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Standard treatment of patients with glioblastoma includes surgical resection of
the tumor. The extent of resection (EOR) achieved during surgery significantly
impacts prognosis and is used to stratify patients in clinical trials. In this study,
we developed a U-Net-based deep-learning model to segment contrast-
enhancing tumor on post-operative MRI exams taken within 72 h of resection
surgery and used these segmentations to classify the EOR as either maximal
or submaximal. The model was trained on 122 multiparametric MRI scans
from our institution and achieved a mean Dice score of 0.52 ± 0.03 on an
external dataset (n= 248), a performance on par with the interrater agreement
between expert annotators as reported in literature. We obtained an EOR
classification precision/recall of 0.72/0.78 on the internal test dataset (n= 462)
and 0.90/0.87 on the external dataset. Furthermore, Kaplan-Meier curves were
used to compare the overall survival between patients with maximal and
submaximal resection in the internal test dataset, as determined by either
clinicians or the model. There was no significant difference between the
survival predictions using the model’s and clinical EOR classification. We find
that the proposed segmentation model is capable of reliably classifying the
EOR of glioblastoma tumors on early post-operative MRI scans. Moreover, we
show that stratification of patients based on the model’s predictions offers at
least the same prognostic value as when done by clinicians.
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1 Introduction

Glioblastoma is the most common malignant primary brain

tumor in adults (1). It is also the most aggressive brain tumor,

with a median overall survival of 14–15 months despite

comprehensive treatment including surgical resection and

subsequent chemotherapy and radiotherapy (2).

Magnetic resonance imaging (MRI) is the diagnostic tool of

choice for diagnosis, surgical planning, and follow-up

management. Post-operative imaging plays a key role in

evaluating the extent of resection (EOR), which is the extent to

which the tumor is removed during surgery. Because higher EOR

of the contrast-enhancing tumor (CET) correlates with improved

prognosis (3), classifications based on the EOR are frequently

used to stratify patients in clinical trials evaluating treatment

outcomes and novel therapies for glioblastoma (4–6). The latest

response assessment in neuro-oncology (RANO) guidelines,

seeking to standardize practices, recommend using a 1 ml cut-off

to classify patients into maximal CET resection if the volume of

the CET remaining after surgery is ≤1 ml, or submaximal CET

resection if >1 ml remains (7). This classification is found to offer

the best prognostic value.

Differentiating between maximal and submaximal CET

resection requires volumetric segmentation of the CET on post-

operative MRI. The segmentation should be done on early post-

operative MRI, preferably within 48–72 h of surgery. Scans

acquired at later time points may show late post-operative

reactive changes and contrast leakage in the brain parenchyma or

disease progression, due to the aggressive nature of the tumor,

which could lead to an overestimation of the residual CET

volume (8). Segmenting the CET on early post-operative images,

unfortunately, is not part of most hospitals’ current clinical

practice, as it is time-consuming and adds to the strain of

radiology departments. Moreover, segmenting post-operative

CET is inherently challenging, showing poor interrater agreement

even between experienced radiologists (9).

Automatic segmentation models could provide a reproducible

measure of the EOR without imposing additional workload on

radiologists. Pre-operative glioblastoma segmentation has recently

improved dramatically, in large part due to the success of deep-

learning approaches (10–12) and the availability of public data

repositories, including the Multimodal Brain Tumor

Segmentation (BraTS) dataset (13–15). These factors have also

led to advances in post-operative segmentation at follow-up

(weeks to months after surgery) (16, 17). For early post-operative

segmentation, previous research has predominantly focused on

semi-automatic methods that require user input, and thus fail to

scale to large datasets (18–20). There has, however, been a shift

towards fully automated methods, starting with a study by Meier

et al. that developed a segmentation method using random forest

classification of features extracted from 19 patients (21). More

recently, Bianconi et al. trained a deep-learning segmentation

model on a dataset that included 71 early post-operative images

(22), while Helland et al. utilized a large dataset of 956 early

post-operative images to train separate deep-learning models

(23). However, these studies are predominantly technical in
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nature and fall short of confirming the clinical utility of the models

due to the omission of clinical endpoints in their evaluations.

