
TYPE Original Research
PUBLISHED 27 February 2024| DOI 10.3389/fradi.2024.1269023
EDITED BY

Douglas Sawyer,

Maine Medical Center, Maine Health,

United States

REVIEWED BY

Salah Alheejawi,

Northeastern University, United States

Ilies Ghanzouri,

Stanford University, United States

*CORRESPONDENCE

Bharath Ambale-Venkatesh

bambale1@jhmi.edu

RECEIVED 28 July 2023

ACCEPTED 06 February 2024

PUBLISHED 27 February 2024

CITATION

Nguyen H, Vasconcellos HD, Keck K, Carr J,

Launer LJ, Guallar E, Lima JAC and

Ambale-Venkatesh B (2024) Utility of

multimodal longitudinal imaging data for

dynamic prediction of cardiovascular and renal

disease: the CARDIA study.

Front. Radiol. 4:1269023.

doi: 10.3389/fradi.2024.1269023

COPYRIGHT

© 2024 Nguyen, Vasconcellos, Keck, Carr,
Launer, Guallar, Lima, Ambale-Venkatesh. This
is an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.
Frontiers in Radiology
Utility of multimodal longitudinal
imaging data for dynamic
prediction of cardiovascular and
renal disease: the CARDIA study
Hieu Nguyen1, Henrique D. Vasconcellos2, Kimberley Keck2,
Jeffrey Carr3, Lenore J. Launer4, Eliseo Guallar5, João A. C. Lima2

and Bharath Ambale-Venkatesh6*
1Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States,
2Department of Cardiology, Johns Hopkins University, Baltimore, MD, United States, 3Department of
Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States, 4Laboratory of
Epidemiology and Population Science, National Institute on Aging, Bethesda, MD, United States,
5Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore,
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Background: Medical examinations contain repeatedly measured data from
multiple visits, including imaging variables collected from different modalities.
However, the utility of such data for the prediction of time-to-event is
unknown, and only a fraction of the data is typically used for risk prediction.
We hypothesized that multimodal longitudinal imaging data could improve
dynamic disease prognosis of cardiovascular and renal disease (CVRD).
Methods: In a multi-centered cohort of 5,114 CARDIA participants, we
included 166 longitudinal imaging variables from five imaging modalities:
Echocardiography (Echo), Cardiac and Abdominal Computed Tomography (CT),
Dual-Energy x-ray Absorptiometry (DEXA), Brain Magnetic Resonance Imaging
(MRI) collected from young adulthood to mid-life over 30 years (1985–2016) to
perform dynamic survival analysis of CVRD events using machine learning
dynamic survival analysis (Dynamic-DeepHit, LTRCforest, and Extended Cox for
Time-varying Covariates). Risk probabilities were continuously updated as new
data were collected. Model performance was assessed using integrated AUC
and C-index and compared to traditional risk factors.
Results: Longitudinal imaging data, even when being irregularly collected with high
missing rates, improved CVRD dynamic prediction (0.03 in integrated AUC, up to
0.05 in C-index compared to traditional risk factors; best model’s C-index=
0.80–0.83 up to 20 years from baseline) from young adulthood followed up to
midlife. Among imaging variables, Echo and CT variables contributed significantly
to improved risk estimation. Echo measured in early adulthood predicted midlife
CVRD risks almost as well as Echo measured 10–15 years later (0.01 C-index
difference). The most recent CT exam provided the most accurate prediction for
short-term risk estimation. Brain MRI markers provided additional information
from cardiac Echo and CT variables that led to a slightly improved prediction.
Conclusions: Longitudinal multimodal imaging data readily collected from
follow-up exams can improve CVRD dynamic prediction. Echocardiography
measured early can provide a good long-term risk estimation, while CT/
calcium scoring variables carry atherosclerotic signatures that benefit more
immediate risk assessment starting in middle-age.
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Introduction

The rapidly expanding availability of large health data sets has

fueled the growing research for more accurate risk prediction

which holds much potential for preventive and monitoring

strategies as well as improved disease understanding. In many

scenarios, imaging data are collected over various modalities

(multimodal) such as Echocardiography, Magnetic Resonance

Imaging, and Computed Tomography, and repeatedly measured in

multiple follow-up exams. Multimodal longitudinal imaging data

could provide a more comprehensive description of the body and

the development of organ functions and structures over time. In

cardiology, numerous imaging markers for subclinical

atherosclerosis have been demonstrated to be independently

predictive of cardiovascular events (1–3) and cardiac dysfunction

(4, 5). Many published works have focused on a few imaging

variables that are low-dimensional, single-modal, (2, 4–6) or cross-

sectional. (7) The utility of high-dimensional, multimodal, and

longitudinal imaging data has not been investigated for risk

prediction and early phenotyping of cardiovascular diseases.

Cox Proportional Hazards (Cox-PH) is among the most popular

methods for survival analysis but Cox-PH is not suitable for high-

dimensional data with repeated measures. The extended version of

Cox-PH that can work with time-varying covariates is still limited

because of the high number of variables, nonlinearity of variables,

and requirement of data with no missingness. (8) Machine

learning (ML) approaches such as Random Survival Forest (9) can

mitigate some of Cox’s limitations, but many ML methods are

limited to static prediction and cannot perform dynamic survival

analysis. In static prediction, the model does not automatically

update as new observations are collected, (new data would require

refitting an existing model or training a new model). Unlike static

prediction, a dynamic survival analysis model automatically

updates predicted survival probabilities as additional longitudinal

observations are collected, and the model is trained only once. The

ability to dynamically update risk as new information rolls in

makes dynamic survival analysis attractive (10, 11).

In this work, we demonstrated the utility of dynamic prediction of

Cardiovascular and Renal Disease (CVRD) using high-dimensional,

multimodal, longitudinal imaging. Data were collected in CARDIA,

which is a large epidemiological study of Black and White young

adults followed up over 30 years. We also identified the most

important imaging predictors for CVRD in the CARDIA cohort.
Methods

Study population and outcome

The design of the CARDIA study (Coronary Artery Risk

Development in Young Adults) has been described elsewhere.

(12) Briefly, CARDIA is a prospective, observational cohort study

of 5,114 (originally 5,115, one person withdrew consent) White

and Black men and women aged 18 to 30 years, at four centers

in the United States. The cohort is approximately balanced

regarding age, race, sex, and educational level. Participants have
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been followed since 1985, with regular exam visits scheduled

every 2–5 years. Each exam has collected a wide variety of

variables believed to be related to heart disease. The institutional

review board of each participating institution approved the study

protocol and all participants gave informed consent.

The outcome of this study is cardiovascular and renal disease

(CVRD), and the first CVRD event was used as the endpoint.

