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Empowering breast cancer
diagnosis and radiology practice:
advances in artificial intelligence
for contrast-enhanced
mammography
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2Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco,
CA, United States, 3Department of Radiology, Keck School of Medicine, University of Southern
California, Los Angeles, CA, United States
Artificial intelligence (AI) applications in breast imaging span a wide range of tasks
including decision support, risk assessment, patient management, quality
assessment, treatment response assessment and image enhancement.
However, their integration into the clinical workflow has been slow due to the
lack of a consensus on data quality, benchmarked robust implementation, and
consensus-based guidelines to ensure standardization and generalization.
Contrast-enhanced mammography (CEM) has improved sensitivity and
specificity compared to current standards of breast cancer diagnostic imaging
i.e., mammography (MG) and/or conventional ultrasound (US), with
comparable accuracy to MRI (current diagnostic imaging benchmark), but at a
much lower cost and higher throughput. This makes CEM an excellent tool for
widespread breast lesion characterization for all women, including
underserved and minority women. Underlining the critical need for early
detection and accurate diagnosis of breast cancer, this review examines the
limitations of conventional approaches and reveals how AI can help overcome
them. The Methodical approaches, such as image processing, feature
extraction, quantitative analysis, lesion classification, lesion segmentation,
integration with clinical data, early detection, and screening support have been
carefully analysed in recent studies addressing breast cancer detection and
diagnosis. Recent guidelines described by Checklist for Artificial Intelligence in
Medical Imaging (CLAIM) to establish a robust framework for rigorous
evaluation and surveying has inspired the current review criteria.

KEYWORDS

contrast enhanced mammography, radiomics, artificial intelligence, machine learning,
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1 Introduction

Breast cancer is the second most leading cause of cancer death in women globally (1),

and early detection is crucial for improved prognosis (2–5). Digital Mammography (DM)

is known to reduce breast cancer related deaths by 40%. However, among specific patients,

heightened breast density poses a challenge in detecting early-stage small cancers, resulting

in a higher rate of false positive callbacks and interval cancers (6, 7). Currently 43% of all
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women, 40–85 in age, have dense breasts warranting the need for

additional screening beyond DM (8). In recent years, CEM has

emerged as a potential option for offering improved sensitivity

and specificity compared to current standards of breast cancer

diagnostic imaging i.e., mammography (MG) and/or conventional

ultrasound (US) (9, 10). CEM uses iodinated contrast to visualize

tumour neovascularity and dual-energy DM to create a

recombined or iodine image that highlights just the enhancing

lesion in the breast (11, 12). CEM has comparable sensitivity to

MRI with a much higher specificity, potentially at a much lower

cost and higher throughput (13–15). As a natural progression,

multiple studies report of the benefits of using CEM for the

screening, diagnosis of breast cancers as a cost-effective and viable

alternative to the current standards, particularly in women with

dense breasts and at relatively higher risk of breast cancer.

From a technical standpoint, CEM employs anode and cathode

components in x-ray tubes similar to conventional DM (16). It

utilizes low and high-energy x-rays to highlight contrast agent-

induced differences, aiding in tissue composition and distribution

assessment (17, 18). Thus, CEM employs dual-energy method to

produce high-resolution, low-energy digital mammogram images.

These images are recombined to create a digitally subtracted

image, which can be useful to identify vascularity of a particular

lesion (12). Studies have suggested, low energy mammograms

obtained as part of CEM protocols is comparable to conventional

mammography (19, 20) and though with the added advantage of

emphasizing regions of contrast enhancement (21). CEM is

currently offered on five different systems across 4 vendors (11,

22). Although a general consensus on how to perform CEM has

been followed, a standardized implementation has not been

established. This is a difficult task considering the differences in

system characteristics across vendors.

CEM has several drawbacks (11), including the risk of mild to

severe hypersensitivity reactions due to iodinated contrast

administration (23). Patients should be evaluated for a history of

contrast material allergy. CEM radiation dose on average requires

slightly higher radiation exposure when compared to

conventional mammography in phantom studies, though do tend

to fall beneath the 3 mGy threshold dose limit set by

Mammography Quality Standards guidelines (24, 25).

Furthermore, despite enhanced sensitivity of CEM, certain breast

lesions may still be undetectable due to their location within the

breast; supplementary breast MRI may be required if lesions are

anticipated in these areas such as region near chest wall (26).

Finally, due to use subtraction techniques, certain CEM-specific

artifacts may be visible on the recombined image which likewise

can obscure subtle lesion detection (27–29).