In the current study, we aim to assess whether a nnU-Net-

based model is capable of segmenting glioblastoma on early post-

operative MRI in a clinically meaningful way. Following the

training of the model with a semi-supervised technique, we

evaluate it by involving clinicians in rating the clinical utility of

the resulting segmentations, as well as using standard

segmentation metrics. Moreover, we obtain an objective and

clinically relevant evaluation by comparing the median overall

survival in patient groups stratified by EOR using either the

model or clinical assessment. To the best of our knowledge, we

are the first to include clinician input and use survival data to

evaluate a segmentation model in this medical context. The

model, along with the corresponding inference code and a

pipeline for streamlined inference, is openly available.1
2 Materials and methods

2.1 Description of the datasets

Two datasets are used in the current study: (1) an internal

dataset used for model training and internal testing, and (2) an

independent dataset from a collaborating, national institution,

which we denote as the external dataset.

Data collection for the internal dataset was based on a

retrospective cohort of glioblastoma patients at our institution.

All patients undergoing first-time surgery were prospectively

registered since 2003 at our institutional quality-control database.

In this study we have included all patients who (1) were

diagnosed with a histopathologically verified supratentorial GBM

(2003–2016), GBM WHO grade IV (2016–2019), or tumors

classified as gliosarcoma, giant cell GBM, or epithelioid GBM,

according to the relevant WHO classification of tumors of the

central nervous system at the time (24); (2) had undergone

surgical resection of the tumor between 2003 and 2020 and (3)

had a postoperative MRI scan taken within 72 h following

surgery that included T1-weighted scans taken before (T1w) and

after intravenous injection of a Gadolinium-based contrast

(T1wc), T2-weighted (T2w), and T2-weighted fluid-attenuated

inversion recovery (T2-FLAIR) scans. A total of 616 patients

were included in this study. The cohort had a mean age at

surgery of 59.6 (SD 12.4) years and a male-to-female ratio of

1.34 (56 patients had missing sex information).

The external dataset consisted of early post-operative MRIs of a

total of 248 patients with glioblastoma and was a subset of the data

reported in a previous study (25). All patients in this dataset

underwent first-time resection surgery for histologically verified

glioblastoma between 2007 and 2020. In the period from 2007 to

2016 the 2007 WHO classification of central nervous system
frontiersin.org
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TABLE 1 Description of the internal and external datasets in terms of
scanner manufacturer and field strength, as well as the number of
exams per sequence where volumetric (3D) acquisitions (vs. multi-slice
2D) were used.

Dataset Internal (616 exams) External (248 exams)

Manufacturer
Siemens 556 (90%) 215 (87%)

Philips 45 (7%) 33 (13%)

GE 15 (2%) 0

Field strength
0.95T 23 (4%) 0

1.5T 509 (82%) 140 (56%)

3T 84 (14%) 108 (44%)

3D Acquisition
T1w 302 (49%) 38 (15%)

T1wc 354 (57%) 235 (95%)

T2-FLAIR 220 (36%) 37 (15%)

T2 0 0
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tumors was used, from 2016 to 2020 the 2016 WHO classification

was used. Availability of post-operative imaging was the same as for

the internal dataset.

Table 1 shows the distribution of MR images used in

the internal and external dataset according to MRI

manufacturer, field strength, and type of acquisition. Exams

in the external dataset were on average acquired at higher

field strengths compared to exams in the internal dataset.

The use of volumetric (3D) acquisition also differed

between datasets.
2https://github.com/ANTsX/ANTs
3http://www.itksnap.org
2.2 Data subsets

The labeled train/validation subset consisted of 122 exams

sampled from the internal dataset, as shown in Figure 1. Most of

these, 87 exams, were selected based on two criteria: data

acquisition between 2016 and 2020; and T1w, T1wc, and T2-

FLAIR being 3D acquisitions. As a result, the train/validation

subset was skewed towards higher-resolution MRIs compared to

the complete dataset. This was done by design to maximize the

quality of the training data. The remaining 35 scans were

mostly older 2D acquisitions with existing annotations from a

previous study.