These events were adjudicated through August 2019. The primary

composite outcome was incident cardiovascular disease and renal

disease, which included coronary heart disease (CHD, myocardial

infarction, acute coronary syndrome, or CHD death, including

fatal myocardial infarction), stroke, transient ischemic attack,

hospitalization for heart failure, intervention for peripheral arterial

disease, end-stage renal disease, or death from cardiovascular or

renal causes. Participants who died from a non-CVRD cause were

censored at the time of death in the survival models.
Imaging markers

CARDIA follow-up exams collect various imaging variables

from different sources, such as Echocardiography (Echo),

Computed Tomography (CT), Carotid Ultrasonography

(CARTD), Dual-Energy x-ray Absorptiometry (DEXA), and

Brain Magnetic Resonance Imaging (MRI). The extracted

imaging variables have a high degree of sparsity and irregularity,

reflecting real-world data. Echo was performed as part of the

core study in Y5, Y25, and Y30 and as a substudy in Y10; CT

was conducted in Y10 as a substudy and in Y15, Y20, and Y25

as the core study, and brain MRI was acquired in Y25 and Y30

as a substudy. Figure 1 shows an overview of imaging markers

used in this study and Supplementary Table S1 shows a detailed

list of when the measures were collected. Data collection

protocols for each imaging modality are available on the

CARDIA study website. (13) We used the longitudinal imaging

CARDIA data from all exam years to develop prediction models.

Variables were pre-filtered with help from domain experts

(clinicians who performed image reading daily). Other exclusion

criteria include removing duplicated variables across modalities,

variables available in too few subjects and variables with poor

documentation. Overall, we included a total of 151 longitudinal

imaging markers. In addition, we also included 15 traditional risk

factors: nine variables from the AHA/ACC ASCVD risk scores

and six additional risk factors (diastolic blood pressure—DBP,

body-mass index—BMI, taking cholesterol-lowering medications,

low-density lipoproteins—LDL, triglycerides, and fasting glucose).

These six additional risk factors are routinely collected laboratory

tests that have been shown to link to cardiovascular disease.
Statistical analysis

Model training and evaluation
Figure 1 shows the schematic of the statistical analysis

procedures. All the models were trained and evaluated on the

same cohort by 5-fold × 20 times cross-validation scheme. For
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FIGURE 1

(A) Overview of the multimodal data used for prediction. (B) Methodology framework visualization for dynamic survival analysis. Echo,
echocardiography; CT, computed tomography; CARTD, carotid artery ultrasonography, DEXA, dual-energy x-ray absorptiometry; MRI, magnetic
resonance imaging.
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each time the whole data was split, 20% of the data was used for

testing, and the remaining 80% was further divided into training

and validation sets. The training sets were used to fit the models,

the validation sets were for hyperparameter tuning, and the

testing sets were for assessing model performance. Stratified

sampling by event was conducted to ensure the same ratio of

events to non-events across the splits.

Modeling methods
We used three algorithms to model data for dynamic survival

analysis. To issue dynamically updated survival predictions the

data requires methods that can incorporate high-dimensional,

longitudinal data comprising various repeated measurements
Frontiers in Radiology 03
with varying degrees of missingness. The main algorithm we

used is Dynamic-DeepHit. (11) Dynamic-DeepHit is a deep

learning-based approach that issues dynamically updated survival

predictions without making any assumptions about the

underlying processes. Briefly, Dynamic-DeepHit consists of two

subnetworks: a shared subnetwork with a recurrent neural

network architecture that handles longitudinal measurements and

predicts the next measurements of time-varying covariates using

the past available measurements and thus handles sparsity, and a

second subnetwork with cause-specific survival networks of fully

connected layers that relates the longitudinal data to the survival

outcome. Dynamic-DeepHit trains by minimizing the loss

function which comprises three losses: a survival loss of log-
frontiersin.org

https://doi.org/10.3389/fradi.2024.1269023
https://www.frontiersin.org/journals/radiology
https://www.frontiersin.org/


Nguyen et al. 10.3389/fradi.2024.1269023
likelihood of joint time-to-event distribution, a ranking loss that

adapts the idea of concordance that encourages correct ordering

of participants based on their time-to-event, and a step-ahead

prediction loss that encourages correct prediction of longitudinal

covariates for the next time step. Detailed description of

Dynamic-DeepHit can be found elsewhere (11).

We employed two additional methods for dynamic prediction,

namely Left-Truncated-Right-Censored Forest (LTRCforest) (14)

and Extended Cox for Time-dependent Covariates. (8) Briefly, the

Extended Cox is an extension of the fully parametric Cox-PH that

assumes the variable values remain constant from the last observed

value until updated. To handle a large number of input covariates,

LASSO penalization (15) was employed. LTRCforest is an extension

of the non-parametric ML method conditional forest (Cforest) for

time-varying covariates. Since LTRCforest and Extended Cox

require fully available data, missing data were imputed before being

input into these models using Multiple Imputation by Chained

Equations (MICE) for multilevel data (16, 17).

As a benchmark, we also fit static survival models at three time

points (5 years, 15 years, and 25 years after baseline) to compare

with the dynamic survival models. (18) The idea is similar to

landmarking approaches, in which a survival model is fit to the

subjects who are still at risk at the landmarking time. For consistency

in comparison, we used Dynamic-DeepHit and made an artificial

cut-off at the landmarking time (meaning, covariate measurements

after Y5, Y15, and Y25 were excluded from the static model at

landmarking time 5 years, 15 years, and 25 years after baseline,

respectively). Only measurements collected before the landmarking

time were included.

Importance of imaging subsets and variables
To evaluate the effect of each imaging variable subset on CVRD

prediction, we built five Dynamic-DeepHit models, each with

traditional risk factors and imaging markers from a single

modality. We also built a model with all imaging markers from
TABLE 1 Characteristics of the study population over time.