In recent years, there has been significant improvement in the

field of Artificial Intelligence (AI) in healthcare, leading to better

and more prompt treatment for patients. AI is a useful tool to

supplement the abilities and knowledge of radiologists,

oncologists, and pathologists, ultimately resulting in more precise

and effective identification and treatment of breast cancer. The

insights offered by Mongan et al. (30) regarding the importance

of systematically presenting research findings resonate deeply

within the academic and scientific community. Their assertion
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highlights that, beyond achieving optimal results in research, the

meticulous and structured presentation of these findings is of

paramount significance. These guidelines promote transparency,

reproducibility, and the ability to generalize research findings.

They standardize reporting, elevate research quality, and ensure

clinical relevance, providing a shared foundation for researchers,

reviewers, and clinicians to understand and assess deep learning

studies effectively.

The goal of this review is to provide an overview of some of the

basic ideas and advances in the use of for the detection of breast

cancer using CEM. The limitations of conventional approaches

will be addressed, as well as the ways in which these limitations

can be removed using AI. Importantly, the review will include

research that has looked at existing AI capabilities, as well as

ideas on how these skills can be used in the clinical field.
2 Method

The literature review was conducted on the use of contrast-

enhanced mammography (CEM) and artificial intelligence (AI)

techniques for predicting malignancy. PubMed database was

searched for articles published between 1st January 2018 and 5th

October, 2023, using a query: “(contrast-enhanced mammography)

AND (deep learning OR radiomics OR artificial intelligence OR

quantitative analysis) AND (classification OR detection)”. 53 articles

that met this initial criteria were identified. Subsequently, each article

was rigorously evaluated to ensure that it used CEM in conjunction

with AI techniques to predict malignancy, resulting in a final

selection of 14 articles. This rigorous selection process was

documented in accordance with the PRISMA framework (31),

which provides a transparent and structured methodology for article

inclusion as shown in Figure 1. The following sections will discuss

end-to-end malignancy detection pipelines using contrast-enhanced

mammography. Flowchart of these methods is presented in Figure 2.
3 Image acquisition

The availability of CEM in commercial systems from vendors

like GE Healthcare, Hologic, and Siemens Healthineers

represents a significant advancement in breast imaging, as

demonstrated in Table 1, with information sourced from Jeukens

(32), Jochelson et al. (11). While optimal imaging parameters for

CEM have not been extensively documented in published studies,

there are a few generally accepted guidelines. Commonly, low-

osmolarity iodine-based contrast in concentrations ranging from

300 mg/ml to 370 mg/ml at 1.5 ml/kg body weight (maximum

150 ml) is intravenously injected prior to image acquisition.

Injection rates typically range from 2 to 3 ml per second (11).

Among the reviewed studies, a total of 9 investigations made use

of GE Healthcare systems, while 1 opted for Hologic systems and

3 opted to use data from both as mentioned in Table 2.

However, it is important to acknowledge that providing explicit

details regarding image acquisition methods and the sources of

ground truth data is essential for establishing a common
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FIGURE 1

Diagram of systematic evaluation for article selection.
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platform for comparing existing studies. While the majority of

researchers have embraced transparency and rigor in their

research processes, there are exceptions where such critical

information remains undisclosed. This underscores the

importance of robust reporting standards and transparency

within the scientific community to ensure the credibility and

reproducibility of research findings. For example, information

regarding vendor, model, and acquisition protocol must be

provided in the publications. This is crucial since across the 4

major CEM vendors, there exist different strategies for

performing dual-energy mammography, using different tube

voltage ranges, anode materials, filter materials/thicknesses, and

image reconstruction algorithms for creating the recombined
Frontiers in Radiology 03
CEM images. These differences can be a major source of inter-

operator bias when using multivendor CEM within a multicenter

study. Studies exploring harmonization/standardization strategies

prior to using multivendor CEM data for multicenter studies

are warranted.
4 Image pre-processing

Image preprocessing is crucial for models in contrast-enhanced

imaging datasets, overcoming challenges like noise and artifacts.

Steps like noise reduction, removal of background pixels, contrast

enhancement, and data normalization improve image quality (47).
frontiersin.org
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FIGURE 2

Flowchart for malignancy detection in CEM images.

TABLE 1 Vendors for CEM imaging acquisition system.

Vendors/system
characteristic

Low—energy imaging: anode and
filter material and thickness

High—energy imaging: anode and
filter material and thickness

Mean
glandular dose

Total acquisition
time

Vendor 1 Mo/Mo, Mo/Rh, Rh/Rh Mo (0.03 mm), Rh
(0.025 mm)

Mo/AI + Cu, Rh/AI + Cu Al (0.3 mm), Cu
(0.3 mm)

1.6–2.8 mGy 3–8 s

Vendor 2 Mo/Mo, Rh/Ag Mo (0.03 mm), Ag (0.03 mm) Mo/Cu, Rh/Cu (0.25 mm) 0.7–2.3 mGy 2–5 s

