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Image-to-text radiology report generation aims to automatically produce
radiology reports that describe the findings in medical images. Most existing
methods focus solely on the image data, disregarding the other patient
information accessible to radiologists. In this paper, we present a novel
multi-modal deep neural network framework for generating chest x-rays
reports by integrating structured patient data, such as vital signs and
symptoms, alongside unstructured clinical notes. We introduce a
conditioned cross-multi-head attention module to fuse these
heterogeneous data modalities, bridging the semantic gap between visual
and textual data. Experiments demonstrate substantial improvements from
using additional modalities compared to relying on images alone. Notably,
our model achieves the highest reported performance on the ROUGE-L
metric compared to relevant state-of-the-art models in the literature.
Furthermore, we employed both human evaluation and clinical semantic
similarity measurement alongside word-overlap metrics to improve the
depth of quantitative analysis. A human evaluation, conducted by a board-
certified radiologist, confirms the model’s accuracy in identifying high-level
findings, however, it also highlights that more improvement is needed to
capture nuanced details and clinical context.
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1 Introduction

The use of medical imaging is widespread across various branches of health sciences

for the purpose of diagnosing diseases, developing effective treatment plans, providing

patient care, and predicting disease outcomes. Radiologists are responsible for

interpreting the medical images and creating a full-text radiology report that is based

on their findings along with other relevant clinical data and information, such as

patient demographics, symptoms, and pre-existing/existing medical conditions. These

reports must be complete, accurate, and produced in a short amount of time while

adhering to a specific format. In clinical settings, chest x-rays (CXR) are the most

commonly used medical imaging techniques and are usually the first step in

evaluating patients for various lung diseases. The reports generated from CXR

examinations typically include the radiologists’ observations categorised as “findings”

and “impressions” and indicate normal and abnormal features in the images.

Composing these detailed reports requires a significant amount of knowledge and
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experience and can be time-consuming and prone to errors. By

providing radiologists with a baseline analysis to validate and

amend as needed, automation can reduce repetitive workflows.

This would allow radiologists to focus their expertise on higher-

level clinical thinking and quality assurance.

In the field of medical imaging informatics, previous studies

have developed techniques to automate the generation of

radiology reports (1, 2). The majority of current deep learning

approaches use networks that feature a convolutional encoder

and recurrent (3–5) or transformer decoder (6, 7), which were

originally designed for the task of image captioning (Figure 1).

Although these two tasks share similarities in terms of input and

output modalities, there are some key differences. Radiology

reports are in the form of detailed paragraphs rather than brief

captions, and they must be comprehensive and include specific

medical details. Additionally, interpreting medical images can be

challenging due to subtle variations in the image and report and

also generating a description for a medical image often

necessitates supplementary information beyond what is visible in

the image. For instance, in certain cases, while similarities in

medical imaging between males and females are nearly identical

in terms of visual patterns, differences in patient demographics

have a noteworthy clinical impact on the assessment and

diagnosis. However, current report generation methods for CXRs

solely consider the radiology image as input and disregard the

non-imaging information that radiologists have access to during

image interpretation. Only a limited number of studies integrate

additional data into the network such as medical concepts, high-

level contexts or categories of the images/reports. While these

methods have shown some level of success, they mainly focus on

enhancing the model with data derived from existing semantics

rather than supplementing the training context with additional

data. Furthermore, as CXR images are 2D projections of 3D

objects, important/relevant information is lost, leading to

semantic gaps in the data available for learning by networks or

algorithms. Therefore, we hypothesise that combining multiple

data sources that provide different perspectives on the patient’s

condition, is beneficial for generating more informative and

accurate reports (using data-driven learning-based approaches),

compared to using CXR images alone.

The rest of the paper is organised as follows: Section 2 presents

relevant existing studies and strategies, and Section 3 introduces the

data and outlines the proposed methodology. Section 4 provides

details on the implementation and presents both quantitative and

qualitative results. Finally, Section 5 conducts a discussion and

draws a series of conclusions regarding the study.
FIGURE 1

Generalised image-to-text framework.
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2 Relevant literature

2.1 Image captioning methodologies

Visual Captioning, also known as Image Captioning, is a

popular task that involves generating descriptive natural

language captions for images. It requires the integration of

computer vision and natural language processing, drawing

significant attention from the artificial intelligence

community. Deep learning techniques, particularly encoder-

decoder models using Convolutional Neural Networks (CNNs)

and Recurrent Neural Networks (RNNs), have been commonly

employed for this task (8, 9). However, these RNN-based

models suffer from the issue of vanishing and exploding

gradients due to limited access to previous inputs, affecting

their performance (10). To address this limitation, recent

research has shifted towards utilising transformer-based

architectures (11), originally successful in the field of natural

language processing (NLP). Transformers leverage self-

attention mechanisms, allowing for better parallelisation and

learning relationships between words in a sequence (12).

Unlike RNNs, transformers do not rely on recurrence,

enabling faster and more effective learning by including more

context in the network.

The transformer-based encoder-decoder architecture that is

most commonly used for image captioning consists of three

main components: a model for extracting visual features, a

transformer-based encoder, and a transformer-based decoder.