Exam Y0 Exam Y2 Exam Y5 Exa
No. subjects examined (N = 5,114) (N = 4,624) (N = 4,352) (N =

Age 24.8 (3.63) 26.8 (3.60) 29.9 (3.60) 31.9

Sex (%Male) 2,327 (46%) 2,089 (45%) 1,958 (45%) 1,83

Race

Black 2,651 (52%) 2,300 (50%) 2,132 (49%) 1,98

White 2,463 (48%) 2,323 (50%) 2,219 (51%) 2,09

Systolic blood pressure (SBP) 110 (10.9) 108 (10.8) 108 (11.6) 109

Diastolic blood pressure (DBP) 68.6 (9.62) 67.4 (9.67) 69.2 (10.2) 69.3

Use of hypertensive medication 115 (2%) 41 (1%) 70 (2%) 81

Body mass index (BMI) 24.5 (5.05) 25.2 (5.38) 26.2 (5.91) 26.8

Total cholesterol (mg/dl) 177 (33.5) 183 (35.2) 178 (34.3) 177

Use of cholesterol-lowering medication 0 (0%) 0 (0%) 11 (0%) 10

Total HDL cholesterol (mg/dl) 53.2 (13.2) 54.8 (14.1) 53.3 (14.2) 52.1

Total LDL cholesterol (mg/dl) 109 (31.3) 113 (33.3) 108 (32.1) 108

Triglycerides (mg/dl) 72.9 (48.5) 78.9 (53.4) 80.8 (72.2) 86.4

Fasting glucose (mg/100 ml) 82.6 (16.3) NA (NA) NA (NA) 90.1

Diabetes Mellitus 43 (1%) 55 (1%) 83 (2%) 142

Smoking now 1,546 (30%) 1,359 (29%) 1,243 (29%) 1,09

CVRD event 0 (0%) 0 (0%) 2 (0%) 7 (
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all modalities and a reference model with only traditional risk

factors. Additionally, to assess the complementary effects of

multiple imaging subsets, we built 25 additional models

representing all possible combinations of five imaging subsets. In

total, 32 models were built (Supplementary Table S2).

To examine the effect of imaging variables collected at different

ages, we also built separate models for each imaging subset that

included variables collected from each exam and excluded

measurements collected outside of the exam. Additionally, the

importance of each imaging marker was quantified using

permutation importance, similar to permutation testing, (19) for

the model trained on all variables. The longitudinal trajectories

were permuted among participants, and the drop in the C-index

of permuted variables to the C-index of the original dataset was

used as the ranking criteria for variable importance. A bigger drop

in C-index indicated a more important variable, and a minimal

drop suggested that the variable was not important, as changing

the variable value did not change model performance. Variables

with the same difference in C-index were assigned the same ranking.

Performance evaluation
Model performance was quantified using the time-dependent

area under the receiver-operating curve (AUC) accounting for

censorship (20) and the time-dependent concordance index that

accounted for censoring distribution. (21) In addition, the

integrated AUC (iAUC) was used to quantify all time-varying

AUCs as one number. (22) Statistical significance was evaluated

using Wilcoxon rank sum test.
Results

A total of 5,114 participants were included in the analysis. Table 1

describes the characteristics and number of remaining participants in

the cohort over nine follow-up exams. The mean age was 25 years old
m Y7 Exam Y10 Exam Y15 Exam Y20 Exam Y25 Exam Y30
4,085) (N = 3,948) (N = 3,671) (N = 3,549) (N = 3,499) (N = 3,358)

(3.58) 34.9 (3.61) 40.0 (3.60) 45.0 (3.59) 50.0 (3.59) 55.0 (3.55)

6 (45%) 1,755 (44%) 1,619 (44%) 1,527 (43%) 1,505 (43%) 1,352 (43%)

7 (49%) 1,938 (49%) 1,741 (47%) 1,649 (47%) 1,632 (47%) 1,510 (48%)

8 (51%) 2,010 (51%) 1,930 (53%) 1,884 (53%) 1,842 (53%) 1,639 (52%)

(12.4) 110 (12.8) 113 (14.9) 117 (15.2) 120 (16.2) 121 (16.6)

(10.3) 72.4 (10.2) 74.5 (11.6) 73.1 (11.5) 74.9 (11.2) 74.0 (11.1)

(2%) 135 (3%) 292 (8%) 615 (17%) 936 (27%) 1,033 (33%)

(6.13) 27.5 (6.54) 28.8 (6.84) 29.5 (7.25) 30.2 (7.19) 30.5 (7.19)

(34.3) 178 (34.6) 185 (35.8) 186 (34.9) 192 (36.9) 191 (38.1)

(0%) 19 (0%) 88 (2%) 311 (9%) 540 (16%) 632 (20%)

(14.2) 50.3 (14.0) 50.7 (14.6) 54.2 (16.7) 58.0 (18.0) 59.9 (19.0)

(31.6) 109 (32.1) 113 (32.3) 110 (32.0) 112 (32.8) 110 (33.2)

(75.7) 92.1 (74.7) 105 (92.8) 109 (79.9) 114 (85.9) 108 (99.5)

(19.4) 88.2 (20.4) 86.7 (21.0) 98.0 (26.4) 99.5 (28.7) 102 (32.0)

(3%) 173 (4%) 212 (6%) 273 (8%) 373 (11%) 442 (14%)

6 (27%) 1,005 (25%) 808 (22%) 677 (19%) 588 (17%) 436 (14%)

0.2%) 14 (0.4%) 56 (1.5%) 112 (3%) 208 (6%) 313 (10%)
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in CARDIA Y0 Exam (baseline) and 55 years old in the last exam

(Y30). The cohort consisted of 46% male, 52% black, and 48%

white. Over 30 years of follow-up, 3,358 came back for Y30, the

averaged SBP and DBP (systolic and diastolic blood pressure)

increased and so was the use of hypertensive medication. BMI, total

cholesterol, high-density lipoprotein (HDL), and use of cholesterol-

lowering medication increased. The prevalence of diabetes also

increased, while the number of smokers decreased. By the end of

follow-up, 375 participants (7.3%) had developed CVRD. The

cumulative incidence of CVRD is shown in Supplementary

Figure S1, with very few events happening before Y10 Exam, while

the event rate curve is almost exponential after Y20 Exam.
Dynamic vs. static prediction

Figure 2 shows the performance over time for dynamic prediction

vs. static prediction. The dynamic survival model using Dynamic-

DeepHit trained on all 166 variables had a C-index of 0.80–0.82

before Y20 and slightly dropped to 0.78 by the last time point, 33

years after baseline. The C-index of the dynamic survival model is

higher than that of the static survival models across all time points,

by a margin of 0.01–0.06. Unlike the static survival models that

required a separate model at each landmarking time, the dynamic

model was only trained once and automatically updated survival

probabilities as a new measurement updated from a follow-up exam.
Comparison of modeling methods

Supplementary Figure S2 shows the performance of dynamic

models trained with different algorithms (Dynamic-DeepHit,

LTRCforest, Extended Cox, and Extended Cox penalized by

LASSO). For both cases (trained on all variables and trained on

traditional risk factors), Dynamic-DeepHit trained on unimputed

data and LTRCforest trained on imputed data are consistently

the best, whereas Extended Cox consistently underperformed
FIGURE 2

Dynamic vs. static prediction.
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(∼0.05–0.10 lower in C-index) for the model with all variables

and 3%–5% lower for model with only traditional risk factors).
Predictive gain of modalities