Vendor 3 W/Rh, W/Ag (0.050 mm) W/Cu (0.3 mm) 3.0 mGy Less than 2 s

Vendor 4 W/Rh (0.050 mm) W/Ti (1.0 mm) – 15–22 s

Vendor 1 offers GE Healthcare’s Senographe Essential and Senobright, Vendor 2 offers GE Healthcare Pristina and Senobright HD. Vendor 3 offers Hologic Selenia

Dimensions and 3Dimensions I—View, and Vendor 4 offers Siemens Healthineers Mammomat Revelation Titanium CEM system. The low-energy tube voltage range

for these vendors spans 26 to 34 kV, while the high-energy range extends from 45 to 49 kV. Essential anode and filter materials include silver (Ag), aluminium (Al),

copper (Cu), molybdenum (Mo), rhodium (Rh), titanium (Ti), and tungsten (W). The data within this table is sourced from Jeukens (32), Jochelson at al (11).
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Techniques like data augmentation, ROI extraction, and data

balancing enhance model generalization and feature detection.

This preprocessing standardizes datasets, enhancing performance

and accuracy. Therefore, it is critical to establish image quality

standards prior to inclusion into ML/DL applications for

reliable pre-processing.
4.1 Removal of background pixels

The presence of artifacts in medical images can introduce

confusion or even mimic lesions, potentially leading to

unnecessary medical procedures. Therefore, the removal of these

artifacts plays a pivotal role in enhancing the accuracy of

diagnoses. Several techniques have been developed for artifact

removal, including thresholding, clustering, graph-cut algorithms,
Frontiers in Radiology 04
and deep learning methods. Thresholding is particularly effective

in addressing large and well-defined artifacts (47, 48). Clustering,

on the other hand, groups similar pixels together to tackle

artifact removal (48). Otsu’s thresholding method has been

applied in two notable studies (33, 43) for malignancy detection.

In the case of (33), a two-step approach was employed, involving

Contrast Limited Adaptive Histogram Equalization (CLAHE)

before applying Otsu’s thresholding. This preprocessing step,

utilizing CLAHE, improved the image quality by mitigating

issues related to uneven lighting conditions and varying contrast

across different regions. Additionally, graph-cut algorithms

provide another avenue for artifact removal, segmenting images

based on pixel similarity (48). Deep learning techniques have

also gained prominence, as they train neural networks to identify

and subsequently remove artifacts (43). The choice of artifact

removal technique hinges on the specific image characteristics
frontiersin.org
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TABLE 2 Review of existing work in AI for CEM imaging.

Research
work

Methodology CEM system Data
size

Benign/
Malignant

Accuracy Other metrics

Beuque et al. (33) Mask RCNN with ResNet101 GE Healthcare – 227/363 (External
data set)

73% AUC = 0.86
Sensitivity = 0.83
Specificity = 0.75

Wang et al. (34) Least absolute shrinkage and selection operator
(LASSO) logistic regression

GE Healthcare 226 101/125 88.2% AUC = 0.96
Sensitivity = 0.90
Specificity = 0.93

Petrillo et al. (35) Logistic Regression with LASSO Hologic, USA and GE
Healthcare

182 64/118 91.67% Sensitivity = 0.90
Specificity = 0.92

Wang et al. (36) Logistic regression GE Healthcare 226 101/125 94.6% AUC = 0.96
Sensitivity = 0.97
Specificity = 0.91

Fusco et al. (37) Support Vector Machine Hologic, USA and GE
Healthcare

104 39/65 87% AUC = 0.90
Sensitivity = 0.86
Specificity = 0.87

Wang et al. (38) Least absolute shrinkage and selection operator
(LASSO

GE Healthcare 223 101/122 – AUC = 0.940

Sun et al. (39) Least absolute shrinkage and selection operator
(LASSO) regression

GE Healthcare 161 47/114 89.5% AUC = 0.92
Sensitivity = 0.89
Specificity = 0.908

Miller et al. (40) Penalized Linear Discriminant analysis – 159 70/89 71.25% AUC = 0.81
Sensitivity = 0.56
Specificity = 0.75

Gao et al. (41) ResNet along with Convolutional Neural Network
(CNN)

Hologic, USA 49 23/26 89% AUC = 0.91
Sensitivity = 0.93
Specificity = 0.86

Jailin et al. (42) YOLOv5 with CSPDarknet as backbone GE HealthCare, USA 7,443 3,739/3,704 estimated 90% AUC = 0.964
FPR = 0.128

Zheng et al. (43) RefineNet and Xception + Pyramid pooling (PPM) GE Healthcare 1,802 493/1,309 87.6% Sensitivity = 0.95
Specificity = 0.70

Savaridas et al. (44) Artificial Neural Network (ANN) Hologic and GE
Healthcare

269 14/255 91.4% AUC = 0.97
Sensitivity = 0.95
Specificity = 0.89

Chen et al. (45) DenseNet 121 with Convolutional Neural Network
(CNN)

