observer 2 comparison (Controls: CoW+ sinuses: 0.86 ± 0.03,
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TABLE 7 Performance results for the second observer.

Parameter/location Observer 1 vs. Observer 2 Automated vs. Observer 2

DS Controls ICAD Controls ICAD
CoW+ sinus 0.85 (0.81–0.90) 0.80 (0.74–0.86)** 0.86 (0.82–0.89) 0.82 (0.78–0.86)**

CoW 0.87 (0.80–0.91) 0.83 (0.79–0.90) 0.86 (0.81–0.99) 0.83 (0.78–0.86)*

Sinus 0.85 (0.78–0.91) 0.80 (0.71–0.86)** 0.86 (0.83–0.89) 0.81 (0.74–0.88)*

HD [mm] Controls ICAD Controls ICAD
CoW+ sinus 8.7 (5.4–11.3) 8.9 (5.4–16.0) 7.6 (4.6–9.2) 9.3 (6.2–17.0)**

CoW 6.8 (5.0–9.5) 8.2 (5.4–16.0) 7.3 (4.6–9.2) 8.0 (3.0–18.6)

Sinus 6.0 (3.3–11.3) 8.4 (2.4–14.5) 4.7 (2.2–8.4) 8.6 (3.7–17.0)**†

ASSD [mm] Controls ICAD Controls ICAD
CoW+ sinus 0.15 (0.11–0.21) 0.22 (0.14–0.39)** 0.14 (0.11–0.20) 0.21 (0.15–0.27)**

CoW 0.12 (0.07–0.21) 0.21 (0.11–0.41)* 0.13 (0.11–0.25) 0.18 (0.11–0.30)

Sinus 0.15 (0.13–0.30) 0.25 (0.13–0.38)* 0.14 (0.11–0.16) 0.21 (0.13–0.29)***

Left: Using the Observer 1 segmentation as reference. Right: Using the automated segmentation as reference. Analysis of the statistical significance between the control

and ICAD group.

All results are stated as median values (in bold) and range values (in brackets).

Statistical significance relative to the Automated vs. Observer 1 comparison.

*p < 0.05.

**p < 0.01.

***p < 0.001.
†p < 0.05.

TABLE 6 Flow rates (automated and Observer 2 vs. Observer 1).

Controls (n = 10) Large arteries Small arteries Sinuses Segmentation
Median (range) [ml/s] 3.5 (1.1–8.8) 1.2 (0.33–5.0) 3.0 (0.41–10.3) Observer 1

Flow conservation error 0.17 (0.04–0.32)

Median (range) [ml/s] 3.5 (1.0–9.0) 1.2 (0.32–4.8) 2.9 (0.37–10.1) Automatic

Bias ± LOA [%] 1.8 ± 12.3 4.0 ± 29.5 1.5 ± 17.9

ICC >0.99 0.97 >0.99

p-value (reference: Observer 1) 0.92 0.92 0.80

Flow conservation error 0.11 (0.04–0.34)

Median (range) [ml/s] 3.4 (1.2–9.1) 1.3 (0.27–5.1) 2.6 (0.64–9.6) Observer 2

Bias ± LOA [%] 0.99 ± 10.67 0.17 ± 23.5 −2.0 ± 15.0

ICC >0.99 0.98 >0.99

p-value (vs. obs. 1/auto) 0.93/0.97 0.83/0.96 0.90/0.92

Flow conservation error 0.15 (0.03–0.31)

ICAD (n = 10) Large arteries Small arteries Sinuses Segmentation
Median (range) [ml/s] 2.4 (0.6–4.8)*** 1.0 (0.4–2.7)* 3.0 (0.4–6.7) Observer 1

Flow conservation error 0.18 (0.01–0.39)

Median (range) [ml/s] 2.5 (0.6–4.9)*** 1.0 (0.47–2-6) 2.6 (0.44–6.7) Automatic

Bias ± LOA [%] 2.1 ± 13.5 2.0 ± 22.8 0.08 ± 18.7

ICC 0.99 0.97 0.99

p-value (reference: Observer 1) 0.81 0.88 >0.99

Flow conservation error 0.18 (0.02–0.38)

Median (range) [ml/s] 2.4 (0.64–4.87)*** 0.91 (0.29–2.0) 2.8 (0.25–6.4) Observer 2

Bias ± LOA [%] −0.03 ± 12.9 −3.3 ± 28.6 −2.8 ± 18.0

ICC 0.99 0.95 0.99

p-value (vs. Obs. 1/vs. auto) 0.86/0.67 0.39/0.39 0.71/0.71

Flow conservation error 0.16 (0.01–0.46)

All results are stated as median values (in bold) and range values (in brackets).