To extract high-level features, pre-trained CNN models are

usually employed. However, in this approach, the output of

the visual model is passed through a transformer-based

encoder to map the visual features and produce a sequence of

image representations. The transformer-based decoder then

takes in the encoder’s output to generate a corresponding

caption for the given image. One model, called Captioning

Transformer (CT) (13), utilised a ResNeXt (14) CNN model as

an encoder and a Transformer as a decoder. Another study

(15) used a Transformer as the decoder along with the ResNet

CNN model and improved the network with a combination of

spatial and adaptive attention. Another study (16) enhanced

the vanilla Transformer architecture with Entangled Attention

(ETA) and Gated Bilateral Controller (GBC), enabling the

processing of semantic and visual concepts concurrently.

A Meshed-Memory Transformer model (17) was introduced

that is a fully-attentive model including a Memory-Augmented

Encoder enriched with learnable keys and values and a gating

mechanism for mesh connectivity. The model also includes a

Meshed Decoder that connects all encoding layers. A separate

study proposed the Caption TransformeR (18) (CPTR) model,

which is a full Transformer network without any

convolutional operation in the encoder. Unlike previous

models, the CPTR model uses the raw image, divides it into N

patches, reshapes the patches into vectors and learns

features from them, with positional encoding, using the

transformer encoder.
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2.2 Chest-xray report generation

Recent approaches to automatic radiology/CXR image report

generation are predominantly based on deep learning and typically

adopt an image captioning approach, utilising a combination of

convolution and recurrent neural networks. For example, Jing et al.

(3), used a pre-trained VGG-19 model to learn visual features,

which are then used to predict relevant tags for any given chest x-

ray. These tags become semantic features in the network, which

alongside visual features, are fed into a Co-Attention Network.

Subsequently, a Hierarchical LSTM uses the context vector provided

by the Co-Attention Network to generate a description for the

given x-ray. While the model achieved promising results, there were

concerns around the repetitive sentences in reports and the

inconsistency in generating text for the same patient during

inference, where the network produced different outcomes. Another

study (4) addressed this issue by enhancing the pre-trained Resnet-

152 encoder using multi-view content and incorporating a sentence

decoder to generate a report. Multi-view approach mitigated the

problem of report variability for the same patient. Additionally,

they used the first predicted sentence as a joint input alongside

image encoding, ensuring consistency in the results.

An alternative proposal (5) was posited, wherein they chose to

pre-train their multi-view encoder from randomly initialised

weights using the CheXpert dataset (19), rather than relying on

pre-trained models from ImageNet. To improve the efficacy of

the decoder, they extracted normalised medical concepts from

radiology reports using Semrep.1 These extracted concepts were

embedded into the decoder in two ways: (1) they concatenated

the concept embedding with the encoder output before feeding

to the decoder, providing explicit semantic information, and (2)

they used a concept-aware attention mechanism that attends over

the embedded concepts when generating words, enabling the

decoder to focus on relevant medical terms. By enriching the

decoder with explicit medical concept knowledge, their model

could generate reports with more accurate and meaningful

terminology aligned with the clinical finding descriptions.

Medical concepts were also employed in another study (1),

where, the authors introduced a reinforcement learning-based

reward for concept extraction to obtain more accurate and

precise concepts. This reward encouraged the model to extract

concepts that have a higher likelihood of being mentioned in the

radiologist’s report. Compared to previous work that extracted

concepts without optimisation, their approach achieved higher

precision and coverage of concepts that radiologists tend to use

in real reports. However, the authors acknowledged their

generated reports still lacked some descriptive informativeness

compared to ground truth. Their analysis found that only

extracting concepts from previous reports limits the diversity of

expressions in generated reports.
1https://semrep.nlm.nih.gov/
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A study (2) highlighted the frequent discrepancy between the

formats of normal and abnormal radiology reports, with abnormal

reports indicating the suspicion of an abnormality or pathology.

To address this issue, they categorised reports as either normal or

abnormal based on the content of the report text. For the report

generation process, they adopted a two-stage approach. First, they

generated the “Findings” section, which describes the visual

observations made by radiologists during the examination of

medical images. This was achieved by leveraging visual features

extracted from a CNN model and relevant report texts.

Subsequently, they summarised the generated “Findings” to

produce the “Impression” section, which provides a summarised

interpretation of the radiologist’s observations. A key contribution

of their study was showing that conditioning the text generation

on the report type (normal or abnormal) improved the clinical

validity and alignment with real radiology reporting practices.

Recent studies have also capitalised on Transformer models for

medical report generation, after having achieved success in text

generation based on non-linguistic representation. One such study

(20) constructed a hierarchical Transformer model which features

a novel encoder capable of extracting regions of interest from the

original image via a region detector, and subsequently, utilising

these regions to obtain visual representations. Additionally,

another study (6) introduced a medical report generator utilising a

memory-driven Transformer. They proposed a relational memory

(RM) module to retain knowledge from previous cases, thereby

enabling the generator model to remember similar reports when

generating current reports. Another study (7) proposed a

progressive Transformer-based framework for report generation,

which generates high-level context from the given x-ray and then

employs the Transformer architecture to convert this context into

a radiology report. This model comprises a pre-trained CNN as a

visual backbone, a mesh-memory Transformer (17) as a visual-

language model, and BART (21) as a language model.