GE Healthcare, USA 1,903 490/1,413 87.1% AUC = 0.912
Sensitivity = 0.947
Specificity = 0.714

Qian et al. (46) VGG16 with Convolutional Neural Network (CNN) GE Senographe Essential 2,496 765/1,731 85% AUC = 0.92
Sensitivity = 0.86
Specificity = 0.85
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and the desired outcome. Thresholding proves effective for larger

and more distinct artifacts (49, 50) while clustering or graph-cut

algorithms are better suited for smaller or grouped artifacts,

offering a versatile array of tools to address artifact-related

challenges in medical imaging.
4.2 Resampling

Resampling CEM images holds significance due to their high

resolution, variable scan times, and diverse imaging protocols.

Resampling is performed when there is a difference in the pixel

resolution of an image. Image acquisition timing impacts

appearance and generalization. Standardizing resolution and

acquisition times enhances dataset consistency and diminishes

model variance, ultimately reducing false negatives, thus

improving model performance (51). Wang et al. (34) conducted

a study that used data from two different centers and successfully

standardized their dataset using resampling techniques. In study

by Wang et al. (38) they performed resampling before feature
Frontiers in Radiology 05
extraction. Resampling CEM datasets with different resolutions in

multi-source data scenarios is recommended, as it is likely to

improve model performance.
4.3 Normalization

Given the wide variation in study protocols, acquisition

systems, and contrast injection dosages, it is clear that these

factors have a significant impact on the brightness, contrast, and

color balance of CEM images. Normalization is performed when

there is a difference in the pixel intensity values of the image.

Certain image features, such as texture and contrast, are more

sensitive to fluctuations in these parameters than others.

Normalization techniques offer a critical solution to mitigate

these sensitivities. By normalizing CEM images, the impact of

variable brightness, contrast, and color balance is minimized

(52). This, in turn, enhances the reliability and precision of

feature extraction processes from CEM images. For instance, in a

study by Zheng et al. (43) the researchers used data from three
frontiersin.org
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different sources. They used one source for training, and the other

two for external testing. To ensure that the dataset was consistent,

they used normalization. Qian et al. (46) enhanced CEM images by

adjusting pixel values to improve contrast and highlight lesions and

then performed min-max normalization. This normalization

process was essential for harmonizing the diverse data sources

and ensuring that the dataset was coherent and free of

inconsistencies. Adopting these steps in studies is strongly

recommended as they strengthen the reliability of their findings

and conclusions and data integrity in multi-source studies.
4.4 Data augmentation

Being a relatively new technique, CEM studies face the

challenges of being limited in size and imbalanced class

distribution. These inherent characteristics pose a significant risk

of overfitting, a scenario where the model becomes excessively

attuned to the intricacies of the training data, hindering its

ability to effectively generalize to unseen data. In response to this

issue, data augmentation emerges as a valuable strategy. Data

augmentation techniques, such as horizontal image mirroring,

global intensity adjustments, realistic transformations of breast

geometry (53), horizontal flipping, rotation, scaling, reducing size

(54) and horizontal and vertical shifting have been effectively

used in studies by Jailin et al. (42), Zheng et al. (43), Qian et al.

(46). These techniques increase the diversity of the dataset, which

improves the robustness of research findings.
4.5 Lesion segmentation

In the realm of radiomics, the extraction of features from lesion

areas is a fundamental prerequisite. Achieving this necessitates the

segmentation of lesions, a critical step in the process. Segmentation

can be approached in two distinct ways.

4.5.1 Manual segmentation
Manual segmentation remains a widely adopted and trusted

technique for precisely delineating lesions in CEM images. This

method involves the meticulous outlining of lesion boundaries.

Typically executed by skilled radiologists. In several studies

reviewed (34, 35, 37, 38, 40, 55) manual segmentation approach

was the chosen method. This approach underscored the

importance of detailed and careful delineation of lesion contours,

taking into account both the CC and MLO views, thus

emphasizing its role in achieving precision and accuracy in

radiological assessments. It is crucial to recognize that manual

segmentation, despite its accuracy and reliability, demands a

substantial investment of time and effort. The involvement of

skilled radiologists is paramount to its success. If radiologist

availability is limited, a single radiologist may need to handle

segmentation. However, for high accuracy and precision

demands, involving multiple radiologists to review and segment

the image could be advantageous. Also, although this labor-

intensive process remains indispensable for not only its inherent
Frontiers in Radiology 06
precision but also its pivotal role in facilitating the development

and evaluation of new automated segmentation methods.