Statistical significance between the control and ICAD group.

*p < 0.05.

**p < 0.01.

***p < 0.001.

Winter et al. 10.3389/fradi.2024.1385424
CoW: 0.86 ± 0.04, sinuses: 0.85 ± 0.03. p-value for all vessels: ≥0.63.
ICAD: CoW+ sinuses: 0.81 ± 0.04. CoW: 0.84 ± 0.04. Sinuses:

0.79 ± 0.05. p-value for all vessels: ≥0.10).
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The same applies for the automated segmentation vs. Observer

2 DS values (Controls: CoW + sinuses: 0.86 ± 0.02, CoW: 0.85 ±

0.03, sinuses: 0.86 ± 0.02. ICAD: CoW+ sinuses: 0.82 ± 0.03,
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CoW: 0.83 ± 0.02, sinuses: 0.81 ± 0.04. p-value for all vessels:

>0.05). When comparing the Dice scores of both cohorts,

however, significantly lower DS values were observed in the

ICAD group in the Observer 1 vs. Observer 2 comparison

(CoW + sinuses: p < 0.01. Sinuses: p < 0.01) and in the automated

segmentation vs. Observer 2 comparison (CoW + Sinuses:

p < 0.01. CoW: p = 0.022. Sinuses: p = 0.045).

For the Observer 1 vs. Observer 2 HD values, no differences

relative to the automated segmentation vs. Observer 1

comparison were noticeable in the control group (CoW + sinuses:

8.4 ± 2.0 mm. CoW: 7.0 ± 1.5 mm. Sinuses: 6.6 ± 3.2 mm. p-value

for all vessels: ≥0.51) and the ICAD group (CoW+ Sinuses:

9.8 ± 3.3 mm. CoW: 8.6 ± 3.0 mm. Sinuses: 7.7 ± 3.8 mm. p-value

for all vessels: ≥0.14).
Similar HD values are also noticeable for the automated

segmentation vs. Observer 2 comparison (Controls: CoW+

sinuses: 7.5 ± 1.3 mm, CoW: 7.2 ± 1.5 mm, sinuses: 5.0 ±

2.0 mm. ICAD: CoW + sinuses: 10.3 ± 3.9 mm, CoW: 8.0 ±

4.4 mm, sinuses: 8.6 ± 3.9 mm), with no differences compared

to the Observer 1 vs. Observer 2 HD values (p ≥ 0.34).

However, the Observer 2 vs. automated segmentation

comparison of the ICAD group featured larger HD values in

the sinuses compared to the automated segmentation vs.

Observer 1 HD values (p = 0.047). Furthermore, the intergroup

comparison revealed no differences for the Observer 1 vs.

Observer 2 HD values (p-value for all vessels ≥0.14) but for the
automated segmentation vs. Observer 2 HD values (CoW +

sinuses: p < 0.01, sinuses: p < 0.01).

For the ASSD values, no differences between the Observer 1 vs.

Observer 2 and the automated segmentation vs. Observer 1

comparison were detected (Controls: CoW+ sinuses: 0.18 ±

0.05 mm. CoW: 0.18 ± 0.05 mm. Sinuses: 0.18 ± 0.05 mm. p-value

for all vessels: ≥0.79. ICAD: CoW+ Sinuses: 0.24 ± 0.08 mm.

CoW: 0.22 ± 0.09 mm. Sinuses: 0.25 ± 0.08 mm. p-value for all

vessels: ≥0.16).
Similar results were also observed for the automated

segmentation vs. Observer 2 comparison (Controls: 0.15 ±

0.03 mm, CoW: 0.15 ± 0.05 mm, sinuses: 0.14 ± 0.02 mm.

ICAD: CoW + sinuses: 0.21 ± 0.04 mm, CoW: 0.18 ± 0.06 mm,

sinuses: 0.22 ± 0.06 mm. p-value for all vessels: p ≥ 0.10).

However, in the Observer 1 vs. Observer 2 comparisons of the

CoW, larger ASSD values are noticeable in the ICAD group

relative to the control group (p = 0.022). Furthermore, in

both comparisons presented in Table 7, larger sinusoidal

ASSD values were observed (CoW + sinuses: p < 0.01,

sinuses: p ≤ 0.045).