Figure 3 shows the predictive gain from each imaging subset

over time and on average over 25 cross-validation folds. The best

model was the one that included all imaging subsets, while the

worst-performing was the one using only traditional risk factors

(baseline) and using traditional risk factors plus CARTD

variables (0.74 C-index at end of follow-up). Using all imaging

markers resulted in up to a 5% increase in C-index and 3% in

iAUC. The model utilizing only CT variables was only slightly

below (1%) the model using all imaging variables, which helped

elevate performance since Y10 Exam with a more apparent gain

after Y20 Exam when more CT variables were collected. The

model trained on Echo variables shows that the inclusion of

Echo variables in addition to traditional risk factors helped

increase prediction accuracy throughout the entire follow-up
FIGURE 3

Predictive gain from imaging variables of different modalities. Top:
performance over time. The colored texts at the top indicate
which imaging modalities were collected at each exam. Bottom:
integrated AUC (iAUC) Gain with respect to the baseline model
trained on only traditional risk factors. All pairwise hypothesis tests
are significant (including All vs. ECHO and All vs. CT), unless
otherwise denoted with “ns” (“non-significant”).
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period by ∼1.5%–2% in C-index. DEXA variables improved

performance very slightly up to Y25 by C-index (<0.01 absolute

difference) and had negligible gain in terms of iAUC. Brain MRI

variables, collected at Y25 and Y30 Exam, helped boost CRVD

prediction performance by 0.01–0.02 C-index gain.

Supplementary Table S2 shows the averaged iAUC gain from

each of the 32 exhaustive combinations of 5 imaging variable

subsets with respect to the baseline model. Aside from the best

model using all imaging markers, the second-best subset is a

combination of Echo, CT, and Brain MRI markers with an

averaged iAUC gain of 0.027. A combination of Echo and CT

variables resulted in a 0.022 iAUC gain, and the largest gain from

a single imaging subset was from CT variables (0.014 iAUC gain).
Temporal importance

Figure 4 quantifies the importance of early vs. late measurements

on CRVD prediction in two imaging subsets with the most influence

on prediction: Echo and CT. For Echo, the model trained on only

early Echo measurements (collected in Y5 Exam as a core study

and partially in Y10 Exam as a substudy) had just as good overall

performance (iAUC= 0.78) as the model trained on Echo variables

collected later in life (Y20 and Y25 Core Exams) (iAUC= 0.78).

For longer-term risk prediction (25 years after Y0), the C-index of

the model trained on early Echo was only 1% less than that of the

model trained on late Echo. Regarding CT variables, which were

collected in Y10 as a substudy and in Y15, Y20, and Y25 as core

studies, the most recent CT exam provided the most accurate

prediction, as evidenced by the immediate bump in the C-index

after each CT Exam. The most prominent bump is right after CT

Y25 which resulted in a 3% increase in C-index compared to

using CT variables from Y20 or earlier (p < 0.001).
Variable importance

In addition to quantifying the importance of variable subsets

relative to each other, variable-level importance was quantified.

Table 2 shows the top 20 ranked variables at three representative

times: 15 years, 25 years, and 33 years (endpoint) after Y0. Total

cholesterol and low-density lipoprotein cholesterol (LDL) were

consistently the most important predictors of CVRD. Most of the

top 20 variables were either collected by Echo and CT, attesting

to their importance to CVRD prediction and consistent with the

results in Figure 2. Chronological age is an important variable

for year 15 (mean age = 40) but not among the top 20 as

participants got older. The top Echo and CT variables have

similar relative variable importance in the rankings.
Discussion

In this work, we investigated the utility of high-dimensional

longitudinal imaging data of five modalities, separately and

together, for dynamic prediction of CVRD in young adults in a
Frontiers in Radiology 06
multi-centered cohort followed up over 30 years. We used the

entirety of imaging variables over all exam years for continuously

updated predictions of risk. The results suggest that longitudinal

imaging data, even when irregularly collected and having high

missing rates, improved CVRD dynamic prediction (3% iAUC, up

to 5% C-index in midlife). Among different subsets of imaging

markers, Echo and CT contributed to most of the improved risk

estimation. Brain MRI variables contributed additional information

that slightly improved prediction when they were collected. DEXA

and Carotid IMT contributed little to none to CVRD prediction,

even though they could be helpful in other aspects of clinical and

epidemiological research. In terms of the effects of imaging

markers measured early or late in life, the results suggested that

Echo measured in early adulthood could predict long-term CVRD

risks almost as well as Echo measured 10–15 years later. For CT,

the most recent CT exam provides the most accurate prediction

for short-term CVRD risk estimation. The results also suggest that

the prediction ability of models decreased over time, particularly

so between the ages of 40 and 50 years, when only traditional risk

factors were included in the models. The addition of imaging

variables helped maintain the prediction ability beyond middle age.
Multimodal imaging markers for dynamic
prediction

This work is unique as it is among the first that incorporates

high-dimensional longitudinal imaging markers from multiple

modalities collected with high levels of sparsity (a high percentage

of missing values) and irregularity (non-uniform time intervals

between measurements) for dynamic prediction of CVRD. Many

previous studies have limited the use of imaging data in prediction

models, using only cross-sectional data or a few variables, or only

including complete data. Simple imputation methods are often used

to deal with sparsity and irregularity (mean/median imputation or

last observation carried forward), (23) but these can introduce bias

and do not fully capture the information in longitudinal data. In

this work, we employed Dynamic-DeepHit which was capable of

dealing with data of high sparsity and irregularity, (11) and thus

could overcome the aforementioned challenges and better capture

the rich information to improve risk estimation.

We showed that the inclusion of longitudinal multimodal

imaging markers led to 0.03–0.05 increase in C-index and iAUC

compared to not using imaging markers. It is worth noting that

the imaging data collected in CARDIA was highly sparse and

irregular (only available in two or three follow-up exams,

collected in a small subset of participants (Supplementary

Table S1). The various missingness patterns reflected the nature

of real-world data as not all information from a past patient visit

will be collected in the current visit. In addition, the general

population of the CARDIA study is in young adulthood to mid-

life, and so most people did not have major findings in imaging

examinations. This may be one of the reasons that the increase

in the model performance by adding the new data (longitudinal

data) was not higher than the observed 0.03–0.05 range. We

argue that, despite the variable missingness rates and the
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FIGURE 4

Effects of early vs. late imaging measurement. (A) Early vs. Late Echo, (B) Early vs. Late CT. Early Echo provided good overall gain for long-term risk
estimation, compared to Late Echo. For CT, the most recent CT exam provides the most accurate prediction, evident by immediate bumps after each
CT Exam, especially CT Y25. P-values of significant pairwise hypothesis tests are shown.
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generally healthy population, longitudinal multimodal imaging

markers still improved prediction up to 5%. More complete and

frequently collected data and a population with higher CVRD

prevalence will likely yield greater improvement in risk estimation.

