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Recent advancements in artificial intelligence (AI) and machine learning offer
numerous opportunities in musculoskeletal radiology to potentially bolster
diagnostic accuracy, workflow efficiency, and predictive modeling. AI tools have
the capability to assist radiologists in many tasks ranging from image
segmentation, lesion detection, and more. In bone and soft tissue tumor
imaging, radiomics and deep learning show promise for malignancy stratification,
grading, prognostication, and treatment planning. However, challenges such as
standardization, data integration, and ethical concerns regarding patient data
need to be addressed ahead of clinical translation. In the realm of
musculoskeletal oncology, AI also faces obstacles in robust algorithm
development due to limited disease incidence. While many initiatives aim to
develop multitasking AI systems, multidisciplinary collaboration is crucial for
successful AI integration into clinical practice. Robust approaches addressing
challenges and embodying ethical practices are warranted to fully realize AI’s
potential for enhancing diagnostic accuracy and advancing patient care.
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Key points

• Deep learning models have been developed for diagnosing MSK tumors and show

potential to achieve diagnostic efficacy comparable to radiologists in limited

classification tasks.

• AI algorithms can address issues related to variance in acquisition parameters and noise

between MR scans using techniques such as edge-preserving denoising and intensity

standardization.

• Multitasking AI systems that can efficiently perform multiple segmentation and

analytical tasks at once hold promise for potentially useful prospective

implementations in clinical practice.
Abbreviations

AI, artificial intelligence; ALTs, atypical lipomatous tumors; DL, deep learning; ML, machine learning; MSK,
musculoskeletal; STS, soft-tissue sarcomas; WDLs, well-differentiated liposarcomas; CNN, convolutional
neural network.
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Introduction

Developments in artificial intelligence (AI) and machine

learning (ML) have advanced the field of medicine and offer new

and powerful digital tools to facilitate the next transformation in

musculoskeletal (MSK) radiology. While it is important to

acknowledge that these AI applications are still mainly in the

experimental phase and need to be validated ahead of being fully

integrated into standard clinical workflows, it is worth noting

that they hold significant promise. In addition to streamlining

radiology processes and enhancing the detection of

abnormalities, AI techniques show potential for applications

including predicting progression of malignancy and providing

prognostic information (1–6). However, these potential

advantages are not without some inherent biases and drawbacks,

and radiologists must be aware of these pitfalls to allow for

optimal implementation of AI tools in clinical practice (7, 8). AI

may one day also enhance workflow productivity by automating

repetitive processes, allowing radiologists to focus on image

interpretation and clinical communication. Quality control may

also come to be bolstered through enhanced automated detection

of image artifacts and overall scan degradation. Finally, predictive

analytics can help tailor interventions and allow for personalized

modifications (9).

This review discusses key concepts and potential pitfalls of

AI and ML in MSK radiology and how they can potentially

be applied for diagnosis and treatment of soft tissue and

bone tumors.
Artificial intelligence and machine
learning in medicine

AI generally refers to computer systems that simulate or

mimic human intelligence (10). Beyond imaging interpretation

in radiology, AI may also have a wide range of applications

ranging from augmented structured reporting and clinical

support systems to radiomics-based predictive implementations

(11, 12).

ML defines a field of AI in which computers learn by analyzing

large amounts of aggregated data and improve algorithms by

iterative exposure and performance evaluation (11–14). ML

subtypes can be categorized as supervised, unsupervised,

reinforced, and semi-supervised. Supervised learning occurs via

supplied output, while unsupervised learning develops from

pattern recognition in input data without specific feedback.

Reinforcement learning uses punishments or rewards as decision

reinforcements. Semi-supervised learning involves fewer explicit

outputs validated against a ground truth label (11).

Deep learning (DL), a subset of ML, is a multilayered approach

which leverages hierarchical arrangement of multiple algorithms.

Some of the more common applications of DL in MSK radiology

include detection of spinal pathology, meniscal tears, fractures,

and osteoarthritis (11, 15).
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Musculoskeletal radiology

MSK radiology employs a variety of imaging modalities to

diagnose and assess disorders involving joints, muscles, soft

tissues, and osseous structures. Imaging also plays a key role in

initial assessment and treatment response characterization in

bone tumors and soft-tissue sarcomas (STS) (16).
Soft tissue tumors

Imaging techniques remain a pivotal component of the

diagnosis of benign and malignant soft tissue lesions. While in

many cases, specific clinical and imaging features may aid in

narrowing down the differential diagnoses, definitive diagnosis is

often made by tissue sampling and histopathologic interpretation

(17). Though malignant tumors tend to be larger, some small

soft tissue masses account for a significant portion of soft tissue

malignancies. These smaller masses are more likely to be missed

or be under-resected at surgery (18).