In the following, the flow metrics and cross-sectional area values

determined with the Observer 2 segmentation were compared with

the results from the original manual segmentation. Tables 4–6

display the bias, limits of agreement, the ICC values, and the

p-values for the comparisons between the two human observers.

The corresponding correlation and Bland-Altman plots can be

found in the Supplementary Figures S4–S6 in the supplement. No

significant differences were observed for the cross-sectional area

values (p-value for all vessels: ≥0.19), the peak velocity values

(p-value for all vessels: ≥0.64), and the flow rates (p-value for all
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vessels: ≥0.39). Furthermore, the fce analysis yielded no

significant differences (p-value for both groups: ≥0.94). However,

the comparison between the control and the ICAD groups

revealed a significant difference for the cross-sectional areas in the

large arteries (p = 0.016) but not for the small arteries (p = 0.068)

and the sinuses (p = 0.75). In addition, significant differences were

observed for the flow rates in the small (p = 0.011) and large

arteries (p < 0.01). No significant differences were observed for

the flow rates in the sinuses (p = 0.36) and for all peak velocity

values (p≥ 0.18).

The Observer 2 results were furthermore compared with the

values obtained with the CNN segmentation. Similar to the

comparison with the original human observer, no significant

differences were observed for the cross-sectional area values

(p-value for all vessels: ≥0.16), the peak velocity values (p-value

for all vessels: ≥0.84), the flow rates (p-value for all vessels:

≥0.39), and the fce (p-value for both groups: ≥0.82).
3.4 Segmentation performance in stenosed
vessels

For an analysis of the segmentation performance of the CNN

in stenosed vessels, three intracranial stenosis cases were

examined in further detail. Figures 3–5 display the segmentation

results for a moderate (Figure 3) and a severe stenosis (Figure 4)

in the right MCA and a severe stenosis in the right ICA

(Figure 5). In Figures 3A, 4A, 5A the segmentation results of the

stenosed vessel only are shown from Observer 1 (red), the

automated segmentation (blue), Observer 2 (orange) and VWI

(violet). Part B of the figures displays difference maps to

illustrate the segmentation error between the automated

segmentation and the Observer 1 (left) and between the

automated segmentation and the VWI (right). The left side of

part C of the figures shows profile plots of the lumen cross-

sectional areas (for the Observer 1, automated, Observer 2 and

VWI segmentations) as well as the peak velocity profiles. The

gray shaded areas mark the location of the stenosis (see also the

analysis planes in the segmentation plots in A and the orange

arrow in the error maps in B). The plots on the right in part C

of the figures show the time-resolved median flow rates around

the stenosis (determined in the gray-shaded region above),

assessed with the Observer 1 (red), the automated (blue), and the

Observer 2 (orange) manual segmentation.

Table 8 illustrates the segmentation metrics of the stenosed

vessels as well as statistical comparisons of the lumen area and

flow rate values, determined around the stenosis (see gray shaded

areas in the profile plots in Figures 3C–5C). Table 8A displays

the DS, HD and ASSD values for the Observer 1 (O1)

segmentation, the Observer 2 (O2) segmentation and the

automated (CNN) segmentation using the VWI segmentation as

reference. For calculation of segmentation metrics for this table,

only the part of the vessel that was stenosed was considered. All

three 4D flow MRI segmentations yield similar DS values

(Observer 1: range 0.61–0.77. Observer 2: range 0.52–0.73.

Automated segmentation: 0.59–0.75), similar HD values
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FIGURE 3

Analysis of segmentation performance in a moderate stenosis in the right MCA. (A) Isosurface renderings of Observer 1, Observer 2, automated and
VWI segmentation. (B) Comparison between the automated and Observer 1 segmentation (left) and comparison between the automated and VWI
segmentation (right). (C) Left: cross-sectional area and peak velocity profiles. Right: flow rates estimated in a region of interest around the stenosis
(see grey shaded area in the profile plot) with the automated and Observer 1 and 2 segmentations. The stenosis is marked by analysis planes and
orange arrows.
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(Observer 1: range 2.1 mm–6.7 mm. Observer 2: range 2.3 mm–

7.1 mm. Automated segmentation: range 2.6 mm–7.1 mm) and

similar ASSD values (Observer 1: 0.20 mm–0.30 mm. Observer 2:

0.22 mm–0.45 mm. Automated segmentation: 0.23 mm–

0.32 mm). Table 8B shows the lumen cross-sectional area values

(median values and interquartile ranges) of the stenosed part of

the vessels, estimated with the VWI segmentation, the Observer

1 (O1) segmentation, the Observer 2 (O2) segmentation and the

automated (CNN) segmentation. In addition, bias and LOA

values relative to the VWI segmentation are displayed. All three

4D flow segmentations feature a consistent overestimation

relative to the segmentation obtained from the black blood

images but good agreement (Observer 1: Overall bias ± LOA:

36.6 ± 16.1%, ICC: 0.93, p < 0.01. Observer 2: Overall bias ± LOA:

31.2 ± 42.4%, ICC: 0.84, p = 0.025. Automated segmentation:

Overall bias ± LOA: 28.1 ± 13.9%, ICC: 0.93, p < 0.01). However,

no differences were observed when comparing the automated

segmentation with the manual segmentations (automated

segmentation vs. Observer 1: Overall bias ± LOA: −8.8 ± 10.8%,

ICC: 0.95, p = 0.05. Automated segmentation vs. Observer 2:

Overall bias ± LOA: −3.2 ± 35.9%, ICC: 0.89, p = 0.15). Table 8C
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displays the flow rate values in the stenosed regions (median and

interquartile ranges), estimated with both manual 4D flow

segmentations and the automated segmentation. In addition, the

table displays the bias and LOA values relative to the Observer 1

segmentation. No differences were observed when comparing the

results from the automated segmentation with the manual

segmentations of Observer 1 and 2 (automated segmentation vs.

Observer 1: Overall bias ± LOA: −3.9 ± 4.3%, ICC > 0.99, p = 0.34.

Automated segmentation vs. Observer 2: Overall bias ± LOA:

−3.1 ± 13.9%, ICC: 0.98, p = 0.48).
4 Discussion

In this work, a CNN was trained using manually segmented

intracranial 4D flow data and was successfully applied for the

fully automated segmentation of stenosed intracranial

vasculatures. In both a healthy control group and an ICAD

patient cohort, similar segmentation performance could be

achieved (comparison with Observer 1: median DS: ≥0.85
for controls, ≥0.84 for patients. Median HD: ≥6.3 mm for
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FIGURE 4

Analysis of segmentation performance in a severe stenosis in the right MCA. (A) Isosurface renderings of Observer 1, Observer 2, automated and VWI
segmentation. (B) Comparison between the automated and Observer 1 segmentation (left) and comparison between the automated and VWI
segmentation (right). (C) Left: cross-sectional area and peak velocity profiles. Right: flow rates estimated in a region of interest around the stenosis
(see grey shaded area in the profile plot) with the automated and Observer 1 and 2 segmentations. The stenosis is marked by analysis planes and
orange arrows.
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controls, ≥5.9 mm for patients. Median ASSD: ≥0.12 mm for

controls, 0.21 mm for patients). In addition, no significant

differences were observed when comparing the flow parameters

and cross-sectional area values determined with the CNN

segmentation with the original manual analysis and with the

analysis performed by Observer 2. Interestingly, however, lower

flow rates were observed in the CoW arteries in patients

compared to controls regardless of the segmentation used for

the analysis. These flow rate differences are likely due to the

age difference of the two testing cohorts (see Table 1), as age

related flow rate differences have already been reported by

Wu et al. (27).

The automated segmentation required substantially less time

than the manual segmentation performed by Observer 2 and was

also significantly faster than reported for other automated

segmentation techniques for intracranial 4D flow data (14).

Furthermore, in contrast to manual segmentations, the CNN

segmentation was not susceptible to often observed inter-

observer variabilities (28).

Until recently, most deep learning-based segmentation

networks of intracranial vasculature were based on TOF-MRA
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(29), CTA (30) or CTA in combination with DSA (31).

Furthermore, the recent TopCoW challenge yielded very

impressive results for CoW segmentations using CTA and MRA

images (32). The large dataset available for this challenge may be

used for transfer learning to further improve the segmentation

performance of 4D flow images. A possible challenge, however,

may be the large difference in voxel size between MRA

[0.30 mm × 0.30 mm × 0.71 mm according to (32)] and 4D flow

MRI (1 mm isotropic) and differences in image contrast, signal

to noise ratio and artifacts due to the different sequence design.

Furthermore, in contrast to the work presented in this paper, the

TopCoW challenge only addressed the segmentation of the CoW

arteries but not of veins such as the sinuses.

For 4D flow MRI, until recently, non-deep learning techniques

such as threshold-based segmentation (33) or segmentation based

on a centerline processing scheme (14) have been more common.