With increasing interest in this application domain, studies

have become more attentive to the distinctions between image

captioning and report generation tasks. As a result, researchers

have begun to develop more knowledge-informed networks

tailored specifically to the task of image-guided radiology report

generation. The paper (22) introduces a task-aware framework

that is designed to be adaptable to different imaging types and

medical scenarios. It prioritises understanding specific diagnostic

tasks related to various medical conditions, ensuring accurate

and contextually relevant report generation. Another study (23)

highlights the significance of both input-independent general

medical knowledge and input-dependent specific contextual

information in generating accurate chest radiology reports. They

proposed a knowledge-enhanced method that leverages these

information along with visual features to improve the quality and

accuracy of generated reports for chest x-rays. Recently, another

study (24) introduced a technique called multi-modal contrastive

learning, which aims to enhance the synergy between different

modalities of data. By leveraging contrastive learning, the

proposed method aligns and embeds visual and textual

representations in a shared space, facilitating the generation of

more informative and accurate radiology reports.
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2.3 Fusion strategies

Data fusion refers to the integration of different data modalities

that provide separate perspectives on a problem to be addressed,

and using multiple modalities has the potential to decrease the

number of errors compared to approaches that only use one type

of data (25). Deep learning fusion strategies can be broadly

classified into three categories: early fusion, late/decision fusion,

and hybrid/joint fusion. In the process of early fusion, the

original or transformed features are combined at the input level

before being fed into a single model that can handle all the

information. There are various methods of joining data, but early

fusion commonly involves concatenation or pooling. In late

fusion, the input data is processed independently through

separate networks. The outputs from these networks are then

combined at a later stage to form a joint decision. Late fusion

strategies learn modality-specific features separately and then

integrate them downstream in the model (e.g., just before the

prediction/output layer). Lastly, joint fusion involves combining

the features extracted from different modalities at different stages

of the network architecture.

Within the medical imaging field, the utilisation of multi-modal

data fusion approaches has the potential to enhance performance in

addressing complex tasks that exceed the capabilities of a single

imaging modality. Concentrating on chest x-ray modality, multiple

tasks such as image classification, image retrieval, and modality

translation have leveraged data fusion strategies. For example, one

study (26) introduced a CNN-RNN architecture called the text-

image-embedding network (TieNet) to extract discriminative

representations of both chest radiographs and their accompanying

reports by combining visual and textual information through joint

fusion. The experimental results indicate that TieNet’s multimodal

approach outperforms its unimodal counterpart in multi-label

disease classification. Another study (27) employed a semi-

supervised approach to train the network on chest radiographs

and associated radiology reports to evaluate the severity of

pulmonary edema. This study demonstrated that joint learning of

image-text representations enhances the performance of models

designed to predict the severity of pulmonary edema, compared

with supervised models that relied solely image-derived features. A

paper (28) discussed the challenge of integrating data from

different sources in healthcare due to asynchronous collection of

modalities. They proposed an LSTM-based fusion module, called

MedFuse, that accommodates uni-modal and multi-modal input

for mortality prediction and phenotype classification tasks. In

contrast with intricate multi-modal fusion techniques, MedFuse

yields considerably better performance on the fully paired test set,

furthermore, it demonstrates robustness when dealing with the

partially paired test set, which includes instances of missing chest

x-ray images.

This paper introduces a novel multi-modal deep neural network

for generating radiology reports based on quantitative image

analysis, patient demographic information, and other clinical data

collected during a patient’s stay. The main objective is to generate

a consistent and comprehensive report that adheres to the format

used in real-world clinical practice. Our contributions are as follows:
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To the best of our knowledge, this is the first attempt to

generate an automatic CXR report by integrating patient

information and clinical data obtained from CXR exams, which

is not typically included in radiology reports. We propose a

novel conditioned cross-multi-head attention module to fuse

structured data, unstructured text and visual information.

Additionally, we employed human evaluation and clinical

semantic similarity measurement [Bio-ClinicalBERT Score (1)]

alongside word-overlap metrics to improve the depth of

quantitative analysis. Our experiments demonstrate that the

incorporation of additional data not explicitly stated in the report

enhances the model’s performance. Our proposed model achieves

the best performance on the ROUGE-L metric (29) when

compared to similar state-of-the-art studies.
3 Materials and methods

3.1 Data

The dataset used in this study was created by leveraging three

openly accessible databases, namely MIMIC-CXR, MIMIC-IV, and

MIMIC-IV-ED. MIMIC-CXR (version 2.0) encompasses a vast

collection of 377,110 CXR images captured from multiple views,

together with 227,835 de-identified radiology reports, pertaining

to 63,473 patients. Each report contains several sections, such

as “examination”, “indication”, “technique”, “comparison”,

“findings”, and “impressions”. Meanwhile, MIMIC-IV (version

2.0) comprises de-identified patient data, including characteristics

like age, gender, ethnicity, and marital status, extracted from

individuals who were admitted to Beth Israel Deaconess Medical

Center (BIDMC). Furthermore, MIMIC-IV-ED (version 2.2) is

an extensive database of emergency department (ED) admissions

at the BIDMC between 2011 and 2019, which contains detailed

clinical information, including diagnosis, medication, triage, and

vital signs.