Our study used two separate internal test subsets, one to test

the accuracy of the model’s segmentations (segmentation test

subset), and another to test the performance of the EOR

classification derived from the model’s segmentations

(classification test subset). The segmentation test subset

consists of 17 exams randomly selected from the internal

dataset. Note that this subset differs from the train/validation

subset in that it was not chosen to maximize the quality of the

data. Of the 477 patients not included in either of the

aforementioned subsets, 462 had exams with a ground truth

(GT) EOR classification available and formed the classification

test subset. The external dataset in its entirety formed the

third and final test dataset.
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2.3 Data pre-processing

Pre-processing of the datasets included bias field correction,

resampling to 1mm3 isotropic voxel size, and within-subject

affine registration to the T1wc scan using the Advanced

Normalization Tools (ANTs) software.2 Lastly, the brain

extraction tool HD-BET (26) was used to remove the skull.
2.4 Data annotation

Two forms of labeling were carried out on the internal dataset,

as shown in Figure 1: outlining GT segmentations, which was done

for the train/validation and the segmentation test subsets, and

labeling the exams in the classification test subset as showing

either maximal or submaximal CET resection.

In total, 387 GT segmentations were used in this study: 122 for

training and validation, 17 for internal testing, and 248 for external

testing. The GT segmentations outlined specifically for this study, 87

for the train/validation subset and 17 for the segmentation test

subset, were annotated by a neuroradiologist with 9 years of

experience. The annotator was tasked with outlining the CET,

which was defined as high signal tissue on T1wc exams, while

avoiding other post-operative findings such as blood products,

pneumocephalus or the resection cavity. Note that all four

sequences were available to facilitate the differentiation between

CET and other post-operative findings. To produce the GT

segmentations, the annotator used ITK-SNAP3 to edit the

preliminary segmentations provided to facilitate the annotation

procedure. At the beginning of the annotation process, the

preliminary segmentations were generated using a deep-learning

model trained exclusively on the 2019 BraTS dataset (15). Later, as

GT segmentations became available, the model was fine-tuned

using these GTs and used to generate the preliminary

segmentations for the data awaiting annotation. These GT

segmentations were outlined on the exams after pre-processing of

the dataset. The remaining 35 GT segmentations used in the train/

validation subset had been previously outlined by a radiologist

with 5 years of experience. This annotator was also tasked with

outlining the CET using ITK-SNAP while avoiding post-operative

findings, however, no preliminary segmentations were provided.

Note also that these GT segmentations were outlined on the

exams in the original resolution and were later resampled to

1mm3 isotropic voxel size, using nearest neighbor interpolation, to

conform to the rest of the dataset. The 248 exams in the external

dataset were annotated by trained annotators under the

supervision of neuroradiologists and neurosurgeons. These

annotations were also done on the exams in the original resolution.

All 462 patients in the classification test subset were classified

according to the EOR. For most of the patients, the EOR was
frontiersin.org
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FIGURE 1

Datasets used in the study with the number of patients in each subset. Green indicates that ground truth (GT) segmentations are available for the
subsets, orange that GT extent of resection (EOR) classifications and overall survival time are available for the subset. The figure also shows how
the datasets are used to evaluate the model.

Luque et al. 10.3389/fradi.2024.1357341
extracted from the post-operative MRI radiology report. If no CET

was seen in the early post-operative exam, the surgery was classified

as maximal CET resection. If residual CET was identified in the

exam, the surgery was classified as submaximal CET resection.

For the patients without an available radiological report, the

classification was done by a neurosurgeon not involved in the

surgery, following the same criteria. Note that this classification

did not use the 1 ml threshold that the newest guidelines

recommend, as manual segmentation was deemed to be

unfeasible. Survival data were available for patients in this subset.
4https://monai.io/
2.5 Network architecture and training
procedure

A U-Net-based (27) deep learning architecture was used in this

study. Variants of the U-Net architecture have consistently shown

strong performance in medical imaging tasks (12, 28). One such

variant, denoted nnU-Net, achieved state-of-the-art performance

in the BraTS challenge (12) which involved pre-operative MRI

segmentation of glioblastoma and low-grade gliomas. We used
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the Medical Open Network for Artificial Intelligence (MONAI)4

framework to implement a close approximation of the nnU-Net

network, configured as illustrated in Figure 2. The Dice score was

calculated for the whole volume and defined as the training loss

function. The last three layers of the network were used to

calculate a deep supervised loss function. However, such a

network trained in a standard fully-supervised manner cannot

learn from unlabeled data. To use the entirety of our data, which

contains over 80% unlabeled data (without GT segmentations),

we implemented a semi-supervised learning technique called

cross-pseudo-supervision (CPS) (29) using the nnU-Net-

architecture as the backbone. The method consists of two nnU-

Nets with different initializations that are trained jointly (see

Figure 2). To help convergence, each network was pre-trained

separately on the BraTS dataset before being jointly trained with

CPS. During the CPS training stage, each network was trained in
frontiersin.org
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FIGURE 2