Rothenberger et al. recently presented a post-processing

technique using a standard difference of means, yielding average

Dice score values of 0.76 for the CoW (15). However, in our

study, we showed that using a deep learning approach, a larger

mean Dice score of 0.85 could be achieved.
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FIGURE 5

Analysis of segmentation performance in a severe stenosis in the right ICA. (A) Isosurface renderings of Observer 1, Observer 2, automated and VWI
segmentation. (B) Comparison between the automated and Observer 1 segmentation (left) and comparison between the automated and VWI
segmentation (right). (C) Left: cross-sectional area and peak velocity profiles. Right: flow rates estimated in a region of interest around the stenosis
(see grey shaded area in the profile plot) with the automated and Observer 1 and 2 segmentations. The stenosis is marked by analysis planes and
orange arrows.
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When comparing the Observer 2 segmentation with Observer 1

or the automated segmentation, no significant differences in

segmentation performance were noticeable. Notable distinctions,

however, were observed when comparing the control and

stenosis cases. In both the Observer 1 vs. Observer 2 and the

automated vs. Observer 2 comparisons, the ICAD group featured

significantly lower Dice scores in the sinuses and overall larger

ASSD values. Significantly larger ASSD values are also noticeable

in the automated segmentations of the ICAD cases. One reason

for the lower segmentation performance in the sinuses of the

ICAD group may be the varying field of view size. In the control

group, the number of slices varied between 40 and 44 while in

the ICAD group, the number of slices was between 26 and 60. A

too small FOV, however, may lead to incomplete coverage of the

sinuses, which may exacerbate an accurate vessel segmentation.

Variations in the number of slices may also partially explain the

significantly larger ASSD values in the arteries, since a too small

FOV may lead to insufficient coverage of the basilar artery and

other vessels typically at the edges of the FOV such as the

vertebral arteries. Another reason for the significantly larger

ASSD values in the arteries may be the larger variability in
Frontiers in Radiology 13
vascular geometry noticeable in patients with ICAD due to the

pathological changes caused by atherosclerosis and due to the

significant differences in age between the two testing cohorts (see

Table 1). Furthermore, especially in severely stenosed arteries,

noticeable signal dropouts are often observed which aggravate

accurate vessel segmentation.

The analysis of the cross-sectional area and flow metrics

yielded no significant differences between the automated, the

original manual, and the Observer 2 segmentation. In the large

arteries, small bias and small limits of agreement are noticeable

for both the control and the ICAD group. Slightly larger limits

of agreement were observed in the small arteries, which may be

attributed to partial volume effects due to the notably smaller

vessel size. The reason for the larger variations observed in the

sinuses may be explained again by the sometimes-incomplete

coverage of the veins due to a too small FOV size. Also, exact

segmentation of the sinuses is more challenging due to the much

lower signal intensities as well as lower velocities in these vessels.

More detailed analyses of the segmentation performance in

stenosed vessels revealed good performance of segmentation in

stenosed areas that resulted in similar flow rates and cross-
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TABLE 8 Analysis of the segmentation performance for three exemplary stenosed vessels.

Stenosis case Example a
Right MCA

Example b
Right MCA

Example c
Right ICA

Stenosis grade [%] >50 >70 >70

A Segmentation Metrics
(Reference: VWI)

Segmentation Metrics
(Reference: VWI)

Segmentation Metrics
(Reference: VWI)

Segmentation O1 O2 CNN O1 O2 CNN O1 O2 CNN
DS 0.69 0.65 0.67 0.61 0.52 0.59 0.77 0.73 0.75

HD [mm] 2.1 2.3 2.6 3.1 4.3 4.0 6.7 7.1 7.1

ASSD [mm] 0.20 0.22 0.23 0.30 0.45 0.32 0.24 0.28 0.26

B Lumen Area Lumen Area Lumen Area

Segmentation VWI O1 O2 CNN VWI O1 O2 CNN VWI O1 O2 CNN
Median [mm2] (Iqr.)
[mm2]

2.59
(0.81)

5.00
(0.22)

3.06
(0.62)

4.72
(0.69)

2.88
(0.97)

5.13
(0.69)

3.31
(0.65)

4.45
(0.84)

7.7
(2.1)

8.81
(0.84)

11.2
(2.3)

8.8
(1.9)