Each of the databases comprises distinct tables containing

varying details related to a patient’s hospitalisation. An individual

patient is assigned a unique identifier, referred to as the subject

id. However, since a single patient might have multiple

hospitalisations, or a single stay may generate several records,

linking these databases using subject id proved unfeasible.

Moreover, as the aim is to generate an accurate report, it is

imperative that non-imaging data be collected within the same

time frame as the chest x-ray. Consequently, we resorted to

record linkage between MIMIC-CXR and MIMIC-IV-ED

databases and extracted data only if the patient was in the ED

while the report was being generated and did not leave during

that period. After performing data cleaning procedures; excluding

missing data, filtering the images to only include anteroposterior

and posteroanterior projections, keeping only one study if there

is more than one records, and removing replications, the

resulting dataset contains 65813 entries and 11 features including

acuity level, oxygen saturation, heart rate, respiratory rate,

systolic blood pressure, diastolic blood pressure, temperature,

patient’s chief complaint, ICD title, gender and ethnicity.
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One challenge with the dataset for this task is its biases,

particularly, its skewed distribution towards normal cases and the

presence of numerous identical reports for different patients. To

minimise these issues, we selected a subset of 65813 entries, by

identifying and cataloging unique medical reports, ensuring that

each distinct group was represented in the curated dataset to a

similar extent. This subset consisted of 3000 total samples, which

we further divided into a training set comprising 2100 datapoints

and a validation set comprising 900 datapoints. Subsequently, we

evaluated the performance of our models on a holdout test set

comprising 1173 unseen examples. As there is currently no

comparable comprehensive dataset encompassing similar non-

imaging data, we exclusively employed this specific dataset to

train and assess the proposed approach.
3.2 Feature extraction and pre-processing

This section describes the pre-processing and encoding of

different data modalities used in this study. The main objective is

to bridge the gap between the data used in the study and the

data typically encountered in medical practice while minimising

potential biases that may arise.

3.2.1 Image data
Each image went through resizing to 299 pixels � 299 pixels,

followed by min-max normalisation to scale the intensity values to

a range of 0 to 1. The process of obtaining the representation of

each image can be described as a two-step procedure. In the first

step, the EfficientNet model is utilised as the base model to extract

the visual features of the image. In the second step, this feature

vector is employed as the input for a transformer-based encoder

which extracts higher-level features and fuses this information with

clinical and non-clinical(demographic) data. A detailed explanation

of the fusion process can be found in Section 3.3.

3.2.2 Clinical: non-imaging data
This study exclusively employed clinical data that clinicians

considered during patient evaluations, wherein, a chest x-ray

examination was conducted if any disease/abnormalities were

suspected. These data included heart rate, respiratory rate,

oxygen saturation, temperature, level of acuity (severity), primary

symptoms or complaints, as well as known or suspected diseases.

The acuity level of a patient is determined based on the triage

assessment, and an integer value, between 1 and 5, is assigned to

each case where 1 indicates the least severe and 5 is the most

severe. The higher acuity levels are typically associated with the

presence of abnormalities in the patient’s case, therefore, utilising

the acuity level may assist the network in determining normal

and abnormal cases while generating the report.

The integer-based variables including oxygen saturation, heart

rate, respiratory rate, systolic blood pressure (sbp), and diastolic

blood pressure (dbp) were initially treated to remove outliers.

Subsequently, the values have been normalised within the range

of 0 to 1, based on their respective minimum and maximum

values. As for temperature data, a conversion to Fahrenheit scale
Frontiers in Radiology 05
was performed, and similar to the integer-based variables, the

values were normalised between 0 and 1.

The text-based variables, namely the chief complaint and ICD

title variables, are initially processed by converting characters to

lowercase and removing unnecessary punctuation, such as

commas, periods, and newline characters, utilising regular

expressions. Consecutive periods are condensed into single

spaces, and double periods are substituted with single spaces,

contributing to a more consistent text format. The resultant text

undergoes further standardisation by substituting shorthand

phrases or abbreviations with their corresponding full-text

counterparts. For example, “cp” is replaced with “chest pain”,

“sob” or “shortness of breath” is replaced with “dyspnea” and so

on. Standardisation also includes converting phrases like “chest

pain, dyspnea” into “chest pain and dyspnea” as well as fixing

typos and pluralisation issues such as changing “‘fevers” to “fever.”
3.2.3 Non-clinical data
In addition to clinical data, patient records often include non-

clinical metadata that can provide valuable insights. This study

concentrates on two commonly collected non-clinical variables:

gender, and ethnicity. These variables have been demonstrated to

have an impact on health outcomes (30) and are therefore of

particular interest in this paper.