Top: 3D nnU-Net network with deep supervision. The input to the network is a tensor with four channels, one for each scan volume (T1-weighted with
and without contrast, T2-weighted and fluid attenuated inversion recovery). The output is a binary mask. Bottom: Cross-Pseudo Supervision (CPS) is a
semi-supervised training scheme where labeled and unlabeled data are passed to two networks. For the labeled data, the loss is calculated as a
weighted sum of the Dice between each network’s prediction and the label (supervised loss) and the Dice between each network’s prediction and
the other network’s prediction (unsupervised loss). For the unlabeled samples, only the unsupervised loss is used.

Luque et al. 10.3389/fradi.2024.1357341
a supervised manner by relying on the predicted pseudo-label from

the other network. For the labeled samples, the GT labels were also

included in the calculation of the loss function. CPS has been

shown to improve performance by 3%–4% from the supervised

baseline both on non-medical (29) and medical (30)

segmentation tasks. The current implementation closely

resembles the work in (30).5 The predicted segmentations on

both the internal and the external test datasets were obtained

from an ensemble of the five models trained with five-fold cross-

validation using the labeled train/validation subset as well as the

unlabeled train subset.
5We found that increasing the weighting of the unsupervised component of

the loss improved the validation score. To that end, the weight parameter φ

was changed to 2.
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The models were trained for 500 epochs using the Adam

optimizer with weight decay set to 2e-5 and a cosine annealing

scheduler with linear warmup with a top learning rate of 3e-4.

Training each model took approximately 34 h (hardware

specification: NVIDIA A100 40GB GPU). A mini-batch size of 4

was used, including 2 unlabeled samples, and each sample was

randomly cropped to 128 × 128 × 128 during training. At

inference, a sliding window with overlapping patches ensured the

entire volume was segmented.
2.6 Data augmentation

Data augmentation is critical to ensure that a model is robust to

domain shifts between training and test data. While our training

subset contained mostly 3D-acquired MRI exams, our test subset

was sampled from the entire dataset, with most scans acquired in

2D. To bridge this domain shift and ensure generalization, the

3D-acquired scans were downsampled during training. With a
frontiersin.org
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probability of 0.5, a scan acquired in 3D was downsampled to a

randomly chosen number of slices between 20 and 60

(approximately 2–6 mm slice thickness) along an orthogonal

orientation chosen at random (coronal, sagittal or axial).

Additionally, common data augmentation techniques were

employed as implemented in MONAI. Spatial transforms

included random flipping, rotation, and zooming, while pixel-

wise augmentations were used to randomly modify contrast, shift

the intensity histogram, and scale the intensity.
2.7 Evaluation of the predictions

We evaluated the model through four experiments, as shown in

Figure 1: segmentation metrics, clinician’s subjective evaluations of

the segmentations, classification metrics to assess the model’s

performance in classifying the EOR, and performance in

predicting overall survival.

2.7.1 Segmentation metrics
The segmentation metrics used were the Dice score and the

95th percentile Hausdorff distance (HD95). The Dice score

measures the voxel-wise overlap between the predicted and the

GT segmentation, with 0 being no overlap (including the case

where either the predicted or the GT segmentation is empty) and

1 being complete overlap. Because the HD95 measures a distance

between two segmentations, it is undefined when either the

predicted or the GT segmentation is empty. We excluded these

undefined cases when computing the HD95. The mean Dice and

HD95 with 95% confidence intervals were calculated for the

train/validation subset (using 5-fold cross-validation), the

segmentation test subset, and the external dataset.

2.7.2 Clinician evaluations
To capture subjective preferences, three clinicians

independently evaluated the 17 predicted segmentations and the

corresponding 17 GT segmentations in the segmentation test

subset. The three clinicians were blinded in this evaluation and

rated the 34 segmentations in random order. The raters were

instructed to use a scale from 1 to 5, where 1 indicated that the

segmentation had no clinical value and 5 was a perfect

segmentation that did not require manual refinement. A

neuroradiologist with 19 years of experience and two

neurosurgeons with 19 and 5 years of experience performed the

ratings. The Wilcoxon signed-rank test at a significance level of

p = 0.05 was used to compare the predicted segmentations

against the GT segmentations, with the null hypothesis being

that the median difference between the two groups was zero. We

used the intra-class correlation coefficient (ICC) (31) to quantify

inter-rater agreement in the ratings of the segmentations.