4.5.2 Automatic segmentation
Automatic segmentation is a rapidly developing field with the

potential to improve the efficiency and practicality of CEM

image analysis. Automatic segmentation methods leverage the

power of deep learning models to develop a comprehensive

understanding of lesion features in contrast-enhanced

mammography (CEM) images, enabling them to autonomously

outline lesion contours. Alternatively, whole-organ analysis, the

analysis of the entire breast, can be performed instead of lesion-

specific segmentation. Consequently, automatic segmentation

methods have the potential to reduce analysis time and effort,

while also enhancing the accuracy and reproducibility of

segmentation outcomes. Numerous studies have contributed to

the development and evaluation of automatic segmentation

methods tailored for CEM images. By merging manual

segmentation with artificial intelligence, Zheng et al. (43)

introduced an approach that improved lesion segmentation

accuracy and efficiency. Wang et al. (56) introduced

methodology that emphasizes lesion localization, providing a

user-friendly and efficient alternative to conventional

segmentation techniques, specifically by applying a deep learning

model to detect and localize lesions in CEM images. Meanwhile,

Beuque et al. (33) utilized the Mask R-CNN model (57), a

region-based deep learning model that is optimized for object

detection and segmentation. Jailen et al. (42) employed the

YOLO v5 model, a single-stage deep learning model that is faster

and more generalized than Mask R-CNN. These examples

exemplify the diversity of approaches within the realm of

automatic segmentation, and highlight the different trade-offs

between accuracy, speed, and generalization.

However, it is crucial to acknowledge that automatic

segmentation methods are still in the process of development,

and several significant challenges must be addressed before they

can find widespread application in clinical practice. One pressing

challenge pertains to the sensitivity of these methods to the

quality of the training data. In cases where training data is

noisy or incomplete, the model’s ability to accurately grasp

lesion features may be compromised. Additionally, the

computational demands of automatic segmentation methods pose

a formidable hurdle, especially in clinical settings characterized

by limited resources.
5 Feature extraction

Feature extraction is a critical technique for training CEM

model training, enhancing the accuracy, efficiency, and

interpretability of deep learning models (58). Common

techniques include shape features, texture features, and kinetic

features. Shape features describe the shape of the lesion, texture

features describe its brightness, contrast, and homogeneity, and

kinetic features describe the changes in the lesion over time. It is

the foundational step that lays the groundwork for subsequent
frontiersin.org
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model training. Feature extraction can be approached in two

distinct ways, each bearing its own significance in the realm of

medical imaging.
5.1 Handcrafted radiomics

The first method involves the extraction of handcrafted

radiomics features from lesion regions, which have been

meticulously annotated, segmented, or localized, as we previously

discussed in the context of lesion segmentation. This approach,

as observed in the reviewed studies, provides valuable insights

into the characteristics of the lesion. These handcrafted features

have been extracted using tools such as the PyRadiomics package

and the Texture toolbox by MATLAB according to Image

Biomarker Standardization Initiative (IBSI) (59), as elaborated in

(33–37). Once these features are extracted, it becomes imperative

to refine them to enhance data quality. This often involves

normalization techniques to standardize the data and,

importantly, assessing feature correlations using Spearman’s

coefficient. The subsequent crucial step to this feature extraction

is feature selection (60) or the elimination of redundant features.

The reviewed studies (34, 39, 55) have employed various

methods for this purpose, such as interobserver agreement tests,

Boruta’s approach, Fisher criteria, maximum relevance minimum

redundancy (mRMR), mutual information (MI), LASSO logistic

regression (61), probability of error, pairwise correlations and

average correlation (POE + ACC). Stratified 10-fold cross-

validation is used in the XG Boost classifier to perform feature

elimination (33). This process ensures that only the most

informative and non-redundant features are retained for

model training.
5.2 Transfer learning

Transfer learning is a valuable technique in deep learning

pipelines for feature extraction. It utilizes pre-trained models to

efficiently extract relevant features from new data, enhancing

performance. This approach is particularly beneficial when

working with small or noisy datasets, as it leverages knowledge

learned from larger and more diverse datasets. This technique

involves the use of pre-trained networks, such as Inception V3,

CSP Darknet, Resnet, Xception, RetinaNet, VGG16 as observed

in the reviewed studies (41–43, 45, 46, 55). Transfer learning

offers computational efficiency and leverages higher-level features

learned from extensive data, thus simplifying the feature

extraction process from CEM images.

The choice between handcrafted radiomics and transfer

learning hinges on the specific model being developed.

Handcrafted radiomics requires lesion segmentation for feature

extraction, while transfer learning allows for the utilization of

either entire images or patches of lesions. This adaptability

underscores the importance of selecting the most suitable

approach based on the objectives and requirements of the model

under consideration. In essence, feature extraction serves as the
Frontiers in Radiology 07
linchpin in the AI pipeline for malignancy detection and

segmentation, determining the quality and effectiveness of

subsequent model training.
6 Handling imbalanced data

Handling data imbalance is a critical step in the AI pipeline,

often underestimated but profoundly influential in obtaining

accurate outputs. Failure to balance data properly can result in

false positives and false negatives, as data imbalance introduces

bias toward the majority class, undermining the minority class.