This study found that the predictive accuracy of a model for

cardiovascular disease risk dropped after the mean age of the

participants reached 45 years old, especially when using only

traditional risk factors. The inclusion of multimodal imaging

markers helped stabilize the predictive accuracy and prevented a

decline of 6%–7% over 13 years. The decline in predictive

performance when using only traditional risk factors may be due

to several factors. First, traditional risk factors may be less effective

for predicting 10-year cardiovascular risk in people entering midlife

despite their demonstrated usage for longer-term prediction.

Previous studies from our group have shown that traditional risk
Frontiers in Radiology 07
factors were not among the top predictors for short-term

prediction in an older population (MESA cohort, mean age = 62),

(7) and also in the CARDIA population. (24) Second, some non-

traditional risk factors such as mental health, alcohol abuse, and

other lifestyle factors, were not included in our prediction models.

Studies have shown that cumulative effects of stress and alcohol

contributed to worsening cardiovascular health. (25–27) Third,

health tends to decline starting in middle-age, when many changes

occur in the body, making it more challenging to predict

cardiovascular disease risk at this age. For example, at this age

range, menopause often begins and the aortic root could enlarge

and dilate, which have been shown to negatively affect

cardiovascular functions and metabolism. (28) More generally,

metabolic syndrome in those 40–59 years of age were about three

times as likely to happen as in those 20–39 years old (29).
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TABLE 2 Variable importance ranking (top 20).

Year 15 Year 25 Year 33

Rank RVI Modality Variable Rank RVI Modality Variable Rank RVI Modality Variable
1 1.00 Traditional Total cholesterol 1 1.00 Traditional Total cholesterol 1 1.00 Traditional Total cholesterol

2 0.94 Traditional LDL 2 0.94 Traditional LDL 2 0.91 Traditional LDL

3 0.63 Traditional Age 3 0.55 Echo Circumferential peak strain
(%)

3 0.74 Echo Mitral regurgitation
(moderate or severe)

4 0.59 Echo Vent septal thickness—
systole

4 0.55 Echo LV internal dim in diastole 4 0.64 Echo Tricuspid regurgitation
(RVsp >40 Mmhg)

5 0.59 Echo Vent septal thickness—
diastole

5 0.54 Echo LV internal dim in systole 5 0.63 Echo Mitral valve E-wave to A-
wave ratio

5 0.59 Echo 2D: LV volume in
systole

6 0.51 Echo Tricuspid annular peak
systolic excursion

6 0.63 Echo Aortic root dimension

6 0.58 Traditional Smoking status 7 0.51 Echo Aortic root dimension 7 0.62 Echo Global LV longitudinal peak
strain (%)

6 0.58 CT Agatston score left
anterior descending

8 0.50 Echo Vent septal thickness—
systole

8 0.61 Echo LV ejection fraction

7 0.58 Echo LV internal dim in
systole

9 0.49 Echo LV volume in systole 9 0.61 MRI Volume of total brain

8 0.58 CT Volume of lesions LAD 10 0.48 CT Standard deviation
attenuation of liver

10 0.61 Echo LV stroke volume

9 0.58 Echo Aortic root dimension 11 0.48 Echo Vent septal thickness—
diastole

11 0.60 Echo LV internal dim in systole

10 0.58 Echo AFVI/EFVI ratio 12 0.48 Echo LV post wall thickness—
diastole

12 0.60 Echo Circumferential peak strain
(%)

10 0.58 CT No. of lesions left
anterior descending

13 0.47 Echo LV internal dimension
systole

13 0.60 Echo LV volume in systole

11 0.58 DEXA Hip: total BMD 14 0.47 CT Calcium mass of lesions
infrarenal abd. aorta

14 0.59 MRI Abnormal tissue volume in
gray matter

12 0.58 CT No. of lesions all
coronary

15 0.47 CT Volume of lesions right
coronary

15 0.59 Echo Vent septal thickness—
diastole

12 0.58 Echo LV ejection fraction 16 0.47 MRI Volume of total brain 16 0.59 CT Stent present

13 0.58 CT Volume of lesions all
coronary

16 0.47 CT Valve replacement present 0.59 CT Calcium mass of lesions
LAD

14 0.58 CT Mean of lesions of
whole heart

17 0.46 CT No. of lesions right common
iliac

18 0.59 CT Coronary artery bypass graft

14 0.58 CT Calcium mass of
lesions LAD

18 0.46 Echo Doppler tissue doppler RV S-
wave Velocity

19 0.59 CT Cardiac surgery present

14 0.58 CT Mean of lesions left
circumflex

19 0.46 MRI Abnormal tissue volume in
gray matter

20 0.58 MRI CSF volume

RVI, relative variable importance; LDL, low-density lipoprotein; LV, left ventricular; RV, right ventricular; AFVI/EFVI, atrial to early diastolic flow velocity integral; BMD, bone

mass density; LAD, left anterior descending artery; CSF, cerebrospinal fluid.
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In this regard, the decline in predictive performance in using only

traditional factors further highlighted the role of multimodal imaging

markers. Even though the traditional risk factors are fundamental to

the genesis and progression of CVRD, multimodal imaging markers

can pick up physiologic signals that are closer to disease initiation

and closer to adverse outcomes. Furthermore, imaging markers can

capture signals from some of the cumulative effects of insults to the

body that were not captured by traditional risk factors. For

example, coronary calcification from CAC/CT has demonstrated the

proatherogenic effects of heavy alcohol consumption since young

adulthood. (30) CAC/CT variables consistently ranked in the top

predictors of outcome in our models (Table 2). Signals signifying

the changes in the body at middle age could also be recognized by

longitudinal imaging, for example, aortic root enlargement captured

by Echo and was among the top−6 predictors of outcome at year

33, when the average participants’ age was 58. In addition, the

importance of age decreased over time while the importance of the

imaging markers increased (Table 2), suggesting that vascular age
Frontiers in Radiology 08
captured by imaging may be more relevant than chronologic age.

Overall, the included multimodal longitudinal imaging markers

stabilized the decrease in prediction accuracy but may not have

captured all relevant information. Adding more diverse, high-

quality multimodal data may be necessary to further improve

prediction in this age group.
Importance of imaging subsets

In this work, we quantified the importance of imaging markers as

whole variable subsets/imaging modalities in addition to looking at

variable-level importance. We also assessed spatial importance (in

one exam) and temporal importance (across exams). We found that

CT and Echo variables were consistently among the most important

predictors. Specifically, within Echo variables, left ventricular

dimensions, ventricular septal thickness, aortic root measurements,

and circumferential peak strain were among the most important.
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These variables are also reportedly among the top predictors in other

large-scale studies. (31) For CT variables, markers from coronary

artery calcium (CAC) scans were consistently among the top

predictors, adding to the growing evidence in the literature about

the importance of CAC. Abdominal aortic calcium variables such as

the number and size of lesions of the abdominal aorta and common

iliac aorta are also among the top 30–50 predictors. Additionally,

intermuscular adipose tissue (IMAT) measured by CT also

consistently presented in the top 30, agreeing with previous reports

showing IMAT associated with increased subclinical atherosclerosis

independent of traditional cardiovascular disease risk factors and

other adipose depots (5).