Specifically, the ICC form ICC(2,1) was used.

2.7.3 EOR classification performance
We measured the model’s classification performance by

comparing the EOR classification derived from the predicted

segmentations with the GT EOR classification. Unlike the
Frontiers in Radiology 06
classification test subset, the external dataset did not include

GT EOR classifications obtained from radiological reports.

Instead, the GT segmentation volumes thresholded at 1 ml

were used to classify the scans as showing either maximal or

submaximal CET resection, establishing the GT EOR

classification for the external dataset. The predicted

segmentations were binarily classified, using varying

thresholds, as either maximal CET resection if the predicted

volume was less than the threshold, or submaximal CET

resection otherwise. Thus, we could calculate the receiver

operating characteristic (ROC) curve, which shows the

sensitivity and specificity at different thresholds of the

predicted tumor volume. From the ROC curve we obtained the

area under the curve (AUC). Additionally, following the latest

recommendations (7), we set the threshold of the predicted

volume to 1 ml and calculated the confusion matrix for that

threshold as well as the precision and recall values. Note that

while previous guidelines called for including the relative

reduction in tumor volume when classifying the EOR (32),

using only the volume of the remaining tumor has been

shown to provide the same prognostic value (7).

2.7.4 Survival prediction
Kaplan–Meier curves were used to compare the overall

survival between patients with maximal and submaximal CET

resection, as determined by clinicians and the model. The log-

rank test at a significance level of p = 0.05 assessed survival

differences between patients with EOR classified by clinicians

and the model.
3 Results

After comparing the distributions in the GT annotations

between the subsets, we evaluated the model using segmentation

metrics, clinician’s subjective evaluations, the model’s EOR

classification performance and survival data. Lastly, example

cases illustrated the model’s strengths and limitations in

accurately predicting CET.
3.1 Comparison of data subsets

There are differences in the mean GT volumes between the

data subsets used in this study. As depicted in Table 2, the mean

CET volume of the train/validation subset is considerably lower

than that of the segmentation test subset. The external test

dataset has the highest mean CET volume, almost 2.5 times that

of the train/validation subset. These volume differences reflect on

the GT EOR of the subsets (calculated using the 1 ml threshold),

with 37% of patients in the train/validation subset classified as

showing submaximal resection vs. 76% in the segmentation test

subset and 54% in the external dataset. In the classification test

subset, where the GT EOR classification was obtained from

radiological reports, submaximal resection was seen in 71%

of patients.
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TABLE 2 Average dice score and 95th percentile hausdorff distance
(HD95), as well as average volumes of the predicted and the GT
segmentations for all datasets with GT segmentations. Non-empty
means that exams with empty GT segmentations were excluded. The
95% confidence intervals are reported.

Dataset Train/
validation (122

exams)

Segmentation test
(17 exams)

External test
(248 exams)

Metric
Dice 0.49 ± 0.05 0.64 ± 0.11 0.36 ± 0.04

Dice non-
empty

0.51 ± 0.05 0.64 ± 0.11 0.52 ± 0.03

HD95
[mm]

16 ± 3 20 ± 10 16 ± 2

Segmentation volume [ml]
GT 1.77 ± 0.54 3.10 ± 1.25 4.40 ± 0.97

Prediction 1.79 ± 0.53 2.60 ± 0.99 2.63 ± 0.46

GT, non-
empty

1.85 ± 0.55 3.10 ± 1.25 6.38 ± 1.30

Prediction,
non-empty

1.87 ± 0.55 2.60 ± 0.99 3.44 ± 0.59

Luque et al. 10.3389/fradi.2024.1357341
3.2 Segmentation metrics

The segmentation metrics are shown in Table 2. The mean

Dice was lower for the external than for the internal dataset.