There are several common methods to tackle this problem:
6.1 Over-sampling

This approach involves generating synthetic samples for the

minority class to bolster its representation in the training dataset.

Techniques like SMOTE (Synthetic Minority Over-sampling

Technique) (44) and ROSE (Random Over-Sampling Examples)

can be employed for this purpose. For example, in studies (33,

35) the authors utilized Adaptive Synthetic Sampling (ADASYN).
6.2 Under-sampling

In contrast, under-sampling entails removing samples from the

majority class to diminish its presence in the training dataset.

Various techniques, such as random under-sampling and Tomek

links, can be applied to implement under-sampling effectively. As

indicated, the use of under-sampling may not be advisable for

CEM Images due to the issue of limited data availability. In such

cases, the removal of samples from the majority class could

further exacerbate the data scarcity problem, potentially leading

to inadequate representation of the majority class and negatively

impacting the model’s performance.
6.3 Cost-sensitive learning

This method assigns different costs to the misclassification of

samples from different classes. By assigning a higher cost to the

minority class, this approach compels the model to give more

attention to it, often resulting in improved performance on

imbalanced datasets as done in study (41).
6.4 Ensemble learning

Ensemble learning entails training multiple models on different

subsets of the data and then averaging their predictions. This

technique helps reduce model variance and enhances

performance on imbalanced datasets.

These methods illustrate the versatility required to address data

imbalance effectively and emphasize the importance of choosing
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the most suitable technique based on the specific dataset, as used

by Gao et al. (41).
7 Quantitative analysis

Quantitative analysis of handcrafted features in CEM images

encompasses the application of statistical and mathematical

techniques to derive significant insights from the visual data.

Following the extraction of these features from the lesion regions,

it becomes imperative to subject the extracted features to

rigorous measurement, quantification, and analysis before using

these features for model training. Univariate and multivariate

analysis represent two primary categories of quantitative

methodologies extensively employed for the examination of

handcrafted features within CEM images.
7.1 Univariate analysis

Univariate analysis is a fundamental statistical method focused

on analyzing a single variable. It helps describe the variable’s

distribution, detect outliers, and identify trends, providing

valuable insights into data characteristics. The non-parametric

Wilcoxon-Mann-Whitney test is used for univariate analysis for

handcrafted radiomics features in CEM research, as

demonstrated in studies (35, 37). Its key benefits include not

requiring specific data distribution assumptions, robustness

against outliers, suitability for both ordinal and continuous data,

and applicability to small sample sizes and non-normally

distributed data. This is important because radiomics features are

often non-normally distributed and can be susceptible to outliers.

These attributes make it a valuable tool for comparing CEM

radiomics features, ensuring robust and reliable research results.

Another technique in study (37, 38) is the Intraclass Correlation

Coefficient (ICC), which plays a vital role in univariate analysis

for handcrafted radiomics features in CEM. The ICC assesses

measurement reliability, identifies variability sources, aids in

quality control, informs study design, facilitates feature reliability

comparison, and determines clinical utility. By ensuring the

consistency and trustworthiness of radiomics data, the ICC is

essential for both research and clinical applications in CEM.

In univariate analysis, conducting Receiver Operating

Characteristic (ROC) analysis and calculating the Youden index

is a crucial step for determining the optimal cut-off value for

each feature, also used by Wang et al. (36) to set optimal

threshold for calculating accuracy and other parameters. This

allows for the assessment of their discriminatory power and the

identification of the point that maximizes sensitivity and

specificity, which is essential for interpreting the performance of

features, particularly in diagnostic or predictive modeling

scenarios. Univariate analysis by Sun et al. (39) revealed that

larger lesion sizes and rim or ripple artifacts were associated with

more misclassifications of benign lesions and smaller lesion sizes

were associated with more misclassifications of malignant lesions.
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7.2 Multivariate analysis

Multivariate analysis involves the simultaneous examination of

multiple variables, offering a powerful approach to uncover

relationships among the features, classify data, and construct

predictive models. It is a versatile tool for gaining deeper insights

from complex datasets. Methods used for multivariate analysis of

handcrafted radiomics features in CEM images include Principal

Component Analysis (PCA) for dimensionality reduction, Linear

Discriminant Analysis (LDA) (37, 62) for group discrimination,

Logistic Regression (35) for binary outcome modeling, Random

Forests for robust classification and regression, KNN (37) to

handle outliers and non-linear relationships and Support Vector

Machines (SVMs) for high-dimensional data analysis. These

methods offer diverse approaches to extract insights from

radiomics data, but their choice depends on research objectives

and data characteristics. We recommend selecting the analytics

technique that aligns with the specific criteria and research

objectives. Multivariate analysis by Sun et al. (39) revealed that

smaller lesion size and air trapping artifacts were associated with

the misclassification of malignant lesions.