In the early years, Echo markers, specifically markers of

hypertension (such as septal thickness, LV volume and

dimension), contributed the most to outcome prediction.

However, in later years, CT markers played a larger role in

prediction (Figures 3, 4; Table 2). This suggests that at a young

age, hypertension is the main driver of CVD, whereas at middle

age, markers of atherosclerosis become the main driver, which can

be more efficiently captured by CT/calcium scoring. Variables

from the other subsets (e.g., DEXA, CARTD) contributed weakly

to the prediction. Regarding brain MRI markers, total brain

volume, including gray matter, white matter and cerebral spinal

fluid and abnormal tissue volumes, primarily in white matter were

among the top 15–20, and overall brain markers helped improve

CVRD prediction in the immediate years after they were added.

Previous studies have reported that cardiovascular risk burden is

associated with cognitive decline, structural brain differences, and

brain age. (32–35) However, most studies show that CVD risk

factors predict or are associated with brain structure and function,

(33, 35, 36) and not the other direction. Therefore, the brain MRI

measures may reflect already accumulated CVD risk factors and

therefore provide extra information on the severity of the risk

factors further improving CVRD prediction.
Algorithmic consideration

In our study, we compared several dynamic survival analysis

algorithms to identify the best technique to handle sparse and

irregular imaging data. Among the techniques tested, machine

learning methods were superior to the Extended Cox model. The

best-performing models were those using Dynamic-DeepHit

trained on unimputed data, which can directly handle sparse,

high dimensional, and irregular data and provide true dynamic

prediction. LTRCforest trained on imputed data performed on

par with Dynamic-DeepHit but was not a true dynamic

prediction algorithm and required imputation and more

computational time. Therefore, Dynamic-DeepHit may be the

most suitable algorithm for dynamic prediction.
Limitations

Our study has several limitations. The data collection started in

1985 in a biracial population and followed through for 30 years
Frontiers in Radiology 09
describing a certain cohort experience. Caution must be exercised

when generalizing to other races and to the current population,

as there may have been shifts in population characteristics over

time. Second, external validation is challenging because long-

term follow-up studies of young adults with extensive

phenotyping like CARDIA are sparse. Third, as noted, many

imaging markers in CARDIA are highly sparse and irregularly

collected, whereas quantification of longitudinal multimodal

imaging utility would improve with complete data. Despite that,

the inclusion of sparse and irregular multimodal imaging data

still significantly improved prediction. Finally, the collection of

repeated multi-modal imaging is practically possible mainly in

well-resourced health facilities.
Conclusions

We show that longitudinal multimodal imaging data readily

collected from follow-up exams in a population study can

improve CVRD dynamic prediction. Echocardiography measured

early can capture hypertension status and provide a good

prediction for long-term risk estimation, while CT/calcium

scoring variables carry atherosclerotic signatures that benefit

more immediate risk assessment starting in middle-age.
Data availability statement

Publicly available datasets were analyzed in this study. This

data can be found here: https://www.cardia.dopm.uab.edu/.

CARDIA study data are available to affiliated and non-affiliated

investigators. See the study website for further details: http://

www.cardia.dopm.uab.edu/invitation-to-new-investigators.
Ethics statement

The studies involving humans were approved by Institutional

Review Board for the overall CARDIA study at all sites

(Northwestern University, University of Alabama Birmingham,

University of Minnesota, and Kaiser Foundation Research

Institute). Written informed consent was obtained from all

subjects and/or their legal guardian(s). All methods were

performed in accordance with the relevant guidelines and

regulations. The studies were conducted in accordance with the

local legislation and institutional requirements. The participants

provided their written informed consent to participate in this study.
Author contributions

HN: Conceptualization, Data curation, Formal Analysis,

Investigation, Methodology, Visualization, Writing – original

draft, Writing – review & editing. HV: Data curation, Formal

Analysis, Writing – review & editing. KK: Data curation, Formal

Analysis, Writing – review & editing. JC: Funding acquisition,
frontiersin.org

https://www.cardia.dopm.uab.edu/
http://www.cardia.dopm.uab.edu/invitation-to-new-investigators
http://www.cardia.dopm.uab.edu/invitation-to-new-investigators
https://doi.org/10.3389/fradi.2024.1269023
https://www.frontiersin.org/journals/radiology
https://www.frontiersin.org/


Nguyen et al. 10.3389/fradi.2024.1269023
Writing – review & editing. LL: Data curation, Funding acquisition,

Resources, Writing – review & editing. EG: Writing – review &

editing. JL: Conceptualization, Funding acquisition, Resources,

Writing – review & editing. BA-V: Conceptualization, Data

curation, Methodology, Validation, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article.

The Coronary Artery Risk Development in Young

Adults Study (CARDIA) is conducted and supported by the

National Heart, Lung, and Blood Institute (NHLBI) in

collaboration with the University of Alabama at Birmingham

(HHSN268201800005I & HHSN268201800007I), Northwestern

University (HHSN268201800003I), University of Minnesota

(HHSN268201800006I), and Kaiser Foundation Research

Institute (HHSN268201800004I). Y25 CT Exam was funded by

NHLBI grant R01-HL098445 to Vanderbilt University and

Wake Forest University. This manuscript has been reviewed by

CARDIA for scientific content.
Acknowledgments

We thank the CARDIA committee for reviewing the scientific
content of this manuscript. The views expressed in this manuscript
are those of the authors and do not necessarily represent the views
of the National Heart, Lung, and Blood Institute; the National
Frontiers in Radiology 10
Institutes of Health; or the U.S. Department of Health and
Human Services.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

The author(s) declared that they were an editorial board

member of Frontiers, at the time of submission. This had no

impact on the peer review process and the final decision.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fradi.2024.