Lipomas and their malignant counterparts liposarcomas are

among the soft tissue masses originating from adipose tissue

(19). However, while well-differentiated liposarcomas (WDLs)

and atypical lipomatous tumors (ALTs) can appear similar to

intramuscular lipomas on imaging, the distinction holds

significant implication for prognosis and treatment (20, 21).

Specifically, treatment for higher-grade liposarcomas may require

wide local excision with or without neoadjuvant or adjuvant

chemotherapy and/or radiotherapy (19, 20). Similarly, while

benign lipomas may in many instances be amenable to clinical

observation or marginal resection, ALTs/WDLs may also require

wide excision and subsequent imaging surveillance (22, 23).

Even though histology remains the gold standard for diagnosis,

certain imaging modalities, mainly contrast enhanced MRI, may

help to narrow the differential considerations ahead of tissue

sampling. Nevertheless, traditional imaging modalities do possess

inherent acknowledged limitations in reliably differentiating

between benign and malignant soft tissue tumors (19, 22, 24).
Bone tumors

Bone tumors can be classified into two main categories:

primary tumors and secondary (metastatic) tumors. Malignant

primary bone tumors arise from osseous tissues though have the

potential to metastasize to other remote sites in the body (25).

Most benign bone tumors are chondrogenic in nature and are

often found to be enchondromas or osteochondromas.

Intermediate bone tumors such as giant cell tumors of bone may

be at risk for malignant transformation. Chondrogenic and

osteogenic tumors are among the most common primary bone

malignancies (26).

Diagnosing bone tumors combines several approaches which

consider clinical factors, histological sampling, and imaging (27).
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Radiography is often the initial imaging modality employed due to

its ability to localize lesions and provide rapid holistic assessment

of patterns of bony destruction, margins (zones of transition),

and/or presence of periosteal reaction. These destructive patterns

may provide insight into lesional biological activity and

aggressiveness (2, 28).

MRI is the preferred method for local evaluation and staging

due to its superiority in delineating associated soft-tissue

components and detecting invasion into surrounding structures

(29). Fluorine-18 fluorodeoxyglucose-PET scans can evaluate

tumor metabolic activity, which often correlates with

aggressiveness (27). PET/CT and PET/MRI are among the most

sensitive and specific modalities for evaluating skeletal metastatic

disease (30).
Artificial intelligence and machine
learning in musculoskeletal radiology

Various models have suggested that DL can, in relatively

narrow use cases, achieve relatively similar diagnostic

performance in comparison to human interpreting radiologists

(31, 32). However, relative to other organ systems, the MSK

system poses unique challenges for developing AI applications.

The complex biomechanical interplay of the various anatomical

structures makes it challenging for AI researchers to develop

robust algorithms amidst the many possible scan angles and

positional variations. Additionally, variability in acquisition

parameters, image noise, and the field strength often necessitates

complex preprocessing to improve and standardize image quality

prior to AI operations (15).

Keles et al. (15) emphasize the importance of “clean data”

for AI algorithms and discuss the need for preprocessing

techniques. In the case of MRI, there are three main categories of

challenges in medical images that need to be addressed with

preprocessing, namely image nonstandardness, noise, and

artifacts. The bias field artifact, also known as inhomogeneity,

affects the quantitative intensity values of pixels and can in turn

affect segmentation performance. In their preliminary studies,

Keles et al. (15) applied generalized-scale post-processing

to correct field inhomogeneities arising from the RF coil.

Edge-preserving denoising was used to smooth images and

thereby reduce image noise. To tackle signal intensity variations

between MRI acquisitions, the authors applied an intensity

standardization algorithm.

Segmentation of muscle, fat, and other regions of interest using

automated techniques can be difficult due to overlapping intensity

values of various tissues (15). LaLonde et al. present a DL

algorithm called SegCaps, which was introduced for biomedical

image segmentation tasks. The SegCaps algorithm leverages

“deconvolutional capsules” in a design which purportedly

requires fewer than 5% of the parameters necessary to execute

the popular U-Net architecture (33).