As the gender data is already in binary format, the only

necessary pre-processing step was to convert the data to a

numerical representation by replacing “Male” with 0 and “Female”

with 1. The ethnicity data was initially categorised into 5 broad

groups consisting of the most frequently occurring values and this

initial categorisation slightly improved model performance. The

data was then categorised in a more granular fashion into 9

groups: White, African American, Hispanic/Latino, Black, Asian,

White/European, Russian, Other, and Unknown. We hypothesised

that employing these more detailed ethnicity categories would

enable more accurate report generation. Subsequently, the

categorical ethnicity data was mapped to integer values and

reshaped into a 2D array to allow for input into the encoder.
3.3 Multi-modal data fusion details

This section provides the details of the multi-modal data fusion

strategy utilised in our proposed model. As shown in Figure 2, our

approach employs a cross-attention mechanism to fuse the textual,

visual, and scalar modalities. The key variables used in the fusion

are defined in Table 1. Specifically, the scalar patient data,

comprising attributes like heart rate, oxygen saturation, respiratory

rate, blood pressure, temperature, acuity level and gender, is

concatenated to form a continuous representation. This continuous

data is then passed through a dense layer to produce a scalar output.

The scalar patient data, comprising attributes like heart rate,

oxygen saturation, respiratory rate, blood pressure, temperature,

acuity level and gender, is concatenated to form a continuous

representation. This continuous data is then passed through a

dense layer to produce a scalar output.
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FIGURE 2

The overall multi-modal data fusion with cross-attention framework of the proposed CXR report generation model.

TABLE 1 List of variables.

Variable Description
xtext data 2D input tensor of text data indices

Vtext data Vocabulary size of text data

E Embedding dimension

Wemb Embedding weight matrix

fembed Embedding function

Xchief embed Embedded chief complaint data

Xicd embed Embedded ICD title data

Xscalar Processed scalar patient data

Xeth One-hot encoded ethnicity data

X patient Unified patient representation

Q Query matrix for attention

K Key matrix for attention

V Value matrix for attention

Aksoy et al. 10.3389/fradi.2024.1339612
Each ethnicity group variable is transformed using the one-hot

encoding (Equation 1), resulting in a matrix where each

individual’s ethnicity is represented as a binary vector.

Xeth ¼ [d(eth, 1), d(eth, 2), . . . , d(eth, 9)]: (1)

where the function d(i, j) is defined as

d(i, j) ¼ 1 if i ¼ j,
0 if i = j:

�

The chief complaint and ICD title data consist of text sequences

with varying lengths and vocabulary sizes. Therefore, these data
Frontiers in Radiology 06
are separately embedded using the following embedding

technique before being further processed through dense layers.

Let,

xtext data [ ZN�M — 2D input tensor of indices

Vtext data — vocabulary size

E — embedding dimension

Wemb [ RVtext data�E — embedding weight matrix

Then,

fembed(xtext data) [ RN�M�E

fembed(xtext data)i,j,k ¼ Wemb[xtext datai,j , k]
(2)

where

fembed(xtext data)i,j,k — embedding vector

for token at position (i, j)

xtext datai,j — integer index of token at position (i, j)

Wemb[xtext datai,j, k] — k�th value from row of

Wemb for index xtext datai,j

Xchief embed ¼ fembed(xchief data)

Xicd embed ¼ fembed(xicd data)

where: xchief data and xicd data are the respective input indices

tensors and fembed is the embedding function defined in Equation 2.
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After feature extraction and transformation of patient

data inputs, the representations are concatenated into a unified

patient representation vector (Equation 3). The processed scalar

data output Xscalar [ RN�Mscalar , one-hot encoded ethnicity output

Xeth [ RN�Meth , and embedded chief complaint and ICD title

outputs Xchief embed , Xicd embed [ RN�M�E are concatenated for

each patient giving:

X patient ¼ Concatenate(Xscalar, Xeth, Xchief embed,

Xicd embed ; axis ¼ 1)
(3)

Where the Concatenate() operation joins the input tensors along

the specified dimension, in this case, axis=1, yielding:

X patient ¼ Xscalar Xeth Xchief embed Xicd embed
� �

[ RN�(MscalarþMethþ2M�E)
(4)

The resulting X patient (Equation 4) contains a unified representation

of each patient’s data for further use, combining structured scalar

variables, categorical encodings, and semantically rich embedded

features into a single vector. This concatenation enables the

joint modeling of heterogeneous data types into an integrated

patient representation.

Then, an EfficientNetB0 CNN backbone (31) pre-trained on

ImageNet extracts features from 299x299x3 RGB input images.

The CNN outputs N × D image embeddings, where N is batch

size and D is the feature dimension. This 1280-length visual

feature vector is transformed via layer normalisation and a dense

layer to refine the image representation. Before starting to fusion

operation, multi-headed self-attention (Equation 5 and 6) is then

applied to enable the model to jointly focus on different

positions in the image via parallel heads. The self-attention

outputs are then added to the original embedded image via

residual connection, and normalised by a layernorm layer.

Attention(Q, K , V) ¼ softmax
QKTffiffiffiffiffi
dk

p
� �

V (5)

where
ffiffiffiffiffi
dk

p
is the dimension of the key vector k and query vector q

MultiHead(Q, K , V) ¼ Concat(head1, . . . , headh)W
O (6)

where

headi ¼ Attention(QWQ
i , KW

K
i , VW

V
i )

The final output image embedding is further contextualised with

information from the entire set of patient data via a cross-

attention mechanism. In the cross-attention module, the

convention is to take the image features as the query (Q) and the

unified patient representation X patient as the key (K) and value

(V). This allows each part of the encoded image embedding to
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attend to relevant semantics from the full patient data:

Q ¼ Image Features [ RN�D

K ¼ V ¼ X patient [ RN�D

Where N is the batch size and D is the common embedding

dimension across modalities.