Bias [%] – 56.3 16.2 46.8 – 56.8 15.1 41.4 – 19.4 40.5 15.9

LOA [%] – 42.1 69.2 43.1 – 29.9 54.3 36.1 – 24.9 52.0 17.8

C Flow rates Flow rates Flow rates

Segmentation O1 O2 CNN O1 O2 CNN O1 O2 CNN
Median (Iqr.) [ml/s] 1.15 (0.31) 0.89 (0.31) 1.06 (0.31) 0.77 (0.53) 0.56 (0.65) 0.64 (0.67) 2.2 (1.1) 2.3 (1.1) 2.1 (1.0)

Bias [%]: – −24.3 −8.8 – −26.3 −9.6 – 5.8 −2.3
LOA [%] – 19.7 7.7 – 25.1 20.8 – 13.7 6.1

(A) Segmentation metrics (DS, HD and ASSD) of the stenosed vessels for the Observer 1 (O1), Observer 2 (O2) and automated (CNN) segmentation. The reference was the

VWI segmentation. (B) Cross-sectional lumen area analysis for the VWI, Observer 1 and 2 and automated segmentation (median (bold) and interquartile range, Iqr.). Bias and

LOAwere calculated relative to the VWI segmentation. (C) Analysis of the flow rates (median (bold) and interquartile range, Iqr.). Bias and LOAwere calculated relative to the

Observer 1 segmentation.
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sectional area values between the automated segmentation and the

two manual observers. Co-registration of 4D flow MRI with black

blood vessel wall imaging confirmed correct segmentations of

stenosed regions within the limits of spatial resolution of the 4D

Flow MRI acquisition. As expected, an overestimation of the

lumen areas relative to results obtained from black blood vessel

wall imaging was noticeable in all 4D flow-based segmentations.

Furthermore, due to the different sequence designs, the switching

of the imaging gradients is different between the two imaging

modalities. Thus, differences in image artifacts such as distortion,

blurring and motion corruption are to be expected, exacerbating

accurate co-registration. In this work, rigid co-registration was

used to match the black blood segmentation with the 4D flow-

based segmentations. For more accurate co-registration results,

non-rigid co-registrations can be considered, however, this would

increase the time investment of the post-processing and would

be out of the scope of this study. In this work, we aimed to

develop a CNN to automate intracranial vessel segmentation

from 4D flow MRI data to ease the analysis of volumetric

hemodynamic parameters. Our aim was not to use 4D flow MRI

for the diagnosis of stenosis grade using luminal narrowing.

One limitation of this study is the small number of cases used for

training and testing of the CNN architecture. In this work, 134 cases

were used for training and 20 cases for testing. In contrast, 499 cases

were used for training the CNN for automated aorta segmentation

(16). The small number of training cases may be problematic since

large variations in the CoW geometry have been reported (34). The

limited number of training cases may also be a further explanation

for the slightly worse segmentation performance of the sinuses in

ICAD patients. Furthermore, the distribution of healthy and
Frontiers in Radiology 14
diseased training cases was skewed with 76 control cases but only

58 ICAD cases. However, we think that using as many training

cases as possible was more important than an even distribution of

healthy vs. ICAD training cases. In addition, due to the limited

number of ICAD cases, we only had very few test cases. The

random selection of the test cases caused an age-difference between

the two testing cohorts, leading to significantly younger control

cases compared to the ICAD patients (see Table 1). However, the

focus of our study was to create a CNN for the segmentation of

intracranial vessels in healthy controls as well as ICAD patients.

This means that we selected as many as possible intracranial 4D

flow MRI datasets while neglecting age matching. In a future more

clinically focused study, quantitative results of the ICAD patients

compared to an age- and gender matched healthy control cohort

will be assessed. In addition, to further improve performance of the

CNN, more stenosis cases as well as of other intracranial vascular

diseases will be incorporated to further improve the segmentation

performance and for a generalization of the automated segmentation.
5 Conclusion

In this work, a deep learning-based approach was presented for

the fully automated vessel segmentation of intracranial 4D flow

MRI data of healthy subjects and stenosis patients. The

introduced CNN segmentation took only 2.2 s on average to

complete. The automated segmentations of the intracranial

arteries and veins are in very good agreement with the manual

segmentations of two independent observers and the analysis of

lumen cross-sectional areas and flow metrics yielded no
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significant differences between manual and automated

segmentations. Furthermore, the accuracy of the automated

segmentation of stenosed intracranial arteries could be verified by

co-registered vessel wall imaging. The automation of intracranial

vessel segmentation significantly reduces the analysis time and

may improve the robustness of determining hemodynamic

parameters with intracranial 4D flow MRI. This work could

therefore be an integral factor in increasing its clinical application.
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