Our findings indicate that few studies have used handcrafted

radiomics features, either independently or in conjunction with

CEM images. Additionally, not all studies have conducted feature

analysis. We strongly recommend incorporating these techniques

into research endeavours. This would provide a more

comprehensive understanding of the data, ultimately facilitating

more effective model tuning during training.
8 Classification of lesions

After refining data from all the AI pipeline that we discussed in

previous sections, the next important step in the AI pipeline for

malignancy detection is to train a model to classify the data

according to respective standards of ground truth. This can be

done in two ways using machine learning techniques or using

convolutional neural networks (CNNs).
8.1 Machine learning approach

Machine learning techniques play a vital role in malignancy

detection from CEM images by distinguishing between malignant

and benign lesions. In a review of 14 studies using CEM datasets

as mentioned in Table 2, it was found that 7 of them used

machine learning techniques for classification. Machine learning

offers several advantages, including interpretability, which

provides insights into how the model arrives at its outcomes.

However, machine learning may not be the best choice for

handling image data, such as CEM images, which are intricate

and present challenges that traditional machine learning

approaches may not effectively address. Machine learning is a

highly suitable and effective choice for tasks where handcrafted

features are used as the training data. Machine learning
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techniques can effectively harness the valuable insights extracted

from handcrafted features to develop robust models for making

informed predictions. Here is a comprehensive overview of the

key methodologies:

8.1.1 Logistic regression
Logistic regression is a binary classification technique known

for its simplicity and effectiveness in distinguishing between two

primary lesion categories. It plays a significant role in expediting

cancer diagnosis. In study (34–36, 38, 39) it has been utilized

alongside the Least Absolute Shrinkage and Selection Operator

(LASSO), demonstrating good sensitivity for model outcomes.

This combination of techniques provides a powerful approach for

addressing classification challenges in medical research.

8.1.2 Support vector machine
Support vector machine (SVM) is versatile tool that can be

used for both binary and multi-class classification tasks. It is

particularly well-suited for handling the complex high-

dimensional radiomics data derived from CEM images, making it

an invaluable asset in the pursuit of precise malignancy

detection, as used by (37).

8.1.3 Random forest
Random forest is a robust ensemble learning technique that

combines multiple decision trees to improve prediction accuracy.

Its innate resistance to noise and overfitting makes it dependable

choices for navigating the complexities of radiomics data,

emerging as steadfast allies when precision is of paramount

concern as used by (36, 39).

8.1.4 Linear discriminant analysis
Linear discriminant analysis (LDA), a supervised learning

algorithm, can identify optimal linear feature combinations to

discriminate between different data groups. Its utility is even

more significant in the realm of high-dimensional radiomics

data, where it facilitates the effective categorization of lesions as

used by (37, 40).
8.2 CNN approach in deep learning

Convolutional Neural Network (CNN) is a deep learning

technique that uses artificial neural networks to learn from data.

Neural networks are inspired by the human brain and can learn

complex patterns from data. CNN is well-suited for image

analysis tasks, including malignancy detection in CEM images.

CNN models can learn to identify subtle features in images that

may be difficult or impossible for humans to see, making them

very effective at distinguishing between malignant and benign

lesions. In a review of 14 studies, 7 used CNNs for model

training. 6 out of 7 studies used transfer learning with a pre-

trained network as the backbone for their CNN architecture. Of

these, 2 studies (33, 41) used the ResNet pre-trained network.

ResNet (63) pre-trained network is a popular choice for training

CNNs on medical datasets due to their depth, accuracy, and
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efficiency. They have been shown to be effective for a variety of

medical image classification tasks and can be easily adapted to

different datasets and tasks. In addition to ResNet, other pre-

trained networks such as XceptionNet, CSPDarkNet, and

Inception models (64) were also used in the reviewed studies.

Some studies using CNNs have not provided adequate

information about key hyperparameters, such as learning rate

schedule, optimization algorithm, minibatch size, dropout rates,

and regularization parameters. Additionally, studies often fail to

discuss why specific objective functions were chosen or how they

align with the study’s goals. We recommend researchers to define

their criteria for selecting the best-performing model and clearly

indicate when and how certain model parameters are restricted

or frozen, especially in transfer learning scenarios. Adhering

to these reporting standards would enhance transparency

and reproducibility in CNN-based research for clinical and

scientific purposes.
9 Cross validation

Cross-validation is essential for malignancy detection using

CEM datasets because it prevents overfitting. CEM datasets are

often small, making models more likely to overfit. Cross-

validation assesses a model’s ability to generalize by repeatedly

testing it on different data subsets. It helps with model selection,

hyperparameter tuning, and providing a robust performance

estimate, ensuring reliable results in medical diagnosis.