1269023/full#supplementary-material
References
1. Peters SAE, den Ruijter HM, Bots ML, Moons KGM. Improvements in risk
stratification for the occurrence of cardiovascular disease by imaging subclinical
atherosclerosis: a systematic review. Heart. (2012) 98:177–84. doi: 10.1136/heartjnl-
2011-300747

2. Nwabuo CC, Moreira HT, Vasconcellos HD, Mewton N, Opdahl A, Ogunyankin
KO, et al. Left ventricular global function index predicts incident heart failure and
cardiovascular disease in young adults: the coronary artery risk development in
young adults (CARDIA) study. Eur Heart J Cardiovasc Imaging. (2019) 20:533–40.
doi: 10.1093/ehjci/jey123

3. Armstrong AC, Jacobs DR, Gidding SS, Colangelo LA, Gjesdal O, Lewis CE, et al.
Framingham score and LV mass predict events in young adults: CARDIA study. Int
J Cardiol. (2014) 172(2):350–5. doi: 10.1016/j.ijcard.2014.01.003

4. Yared GS, Moreira HT, Ambale-Venkatesh B, Vasconcellos HD, Nwabuo CC,
Ostovaneh MR, et al. Coronary artery calcium from early adulthood to middle age
and left ventricular structure and function. Circ Cardiovasc Imaging. (2019) 12:
e009228. doi: 10.1161/CIRCIMAGING.119.009228

5. Terry JG, Shay CM, Schreiner PJ, Jacobs Jr DR, Sanchez OA, Reis JP, et al.
Intermuscular adipose tissue and subclinical coronary artery calcification in midlife:
the CARDIA study (coronary artery risk development in young adults). Arterioscler
Thromb Vasc Biol. (2017) 37:2370–8. doi: 10.1161/ATVBAHA.117.309633

6. Ciuffo L, Nguyen H, Marques MD, Aronis KN, Sivasambu B, de Vasconcelos HD,
et al. Periatrial fat quality predicts atrial fibrillation ablation outcome. Circ Cardiovasc
Imaging. (2019) 12:e008764. doi: 10.1161/CIRCIMAGING.118.008764

7. Ambale-Venkatesh B, Yang X, Wu CO, Liu K, Hundley WG, McClelland R, et al.
Cardiovascular event prediction by machine learning: the multi-ethnic study of
atherosclerosis. Circ Res. (2017) 121:1092–101. doi: 10.1161/CIRCRESAHA.117.311312

8. Fisher LD, Lin DY. Time-dependent covariates in the cox proportional-hazards
regression model. Annu Rev Public Health. (1999) 20:145–57. doi: 10.1146/annurev.
publhealth.20.1.145
9. Ishwaran H, Kogalur UB, Blackstone EH, Lauer MS. Random survival forests.
Annals of Applied Statistics. (2008) 2:841–60. doi: 10.1214/08-AOAS169

10. Rizopoulos D, Molenberghs G, Lesaffre EMEH. Dynamic predictions with time-
dependent covariates in survival analysis using joint modeling and landmarking.
Biometrical Journal. (2017) 59:1261–76. doi: 10.1002/bimj.201600238

11. Lee C, Yoon J, van der Schaar M. Dynamic-DeepHit: a deep learning approach
for dynamic survival analysis with competing risks based on longitudinal data. IEEE
Trans Biomed Eng. (2020) 67(1):122–33. doi: 10.1109/TBME.2019.2909027

12. Friedman GD, Cutter GR, Donahue RP, Hughes GH, Hulley SB, Jacobs DR, et al.
Cardia: study design, recruitment, and some characteristics of the examined subjects.
J Clin Epidemiol. (1988) 41:1105–16. doi: 10.1016/0895-4356(88)90080-7

13. The Coronary Artery Risk Development in Young Adults (CARDIA) Study
Homepage. Available online at: https://www.cardia.dopm.uab.edu/

14. Fu W, Simonoff JS. Survival trees for left-truncated and right-censored data, with
application to time-varying covariate data. Biostatistics. (2017) 18:352–69. doi: 10.
1093/biostatistics/kxw047

15. Tibshirani R. The lasso method for variable selection in the cox model. Stat
Med. (1997) 16:385–95. doi: 10.1002/(SICI)1097-0258(1s9970228)16:4<385::AID-
SIM380>3.0.CO;2-3

16. Resche-Rigon M, White IR. Multiple imputation by chained equations for
systematically and sporadically missing multilevel data. Stat Methods Med Res.
(2018) 27:1634–49. doi: 10.1177/0962280216666564

17. van Buuren S, Groothuis-Oudshoorn K. Mice: multivariate imputation by
chained equations in R. J Stat Softw. (2011) 45:1–67. doi: 10.1101/2022.09.22.22280254

18. Nguyen HT, Vasconcellos HD, Keck K, Reis JP, Lewis CE, Sidney S, et al.
Multivariate longitudinal data for survival analysis of cardiovascular event
prediction in young adults: insights from a comparative explainable study. BMC
Med Res Methodol. (2023) 23:23. doi: 10.1186/s12874-023-01845-4
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fradi.2024.1269023/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fradi.2024.1269023/full#supplementary-material
https://doi.org/10.1136/heartjnl-2011-300747
https://doi.org/10.1136/heartjnl-2011-300747
https://doi.org/10.1093/ehjci/jey123
https://doi.org/10.1016/j.ijcard.2014.01.003
https://doi.org/10.1161/CIRCIMAGING.119.009228
https://doi.org/10.1161/ATVBAHA.117.309633
https://doi.org/10.1161/CIRCIMAGING.118.008764
https://doi.org/10.1161/CIRCRESAHA.117.311312
https://doi.org/10.1146/annurev.publhealth.20.1.145
https://doi.org/10.1146/annurev.publhealth.20.1.145
https://doi.org/10.1214/08-AOAS169
https://doi.org/10.1002/bimj.201600238
https://doi.org/10.1109/TBME.2019.2909027
https://doi.org/10.1016/0895-4356(88)90080-7
https://www.cardia.dopm.uab.edu/
https://doi.org/10.1093/biostatistics/kxw047
https://doi.org/10.1093/biostatistics/kxw047
https://doi.org/10.1002/(SICI)1097-0258(1s9970228)16:4%3C385::AID-SIM380%3E3.0.CO;2-3
https://doi.org/10.1002/(SICI)1097-0258(1s9970228)16:4%3C385::AID-SIM380%3E3.0.CO;2-3
https://doi.org/10.1177/0962280216666564
https://doi.org/10.1101/2022.09.22.22280254
https://doi.org/10.1186/s12874-023-01845-4
https://doi.org/10.3389/fradi.2024.1269023
https://www.frontiersin.org/journals/radiology
https://www.frontiersin.org/


Nguyen et al. 10.3389/fradi.2024.1269023
19. Ishwaran H. Variable importance in binary regression trees and forests. Electron
J Stat. (2007) 1:519–37. doi: 10.1214/07-EJS039

20. Liang CJ, Heagerty PJ. A risk-based measure of time-varying prognostic
discrimination for survival models. Biometrics. (2017) 73:725–34. doi: 10.1111/biom.
12628