However, the external dataset also had the highest proportion of

cases where no residual tumor was found by the annotator

(empty GT segmentations), 31% vs. 4% in the train/validation
FIGURE 3

Clinician ratings, with a score of 5 indicating a perfect segmentation that req
that has no clinical value. Three clinicians scored 17 segmentations produced
being blinded to which group each segmentation belonged to. The plots
distribution of all scores (combined from all three clinicians) is shown on th
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and none in the segmentation test subset. The mean Dice that

excluded patients with empty GT segmentations, and thus

accounted for this discrepancy, was similar for both datasets:

0.51 and 0.52 for the internal train/validation subset and the

external dataset respectively. The mean HD95 was 16 mm for

both datasets. The highest Dice, but also the poorest HD95, was

reported on the segmentation test subset. This was also the

smallest dataset, with only 17 samples vs. 122 and 248 for the

train/validation subset and the external dataset respectively.

Table 2 also shows the mean volumes of the predicted and GT

segmentations. We show the mean volumes of all samples as well as

all samples excluding those with empty GT segmentations. The

model underestimated the volume in the external dataset (all

samples) by 1.76 ± 0.63 ml and underestimated the volume in the

segmentation test subset by 0.50 ± 0.46 ml. For the train/

validation subset, the mean predicted volume was 0.02 ± 0.12 ml

larger than the mean GT volume.
3.3 Clinician evaluations

Figure 3 shows a histogram of the clinicians’ subjective

evaluations, with each datapoint corresponding to one clinician’s

score for one segmentation. There was no significant difference

(p = 0.41) between the clinicians’ ratings for the predicted and

GT segmentations, with a mean rating of 3.16 vs. 3.18
uires no manual refinement, while a score of 1 refers to a segmentation
by the model and the corresponding ground truth segmentations, while
on the right show the distribution of scores from each clinician. The
e left.
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respectively. There was however substantial interrater

disagreement, with an ICC of 0.21, which is considered poor

(33). For about half of the GT segmentations the ratings of two

clinicians differed by more than one point, and the same was the

case for the predicted segmentations. 13 predicted segmentations

and 10 GT segmentations were given a low score (1 or 2) by at

least one rater, while 2 predicted segmentations and 3 GT

segmentations were given a high score (4 or 5) by all three raters.
FIGURE 5

Confusion matrix showing the classification performance of the
model at the 1 ml threshold for the external dataset (left) and the
internal classification test subset (left). Maximal CET resection
corresponds to a predicted volume <1 ml, larger predicted
volumes are classified as submaximal CET resection. The rates are
normalized over the ground truth classifications (rows). The
number of patients in each category is given in parentheses.
3.4 EOR classification performance

Figure 4 shows the ROC curve for the EOR classification,

corresponding to the internal classification subset and the

external dataset. A positive classification denotes a submaximal

CET resection. Our model achieved an AUC of 0.91 and 0.78 for

the external dataset and the internal classification subset,

respectively. The true vs. false positive rates at the 1 ml threshold

are marked on the plot. The confusion matrices for the 1 ml

threshold calculated for the classification test subset and the

external dataset are given in Figure 5. On the external dataset,

the model achieved a classification precision of 0.90 and a recall

of 0.87 (F1 = 0.88), while on the internal classification subset we

saw a precision of 0.86 and a recall of 0.78 (F1 = 0.82).

Given the disagreement between the mean predicted and GT

volume, as seen in Table 2, the high classification performance of

the model on the external dataset warranted further exploration.

Figure 6 shows the predicted volumes as a function of the GT

volumes. Most datapoints are below the diagonal line, meaning

the model underestimates the volume, which is consistent with

the lower average predicted volume shown in Table 2. However,

all misclassified exams have GT volumes of <4 ml, as the

underestimations for larger volumes are not of sufficient size to
FIGURE 4

Receiver operating characteristic (ROC) curve showing the
classification performance of the model at different enhancing
tumor volume thresholds. The point closest to the 1 ml threshold
is indicated as well as the area under the curve (AUC) for the
classification test subset and the external dataset.

FIGURE 6

Contrast-enhancing tumor (CET) volumes in the predicted
segmentations as a function of the CET volumes in the ground
truth (GT) segmentations for the external dataset. Correct
classifications (TP, true positive and TN, true negative), false
positive (FP) and false negative (FN) are color-coded. A positive
classification refers to submaximal CET resection, negative is
maximal CET resection.
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misclassify the exams. The model is more likely to misclassify

exams with GT volumes close to 0 as opposed to GT volumes

close to the 1 ml threshold. All false positive scans had a

predicted volume of <0.5 ml.
3.5 Survival prediction

Figure 7 shows the Kaplan–Meier survival curves for patients

in the classification test subset and stratified by the EOR

determined by clinicians and the model. Median overall survival
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FIGURE 7

Survival curves for patients classified as having either maximal (red
and orange curves) or submaximal (blue and cyan) enhancing
tumor resection by either clinical evaluation or the model’s
classification. The survival curves from the model closely match
the survival curves from clinician’s classifications.
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was 14.8 months (IQR: 10.3–29.2) vs. 16.6 months (IQR: 10.9–

29.8) survival for the maximal CET resection groups as classified

by clinicians and the model respectively. The corresponding

values for the submaximal CET resection groups were 11.2

months (IQR: 6.7–17.5) vs. 10.3 months (IQR: 6.2–15.6).