Multi-headed scaled dot-product attention is again applied

between Q and K to obtain attention weights representing the

relevance of each part of the patient data to each part of the

image. The weighted value matrices are concatenated and

projected to obtain the cross-attention outputs allowing the

model to condition each part of the image embedding on

relevant unified patient representation.

The cross-attention outputs are residually connected and

normalised in a similar manner via element-wise addition with

the output image embedding from the previous self-attention

block and layernorm.

We adopt the canonical Transformer decoder architecture

which starts by embedding the input sequence using both target

(token) embeddings and positional embeddings. Target

embeddings provides the meaning of words, while positional

embeddings provide information about the order of tokens in the

sequence. The initial layer employs self-attention, where each

output token attends over previously generated tokens. This

auto-regressive nature allows the model to condition on its own

past predictions. Next, it performs attention over the encoded

cross-modal representation obtained from the encoder. This

enables each decoded output embedding to be conditioned on

the relevant semantic concepts and modalities from the encoder,

facilitating more effective fusion and reasoning across modalities.
4 Experiments and analysis

4.1 Experimental setup

The model undergoes training through a custom loop that

involves the following key steps: data retrieval, image embedding,

encoding of clinical and non-clinical data, calculation of loss

and accuracy, computation of gradients, weight updating, and

tracker adjustment.

The standardised sequence lengths are 43 tokens for reports, 2

tokens for chief complaints, and 6 tokens for ICD codes. The

vocabularies contain over 6,000 unique tokens for radiology

reports and over 3,000 tokens each for chief complaints and ICD

codes. The vocabulary size and fixed sequence length were

determined based on the complete dataset, not just the balanced

subset of 3,000 samples used for training and validation. Both

image features and text tokens are represented using 512-

dimensional embeddings. The Transformer encoder and decoder

layers include feed-forward networks with 512-dimensional units

each, and Transformer layers utilize multi-headed attention with

3 attention heads. During training, a batch size of 64 is
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employed, and training proceeds for 100 epochs with early

stopping triggered by validation loss stagnation over 5 epochs.

The model’s training employed the Adam optimiser with a

learning rate of 3e�4 and linear warmup for the first 500 steps.

After the warm-up phase, the learning rate remains constant,

stabilising training and facilitating effective model fine-tuning.

Loss is calculated using the Sparse Categorical Cross-Entropy loss

function defined in Equation 7, and accuracy is assessed by

matching predicted tokens with true tokens. Let: ytruei be the

ground truth for the radiology reports. y predi be the output from

our report generation model. The equation for cross-entropy loss

for each report without reduction is given by:

lossi ¼ �
X

(ytruei � log ((ypredi ))) (7)

where: i represents the index of the report. ytruei is the ground

truth for report i. y predi is the generated report for index i. This

loss calculation is performed for each report separately, without

any reduction.
TABLE 2 Singular model results.

Singular Model B_1 B_2 BSF1 Bio-CBSF1 R_L
ETHNICITY 0.328 0.212 0.174 0.782 0.321

HEARTRATE 0.333 0.213 0.170 0.786 0.295

ICD 0.328 0.207 0.186 0785 0.301

RESPRATE 0.329 0.213 0.185 0.788 0.309

SBP 0.336 0.219 0.197 0.786 0.319
4.2 Evaluation metrics

To evaluate the linguistic quality of the generated radiology

reports, we computed several automatic evaluation metrics

comparing the generated text to the reference reports. First,

BLEU-1 to BLEU-4 scores (32) were calculated to assess n-gram

precision for unigrams up to 4-grams. Higher BLEU scores

indicate greater local word-level similarity between the generated

and reference texts. Second, the ROUGE-L score was used to

measure the longest common subsequence, assessing the quality

of the generated text in terms of recall and precision.

Additionally, we evaluated semantic similarity using the BERT

Score (33). However, generic BERT representations may not fully

capture domain-specific conceptual information needed for

clinical text generation. To address this, we initialise BERTScore

with the Bio-ClinicalBERT embeddings (34) trained on scientific

text and clinical notes. By plugging these contextual embeddings

into the BERTScore framework, we obtain a domain-adapted

evaluation metric that emphasises clinical conceptual similarity.

Specifically, the F1 component now computes semantic textual

similarity using Bio-ClinicalBERT’s clinical embeddings rather

than generic BERT. These metrics providing a more nuanced

assessment of meaning compared to strict n-gram matching. The

BERT-based metrics can capture whether the generated reports

convey clinically coherent descriptions despite differing word

usage compared to the reference. Collectively, these automated

evaluation metrics quantify linguistic similarity at both word-

level, sentence-level, and semantic meaning levels.

DBP 0.338 0.220 0.188 0.784 0.322

O2SAT 0.343 0.222 0.199 0.789 0.321

ACUITY 0.342 0.222 0.200 0.789 0.309

TEMPERATURE 0.336 0.219 0.199 0.789 0.326

GENDER 0.341 0.224 0.197 0.787 0.331

CHIEFCOMPLAINT 0.326 0.212 0.185 0.785 0.302

The highest-performing results are highlighted in bold in the table.
4.3 Quantitative results

In this study, we leverage 11 additional clinical features along

with chest x-rays to generate more accurate and patient-informed
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radiology reports. The baseline model only employed chest x-ray

images as input to generate corresponding reports, serving as our

benchmark reference where the sole source of information was

the visual data.