Zhao et al. (34) developed three DL models utilizing ce-MRI to

assist in the diagnosis of MSK neoplasms. This study’s findings

suggested that knowledge of the DL classifiers’ predicted
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probability of malignancy led to increased sensitivity of imaging

interpretation without significantly affecting specificity for

providers of varying years of experience and training across

oncology, MSK radiology, and orthopedic surgery (34).

DL may not only prove helpful in interpretation tasks but may

also come to play a role in image reconstruction. Wessling et al.

(35) employed a DL algorithm known as an “unrolled variational

network”, which leverages an iterative parallel imaging

reconstruction architecture to accelerate sequence acquisition

time. Their results suggested that DL-based reconstruction both

improved image quality and led to reductions in acquisition

times of up to 52%–59% as compared to conventional scanning

parameters (35).
Artificial intelligence in imaging of soft
tissue tumors

Regarding distinguishing lipomas from ALTs/WDLs in

lipomatous soft tissue tumors, Leporq et al. (19) developed an

MRI-based radiomics approach using fat-suppressed contrast-

enhanced T1-weighted sequences and found that their

classification models were able to distinguish between benign and

malignant lesions. In their study, radiomics features were

extracted from 2D, manually contoured tumor masks and

subsequently used for machine learning. Their findings suggested

that size features were most highly predictive of malignancy

while intensity distribution features held the least predictive

utility. However, they also found that shape features were most

subject to interobserver variability.

In a recent study, Sudjai et al. (20) developed a machine-

learning approach to differentiate between ALTs/WDLs and

intramuscular lipomas based on radiomics features and the

distance between tumor and bone on non-contrast T1-weighted

MR images. The model achieved high accuracy in separating

intramuscular lipomas from ALT/WDL, with an area under the

curve (AUC) of 0.88. The model’s performance was comparable

to that of two MSK radiologists with 22 and 7 years of

experience, respectively. Texture, shape, and histogram-based

features were identified as most important in determining the

model’s predicted probability of malignancy.

Cay et al. (36) similarly found that a radiomics-based support

vector machine algorithm was predictive of malignancy in

lipomatous masses, with a reported sensitivity of 96.8% and a

specificity of 93.72% for the machine learning approach. Regarding

individual feature performance, gray-level run length matrix

(GLRLM) based Run Length Non-Uniformity (RNLU)

demonstrated the best performance, with an area under the curve

(AUC) of 0.902 (36).

Fradet et al. (22) evaluated the relative performance of MRI

radiomics with ML analysis with and without batch correction

and DL models in predicting malignancy in lipomatous

neoplasms. The authors performed a radiomics analysis on post-

contrast fat-suppressed T1-weighted sequences with manual 3D

segmentations. Best numerical results were seen with models

trained on batch-corrected radiomics data (AUC of 0.80 vs. AUC
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of 0.70 in the external validation cohort for gradient boosting

trained on radiomics data with and without batch correction,

respectively). The Random Forest and Gradient Boosting models

also notably outperformed the ResNet50 DL model in external

validation, the latter of which only reached an AUC of 0.64.

Wang et al. (37) developed an ML radiomics-based nomogram

for detecting malignancy in unknown soft tissue masses. The

nomogram combined features of tumor margin, size, and

capsule, along with a calculated radiomics score, yielding AUC

values of 0.96 and 0.88 in validation testing.

Similarly, Fields et al. (24) reported that predictive models

developed from radiomics data using machine learning-

augmented approaches demonstrated effective discriminative

capabilities in correctly categorizing benign and malignant

lesions on preoperative MRI scans. Models built on unfiltered

radiomics datasets yielded AUC values of 0.77 for Real Adaptive

Boosting and 0.72 for Random Forest, respectively. Models

limited to metrics derived only from T2 fat-saturated and Short-

Tau Inversion Recovery sequences yielded similar performances,

with AUCs of 0.73 for Real Adaptive Boosting and 0.75 for

Random Forest. These results suggest that radiomics-based

models based on restricted subsets of sequences may still

maintain clinical relevance, which can help limit complexity and

shorten analytical processing steps in future prospective

implementations of machine learning-augmented workflows.

Navarro et al. (38) similarly developed DL models to stratify

between high-grade and low-grade soft tissue tumors based on pre-

treatment T2-weighted fat-saturated and contrast-enhanced T1-

weighted fat-saturated MRIs. Following manual segmentation,

separate DL models based on a pre-trained DenseNet-161

architecture were developed for each cohort of MRI sequences,

which achieved AUCs of 0.76 and 0.75 for T2-weighted fat-

saturated and contrast enhanced T1-weighted fat-saturated images,

respectively. The DL models notably outperformed comparator

regression models based on clinical features, tumor volume, and

combined tumor volume and clinical features, respectively (38).