Although the differences were not significant (p = 0.93 and

p = 0.41 for maximal and submaximal CET resection), the

difference in median overall survival between the maximal and

submaximal groups was larger when the classification was done

by the model (6.3 months vs. 3.6 months).
3.6 Example cases

Representative examples of the predicted segmentations on

the segmentation test subset are shown in Figure 8. The main

failure mode of the model, as determined by the evaluating

clinicians, was the misallocation of blood voxels being

segmented as tumor. The model’s overestimation in example

patients 2 and 5 are examples of this, where it is likely that

low-resolution data resulting in poor registration caused the

model to mislabel blood as tumor tissue. The prediction in

patient 1 was deemed likely be an example of the model

mistaking blood for tumor. However, it is worth noting that

the annotator had labeled the same area as tumor. Example

patient 4 was particularly challenging due to the poor quality

of the image. As a result, the evaluating clinicians were

uncertain as to whether the area segmented as tumor in the

GT but not in the model’s prediction (blue in Figure 8)

actually constitutes tumor tissue. Patients 3 and 6 were

accurately predicted by the model, with some areas showing

predictions that were deemed by the three evaluating clinicians

to be better than the GT segmentation. Notably, the model’s

overestimation of patient 6′s scan (see arrow in figure) was

deemed as tumor on closer inspection, despite the GT

segmentation not including that region.
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4 Discussion

The current study investigated the use of a U-Net-based deep-

learning model to segment residual tumor on early post-operative

MRI exams of patients with glioblastoma. This approach could

help clinicians adhere to the latest guidelines by facilitating post-

surgical tumor segmentations. We found that the model

segments early post-surgical exams on par with expert annotators

and is also capable of classifying the EOR of the CET.

Early post-operative glioblastoma is challenging to segment, as

evidenced by Visser et al. in a study that shows a Jaccard score

between expert annotators of only 0.33, corresponding to a Dice

of 0.48 (9). With a mean Dice of 0.52 in the external dataset and

0.51 in the train/validation subset for the cases with a non-empty

GT, the results show that the agreement between the predicted

and the GT segmentations is comparable to the agreement

between expert annotators as reported in literature. Note that the

goal is not to achieve Dice scores higher than those between

expert annotators, as this would imply overfitting to the

annotator’s preferences. Clinicians not involved in the annotation

process scored the model’s and the GT segmentations similarly,

further indicating that these are comparable.

Although the model performs on par with expert annotators,

the predicted segmentations are imperfect. Visualization of the

predicted segmentations showed that most failures could be

attributed to the model confusing blood products and tumor

tissue, especially on low-resolution data with poor inter-scan

registration between T1w and T1wc scans. These were also the

cases where domain expert annotators often struggled. It is worth

noting, however, that some of the errors in the GT

segmentations may have been caused by a failure to correct

errors in the preliminary segmentation provided to the annotator.