In order to analyse the contribution of each distinct data

feature to model performance, we conducted an ablation study

by incrementally presenting different features alongside the chest

x-ray images.

For a fair comparison, all data features were encoded in the

same way across all experiments, and model hyperparameters, as

well as dataset splits, remained consistent.

We evaluated four main approaches:

1. The singular model incorporated a single additional feature to

show individual performance. Oxygen saturation (O2Sat) is

chosen for comparison as it demonstrated the highest

performance among the singular models, as illustrated

in Table 2.

2. The TextFusion model explored fusing textual features of

reported primary symptoms and ICD diagnostic codes with

the chest x-rays.

3. The ScalarFusion approach combined multiple predictive scalar

features with the images, including O2Sat, diastolic blood

pressure, temperature, patient acuity scores, and gender. Each

of these scalars individually demonstrated performance

improvements in singular models.

4. At the core of our study, the FullFusion model takes a holistic

approach by fusing all available and relevant data points. This

multi-modal fusion aims to effectively incorporate the diverse

sources of information at hand, including chest x-ray images,

structured clinical data, and unstructured text notes.

Table 3 presents a quantitative comparison based on the

performance across multiple evaluation metrics. The metrics

utilised for the assessment include BLEU-n (B1 to B4), ROUGE-

L (RL), BERT F1Score (BSF1), and Bio-ClinicalBERT F1Score

(Bio-CBSF1). The Singular02Sat method displayed notable

improvements across multiple metrics compared to the baseline,

while the TextFusion and ScalarFusion methods showcased

marginal increases. The FullFusion method emerged as the top

performer, showing substantial enhancements in various metrics,

and highlighting the benefits of multi-modal fusion.
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TABLE 3 Quantitative comparison of fusion methods: performance evaluation across multiple metrics. B_n for BLEU-n, R_L for ROUGE-L, BSF1 for BERT
Score F1Score and CBSF1 for Bio-ClinicalBERT Score F1Score.

Method B_1 B_2 B_3 B_4 R_L BSF1 Bio-CBSF1
Baseline 0.326 0.205 0.138 0.084 0.301 0.192 0.787

Singular02Sat 0.343 0.222 0.151 0.096 0.321 0.199 0.789

TextFusion 0.326 0.209 0.141 0.862 0.307 0.181 0.784

ScalarFusion 0.343 0.219 0.145 0.090 0.320 0.198 0.786

FullFusion 0.351 0.231 0.162 0.107 0.331 0.218 0.794

The highest-performing results are highlighted in bold in the table.
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Among the test samples, approximately 33% of them have

BLEU-1 scores between 0.1 and 0.3, around 54% have scores

between 0.3 and 0.5, about 11% have scores between 0.5 and 0.7,

and a mere 0.26% have scores between 0.7 and 1, indicating high

similarity. Our BLEU-1 results exhibit strong concordance with

existing report generation literature, which has established

scoring norms averaging 0.3 to 0.4 for this metric. We conducted

a comparative analysis of our model against relevant state-of-the-

art models (23, 24, 7, 22), referencing the results documented in

their published literature. When considering ROUGE-L score,

which reflects the model’s ability to capture document-level

linguistic coherence, our approach excelled in this aspect,

achieving a ROUGE-L score of 0.331, standing out as the highest

score across all models. This suggests that our model excels in

capturing the long-range linguistic context of medical reports.
4.4 Qualitative results

For better interpretation of the results, we illustrated the

samples in Figure 3 that showcase of diversity such as accurate

prediction, different expressions, missing and false arguments,

and completely false prediction. We compared the ground truth

with our FullFusion model, and the correctly predicted diagnoses

highlighted in bold for emphasis.

The results show promise in producing reports that capture

many of the key findings described in the ground truth

reports.To begin with, in all cases, the order of findings aligns

with the reports written by the radiologists and the generated

reports are structurally correct. The results also reveal a generally

positive alignment in terms of language and grammar, however,

some of the generated reports exhibit repeated words or phrases,

which can affect the overall coherence. Additionally, the usage of

“and” at the beginning of sentences and concluding paragraphs

with “the” or “is” reveals grammatical inconsistencies.

Furthermore, the FullFusion model accurately identifies normal

cardiac, mediastinal, and hilar contours when present in the

ground truth. It also reliably notes the presence or absence of

abnormalities like pulmonary edema, pleural effusion, focal

consolidation, pneumonia, and pneumothorax which are crucial

in radiology analysis. In some cases, the generated reports exhibit

a reduced level of detail compared to the ground truth, omitting

certain specific observations.

In the first sample, the model missed the right middle lobe

atelectasis that was noted in the ground truth. In the sample 2,

the model hallucinated mediastinal clips not present in the
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ground truth or image. The sample 3 shows that the model did

not fully capture the enlarged cardiac silhouette and vessels

described in the ground truth. In the sample 4, the model missed

details about the interval removal of a central venous line and

differences in positioning compared to a prior exam that

provided important clinical context. In the sample 5, the model

demonstrated enhanced detail compared to the ground truth by

providing additional descriptive findings.