Multi-parametric MRI is the modality of choice for evaluation of

treatment response in STS. However, the highly heterogeneous

nature of these changes and varying degrees of tumor cellularity

often confound evaluations and can contribute to clinical

uncertainty (39, 40). In a cohort study by Blackledge et al., the

authors suggested that ML can aid in evaluation of tumor

response to radiotherapy (41). The authors evaluated the utility of

eight different machine-learning approaches in differentiating

between five distinct intratumoral tissue classes. Naïve-Bayes in

combination with a Markov Random Field denoising algorithm

was able to quantify changes in tumor sub-regions in a limited

pre- and post-treatment cohort of 8 patients. These results suggest

an ability for machine-learning techniques to assess underlying

changes in tumor composition even in situations when overall

changes in size in response to treatment may not be overtly evident.

Despite limitations in operator dependence, ultrasound may

serve as a useful adjunctive modality for evaluation of soft-tissue

masses. In a study by Wang et al. (42), the authors trained a

convolutional neural network (CNN) to differentiate benign and

malignant soft tissue lesions on routine clinical ultrasound,
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yielding an AUC of 0.91 and an accuracy of 79% on the test set.

Sensitivity (90%) and specificity (74%) were not significantly

different when compared to the performance of two interpreting

MSK radiologists. Another CNN model was trained to distinguish

between three different benign masses, namely benign nerve sheath

tumors, vascular malformations, and lipomas. For the classification

of lipomas, precision and recall of the model were 78% and 93%,

respectively; for the classification of benign nerve sheath tumors,

precision and recall were 71% and 42%, respectively; and for the

classification of vascular malformations, precision and recall were

60% and 64%, respectively (42).
Artificial intelligence in imaging of
bone tumors

Several studies suggest a moderate to high accuracy for AI-based

predictive models in differentiating between benign, intermediate

and malignant tumors (1, 2, 32). Gitto et al. (43) examined how

manual segmentation variability impacted the replicability of

texture analysis on CT and MRI scans of cartilaginous bone

tumors. The authors conducted 2D and 3D manual segmentations

on CT and MRI scans, then implemented marginal shrinkage to

assess impact on feature reproducibility. Overall, contour-focused

segmentation yielded higher rates of stable radiomics features for

3D (80%) as compared to 2D (75%) regions-of-interest for CT and

MRI. In comparison, marginal erosion performed more poorly for

3D features (p < 0.001) though was not statistically significant for

2D features (p = 0.343) (43).

He et al. (44) utilized DL on MRI images to predict the post-

curettage local recurrence of giant cell tumor of bone based on

preoperative MRI examinations. The results of CNN and CNN

regression models were compared against the performance of

four radiologists. The authors reported 75.5% accuracy and

85.7% sensitivity for the CNN model, and 78.6% accuracy and

87.5% sensitivity for the CNN regression model. This is in

comparison to 64.3% accuracy and 58.3% sensitivity for the

average performance of the radiologists (44).
Challenges and future directions

Despite promising trends of applying AI and ML in MSK

oncologic radiology, there exist several challenges and limitations

to implementation. While there remains great interest in

prospective implementations, achieving diagnostic accuracy is

crucial. Practicing radiologists should strive to gain a thorough

understanding of the use cases and associated challenges of AI

implementation in prospective clinical workflows so as to

maximize future applications in daily practice (14, 15).

Variations in implementation of AI applications is another major

hurdle. Neural networks, which strive to replicate human cognition,

require prolonged and frequently convoluted training and

refinement stages. Furthermore, differences in implementation

schemes across sites and institutions can significantly affect

performance (11, 45, 46). Standardization of workflows will serve to
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promote generalizability and repeatability, which will increase

diagnostic confidence in prospective applications (45).

Additionally, using such large amounts of patient data raise

unique considerations with respect to data use ethics (47). In

order to address these concerns, federated learning offers a

unique approach in allowing for local training of a centrally-

maintained AI model across many participating sites, thereby

obviating the need for centralized data repositories (48).

DL techniques may one day aid in supporting clinical decision-

making and automating certain lower-level tasks, allowing

radiologists to focus greater attention on higher level interpretive

tasks. Furthemore, radiomics and ML based classifiers working

alongside other -omics may synergistically work to advance

many AI modalities and more holistically capture unique aspects

of the patient experience (10).
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