21. Gerds TA, Kattan MW, Schumacher M, Yu C. Estimating a time-dependent
concordance index for survival prediction models with covariate dependent
censoring. Stat Med. (2013) 32:2173–84. doi: 10.1002/sim.5681

22. Heagerty PJ, Zheng Y. Survival model predictive accuracy and ROC curves.
Biometrics. (2005) 61:92–105. doi: 10.1111/j.0006-341X.2005.030814.x

23. Zhao J, Feng QP, Wu P, Lupu RA, Wilke RA, Wells QS, et al. Learning from
longitudinal data in electronic health record and genetic data to improve
cardiovascular event prediction. Sci Rep. (2019) 9:1–10. doi: 10.1038/s41598-018-36745-x

24. Nguyen HT, Venkatesh BA, Reis JP, Wu CO, Carr J, Nwabuo C, et al. Lifetime vs
10-year cardiovascular disease prediction in young adults using statistical machine
learning and deep learning: the CARDIA study. medRxiv. (2022). doi: 10.1101/2022.
09.22.22280254

25. Chaddha A, Robinson EA, Kline-Rogers E, Alexandris-Souphis T, Rubenfire M.
Mental health and cardiovascular disease. Am J Med. (2016) 129:1145–8. doi: 10.1016/
j.amjmed.2016.05.018

26. Albert MA, Durazo EM, Slopen N, Zaslavsky AM, Buring JE, Silva T, et al.
Cumulative psychological stress and cardiovascular disease risk in middle aged and
older women: rationale, design, and baseline characteristics. Am Heart J. (2017)
192:1–12. doi: 10.1016/j.ahj.2017.06.012

27. Kiechl S, Willeit J, Rungger G, Egger G, Oberhollenzer F, Bonora E. Alcohol
consumption and atherosclerosis: what is the relation? Prospective results from the
bruneck study. Stroke. (1998) 29:900–7. doi: 10.1161/01.STR.29.5.900

28. Rosano GMC, Vitale C, Marazzi G, Volterrani M. Menopause and cardiovascular
disease: the evidence. Climacteric. (2007) 10:19–24. doi: 10.1080/13697130601114917
Frontiers in Radiology 11
29. Ervin RB. Prevalence of metabolic syndrome among adults 20 years of age
and over, by sex, age, race and ethnicity, and body mass index: United States,
2003–2006. National Health Statistics Reports. (2009). 13. https://stacks.cdc.gov/
view/cdc/5448

30. Pletcher MJ, Varosy P, Kiefe CI, Lewis CE, Sidney S, Hulley SB. Alcohol
consumption, binge drinking, and early coronary calcification: findings from the
coronary artery risk development in young adults (CARDIA) study. Am
J Epidemiol. (2005) 161:423–33. doi: 10.1093/aje/kwi062

31. Li Z, Yang Y, Zheng L, Sun G, Guo X, Sun Y. It’s time to add
electrocardiography and echocardiography to CVD risk prediction models: results
from a prospective cohort study. Risk Manag Healthc Policy. (2021) 14:4657.
doi: 10.2147/RMHP.S337466

32. Song R, Xu H, Dintica CS, Pan K-Y, Qi X, Buchman AS, et al. Associations
between cardiovascular risk, structural brain changes, and cognitive decline. J Am
Coll Cardiol. (2020) 75:2525–34. doi: 10.1016/j.jacc.2020.03.053

33. Srinivasa RN, Rossetti HC, Gupta MK, Rosenberg RN, Weiner MF, Peshock RM,
et al. Cardiovascular risk factors associated with smaller brain volumes in regions
identified as early predictors of cognitive decline. Radiology. (2016) 278:198. doi: 10.
1148/radiol.2015142488

34. Kharabian Masouleh S, Beyer F, Lampe L, Loeffler M, Luck T, Riedel-Heller SG,
et al. Gray matter structural networks are associated with cardiovascular risk factors in
healthy older adults. J Cereb Blood Flow Metab. (2018) 38:360–72. doi: 10.1177/
0271678X17729111

35. Pase MP, Davis-Plourde K, Himali JJ, Satizabal CL, Aparicio H, Seshadri S, et al.
Vascular risk at younger ages most strongly associates with current and future brain
volume. Neurology. (2018) 91:e1479–86. doi: 10.1212/WNL.0000000000006360

36. Armstrong AC, Muller M, Ambale-Ventakesh B, Halstead M, Kishi S, Bryan N,
et al. Association of early left ventricular dysfunction with advanced magnetic
resonance white matter and gray matter brain measures: the CARDIA study.
Echocardiography. (2017) 34:1617–22. doi: 10.1111/echo.13695
frontiersin.org

https://doi.org/10.1214/07-EJS039
https://doi.org/10.1111/biom.12628
https://doi.org/10.1111/biom.12628
https://doi.org/10.1002/sim.5681
https://doi.org/10.1111/j.0006-341X.2005.030814.x
https://doi.org/10.1038/s41598-018-36745-x
https://doi.org/10.1101/2022.09.22.22280254
https://doi.org/10.1101/2022.09.22.22280254
https://doi.org/10.1016/j.amjmed.2016.05.018
https://doi.org/10.1016/j.amjmed.2016.05.018
https://doi.org/10.1016/j.ahj.2017.06.012
https://doi.org/10.1161/01.STR.29.5.900
https://doi.org/10.1080/13697130601114917
https://stacks.cdc.gov/view/cdc/5448
https://stacks.cdc.gov/view/cdc/5448
https://doi.org/10.1093/aje/kwi062
https://doi.org/10.2147/RMHP.S337466
https://doi.org/10.1016/j.jacc.2020.03.053
https://doi.org/10.1148/radiol.2015142488
https://doi.org/10.1148/radiol.2015142488
https://doi.org/10.1177/0271678X17729111
https://doi.org/10.1177/0271678X17729111
https://doi.org/10.1212/WNL.0000000000006360
https://doi.org/10.1111/echo.13695
https://doi.org/10.3389/fradi.2024.1269023
https://www.frontiersin.org/journals/radiology
https://www.frontiersin.org/

	Utility of multimodal longitudinal imaging data for dynamic prediction of cardiovascular and renal disease: the CARDIA study
	Introduction
	Methods
	Study population and outcome
	Imaging markers
	Statistical analysis
	Model training and evaluation
	Modeling methods
	Importance of imaging subsets and variables
	Performance evaluation


	Results
	Dynamic vs. static prediction
	Comparison of modeling methods
	Predictive gain of modalities
	Temporal importance
	Variable importance

	Discussion
	Multimodal imaging markers for dynamic prediction
	Importance of imaging subsets
	Algorithmic consideration
	Limitations

	Conclusions
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