Sample 6 shows that the model failed to identify the surgical

clips in the right upper quadrant indicating a prior

cholecystectomy that were noted in the ground truth. The model

also incorrectly identified findings suggestive of chronic

obstructive pulmonary edema in the upper quadrant. Sample 7

had repetitive phrasing about no acute osseous abnormalities and

failed to note the subsegmental atelectasis in the left lung base

documented in the ground truth. Otherwise, the report

accurately stated that the heart size was normal, the lungs were

clear, and no effusions or pneumothorax were present. Lastly, in

the sample 8, the model did not fully capture the moderate

cardiac enlargement and aortic tortuosity described in the

ground truth, instead stating mild cardiac enlargement. The

predicted report also repeats “stable mediastinal silhouettes are

stable” incorrectly. However, it accurately notes the lack of

pulmonary effusion, pneumothorax or consolidation similar to

the ground truth.

Overall, these qualitative results demonstrate good progress for

the radiology report generation model, with accurate high-level

identification of key findings, but also room for improvement in

capturing more nuanced details and clinical context. While the

baseline model was capable of providing results, it did not

exhibit the same level of detail and accuracy as the enhanced

model. Continued refinement of the model will be important to

ensure accurate detection and description of abnormalities.
4.5 Radiologist evaluation results

We evaluated the model using 158 randomly selected samples

from the unseen test set, covering diverse medical conditions

reflecting the full distribution. A board-certified radiologist

assessed three criteria: language fluency, content selection, and

correctness of abnormal findings (AF) (Table 4). For language,

the radiologist evaluated sentence structure, terminology, and

overall clarity. For content, they compared the report’s level of

detail, key findings, and image coverage to the true findings.
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FIGURE 3

GT and GR report from the proposed FullFusion CXR report generation model.
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TABLE 4 Radiologist evaluation results on a 1–5 scale.

Language fluency Content selection Correctness of AF
4.24 4.12 3.89

Aksoy et al. 10.3389/fradi.2024.1339612
They assessed accuracy of abnormal findings by comparing to the

true conditions. The radiologist assigned 1–5 scores and noted

preference between reports. This methodology enabled

quantitative and qualitative assessment of language generation,

content selection, and diagnostics. The radiologist also noted that

while performing well overall, some shortcomings were observed.

The model often missed surgical materials like catheters and

clips and it fails to capture anomaly variations when the patient

is inclined to the right or left. Sensitivity to bone lesions was

lacking, overlooking non-urgent findings like scoliosis. However,

it’s worth noting that these are not extensively covered in the

ground truth as well. For normal x-rays, it occasionally included

non-definitive elements. While these additions may be accurate,

there is a slight possibility that they may not be. This evaluation

methodology provided valuable insights into model strengths and

areas needing improvement.
5 Discussion and conclusion

In this study, we adopted a comprehensive approach to

enhance the precision and clinical relevance of radiology reports

generated in conjunction with chest x-ray images. We achieved

this by incorporating cutting-edge network components and

drawing inspiration from state-of-the-art methods, such as the

transformer architecture and multi-modal data fusion techniques.

In the section pertaining to data selection, we ensured the

inclusion of data only within the time frame of radiology report

generation. This was done to closely replicate the clinical

pathway. Additionally, we aimed for a balanced representation of

each type of report in our sample selection to counteract

potential biases skewed towards normal cases. Although this

approach resulted in a smaller dataset compared to existing

literature, it was a crucial step for preventing biased results and

validating the results in real clinical settings.

Recent literature highlights the potential of multi-modal

learning techniques in advancing the quality of automated

radiology report generation. However, a majority of medical

report generation models primarily focus on target reports within

specific information or incorporate image findings as

supplementary inputs. Given that Chest x-rays present three-

dimensional objects in a two-dimensional form, some valuable

information is lost, leading to semantic gaps in the data provided

to the network. Furthermore, radiologists possess more data

beyond images during report creation. To address this limitation,

we bridged the semantic gap between vision and language

models by capturing uncodified information essential to the

diagnosis process. We achieved this by introducing an ensemble

of 11 supplementary features in conjunction with the chest x-ray

data. These features were thoughtfully selected to enhance both

accuracy and clinical insight in the generated reports.
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The results indicate that incorporating non-imaging clinical and

non-clinical data positively impacts the quality of the generated

reports. Our ablation study further demonstrates that providing all

data simultaneously yields higher accuracy compared to using

individual data components separately. This finding suggests that

introducing data with no significant standalone impact on the

network alongside others leads to improved results. In light of these

outcomes, we recommend that the broader research community

include additional metadata for enhanced model performance.

However, there are some limitations to our study. While the

multi-modal deep neural network framework holds potential

strength, its complexity and resource-intensive nature may pose

challenges. This might hinder its real-time application in medical

settings, especially those with limited resources and

computational power. Furthermore, our data solely originates

from databases within a single institution, lacking a comparable

comprehensive dataset that combines imaging and non-imaging

data (both clinical and non-clinical) with linked radiology

reports. Enhancing data diversity from various sources could

enhance the overall robustness of the study.
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