Following the newest guidelines, we used a 1 ml threshold to

classify the predicted segmentations into either maximal or

submaximal CET resection. Not surprisingly, we find that the

model performs better in classifying the exams in the external

dataset, where the GT classification was extracted using the same

threshold, compared to the classification test subset where the

GT classifications were set by clinicians following current clinical

practice (CET present/not present). Using the 1 ml threshold, our

model obtains a reasonable 0.90 precision and 0.87 recall. This is

the case even though there is a substantial domain shift between

the data the model is trained on in the external dataset, with an

average GT volume of 1.77 ml vs. 4.40 ml respectively. A study

by Helland et al. on early post-operative glioblastoma

segmentation finds similar results, with their best-performing

model trained on over 800 annotated exams obtaining 0.90

precision and 0.86 recall (23). While the results are not directly

comparable, due to the use of different datasets and volume

thresholds between the studies, they do caution that larger

training datasets do not necessarily lead to better predictions. In

an era when lack of reproducibility of AI models plagues the

medical field, we believe that showing that two independently

developed models trained on different datasets give similar

results helps strengthen confidence in the use of AI in this

clinical context.
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FIGURE 8

Comparison of the ground truth (GT) segmentations to the predicted segmentations for six patients. Overlap means that the voxel was segmented as
enhancing tumor in both the prediction and the GT, overprediction indicates that a voxel is segmented in the prediction but not in the GT, and
underpredicted voxels are segmented in the GT but not the prediction. Images are zoomed in to show all segmented voxels in the image. Note
that the quality of the images reflects the resolution of the original MRI scans.
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When used to stratify patients according to their CET EOR, the

model performs at least as well as the clinical classification in

predicting overall survival. In fact, using the model leads to
Frontiers in Radiology 10
better stratification, although this result is not statistically

significant: The difference in median overall survival between

patients with maximal and submaximal EOR is 6.3 months,
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compared to 3.6 months when using the clinical classification.

Using overall survival as a benchmark provides an objective

method to assess the model’s performance. This is particularly

useful when working on segmentation of glioblastoma in MR

images taken shortly after surgery, when the inter-rater

disagreement is considerable. Moreover, this finding emphasizes

the clinical relevance of the model’s classifications, since

stratifying patients according to their overall survival is one of

the main applications of EOR classifications. We hope that our

results concerning the difference in survival between EOR groups

can serve as a benchmark for future studies.
4.1 Limitations and future work

While the predicted segmentations are, overall, on par with

expert annotators, the limited size of the training dataset

increases the risk of the model failing to segment tumors in the

presence of pathologies or features (for example, artifacts) it has

not encountered during training. As with any deep-learning

model, it is imperative that clinicians review the model’s

predictions when used in clinical practice. Of the errors we

encountered, most appear to be caused by a failure to

distinguish between tumor tissue and blood products under

certain conditions, like subpar registration. Higher resolution

data, or in lieu of this, data augmentation simulating poor

registration by introducing offsets between the volumes could

improve segmentations. There is also a tendency for the model

to underestimate tumor volumes in the external dataset,

particularly in the case of large tumors, suggesting that the

model may be suboptimal for reliable volume analysis. The

cause of this bias is likely the considerably lower mean GT

volume in the training dataset compared to the external dataset,

which might be due to differing annotation practices. When

using the 1 ml threshold as proposed in the latest guidelines,

the volume bias does not substantially affect the resulting EOR

classification. However, using lower thresholds will lead to

higher false positive rates, and this model should not be used to

perform EOR classification using other thresholds without

prior validation.

Another limitation is that the GTs are annotated by a single

radiologist. Using majority voting among multiple annotators

could improve the reliability of the model, but not without

significantly increasing the resources needed. Alternatively,

capturing the annotator’s confidence in each segmentation and

using it to train a confidence-aware network has been shown to

improve predictions in post-operative scans taken at later dates

(16), and could also be helpful for early post-operative

segmentation given the uncertainty faced by the annotators. An

additional limitation is that our model only segments residual

ET, and not the non-enhancing tumor-infiltrated tissue. The

latest RANO guidelines conclude that additional resection of the

non-enhancing tumor provides some benefits over maximal CET

resection alone (7). Hence, further work is needed to train

segmentation models capable of classifying the EOR of the non-

enhancing tumor.
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5 Conclusion

Our trained deep learning model was capable of segmenting

residual CET on post-operative MRI exams with a performance

comparable to the interrater agreement between expert

annotators as measured by the Dice score. On the internal test

dataset, the clinical value of the segmentations was corroborated

by the subjective evaluations of three clinicians who rated

the predicted segmentations at a similar level as the GT

segmentations. However, the model substantially underestimated

the tumor volumes in the external dataset, suggesting it may be

suboptimal for reliable volume analysis. Despite this volume bias,

when used to classify the CET EOR the model achieved

precision/recall scores of 0.90/0.87 on the external dataset and

0.86/0.78 on the internal dataset. Moreover, we show that

stratification of patients based on the model’s predictions has at

least the same prognostic value as when done by clinicians.

This work may help streamline the introduction of the newest

RANO guidelines into clinical practice by providing accurate

and replicable CET EOR classifications without adding to

radiologists’ workload.
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