Commonly used CV methods encompass K-fold Cross-

Validation, as indicated in (34, 39, 40, 43) which divides the data

into subsets for rigorous evaluation. Stratified K-fold Cross-

Validation is particularly beneficial for handling imbalanced

datasets, ensuring that both malignant and benign cases are

adequately represented. Leave-One-Out Cross-Validation,

employed in (37, 41, 55) is suitable for smaller datasets but

demands more computational resources due to its one-sample-at-

a-time evaluation. Leave-P-Out Cross-Validation offers a middle

ground for modest datasets. Repeated K-fold Cross-Validation

enhances reliability by repeating the process multiple times.

Nested Cross-Validation, although not cited in specific studies,

plays a role in hyperparameter tuning. The choice of CV method

hinges on factors like dataset size, class distribution, and research

objectives, with Stratified K-fold commonly favored in CEM

datasets to ensure equitable evaluation of model performance.
10 Integration with clinical data

The integration of clinical data with CEM datasets is a

promising multi-modal approach for enhancing the accuracy and

clinical utility of machine learning models for malignancy

detection. This integration allows for a more holistic assessment

of breast lesions by incorporating not only image-based features

but also patient-specific clinical information. The extent to which

this integration has been explored and implemented varies across

studies. In addition to clinical data, some studies may also
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explore the combination of CEM with other imaging modalities,

such as ultrasound, MRI, etc. These multi-modal approaches seek

to leverage the complementary strengths of different data sources

to improve the overall performance of malignancy detection

models. The specific combination of modalities can vary

depending on the research objectives and data availability. In the

study by Miller et al. (40), they found that incorporating

demographic and clinical information into their models led to a

notably improved AUC-ROC compared to using only density

images, contrast images, or the combination of density and

contrast images. It is observed in study by Wang et al. (36),

the inclusion of clinical features to the radiomics features for

model training resulted in a significant increase in both accuracy

and sensitivity.

In the research article reviewed in the Table 2, we observed that

all of the studies used histopathology as their reference standard for

obtaining final ground truth diagnosis results, with a follow-up

period of 2 weeks to 2 years, depending on the study.
11 Future scope

In the current landscape of malignancy detection research, we

have explored the various strategies employed by studies to attain

their results. However, there exists a compelling scope in the

realm of multimodal approaches, particularly considering the

persistent challenge of data scarcity in medical image datasets.

The incorporation of multimodal data holds the potential to

revolutionize the field by augmenting the accuracy, sensitivity,

and AUC of detection models. The rationale behind exploring

multimodal approaches is rooted in the inherent strengths of

deep learning. This robust tool enables the extraction of intricate

features from one mode of data, which can subsequently be

integrated with knowledge derived from another modality. By

combining different sources of medical data, researchers can

overcome the limitations posed by data scarcity and achieve a

more comprehensive understanding of the underlying phenomena.

Multimodal data fusion can significantly improve malignancy

detection models by leveraging the unique strengths of each

modality. This approach can uncover hidden patterns and

correlations, leading to improved patient outcomes and clinical

decision-making. The future of malignancy detection research lies

in strategic utilization of multimodal data, overcoming individual

limitations and paving the way for more robust and accurate

detection models. The integration of multimodal approaches holds

the potential to redefine malignancy detection research.
12 Conclusion

In conclusion, advances in the field of Artificial Intelligence in

Contrast-Enhanced Mammography (CEM) have occurred, holding

enormous potential for changing breast cancer detection and

radiology practice, however, largescale validation is warranted.

This review study explored the many aspects of AI in CEM,

including image processing, lesion segmentation, feature
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extraction, quantitative analysis, lesion classification, and

integration with clinical data. The potential advantages are

undeniably enormous. Timely identification and accurate diagnosis

of breast abnormalities play a pivotal role in enhancing patient

prognosis and minimizing unnecessary biopsy procedures. AI-

powered CEM not only provides a more efficient and exact way of

reaching these goals, but it also aids medical experts in to their

decision-making processes. However, there is a lack of sufficient

reliable labeled training data and handling variability between

imaging systems, and protocols. Therefore, while AI analysis

shows promise for improving CEM diagnosis, larger studies

assessing its clinical value and real-world effectiveness are

required. For such studies to be designed and implemented, it is

critical that researchers, doctors, and technologists continue to

interact and push the bounds of artificial intelligence in CEM. The

synergistic partnership between AI and medical practitioners has

the potential to usher in a new era of breast cancer diagnosis that

prioritizes precision and efficiency. As a result, we can make great

progress in lowering the burden of breast cancer and improving

the lives of individuals afflicted by it.
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