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To date, studies investigating radiomics-based predictive models have tended to
err on the side of data-driven or exploratory analysis of many thousands of
extracted features. In particular, spatial assessments of texture have proven to be
especially adept at assessing for features of intratumoral heterogeneity in
oncologic imaging, which likewise may correspond with tumor biology and
behavior. These spatial assessments can be generally classified as spatial filters,
which detect areas of rapid change within the grayscale in order to enhance
edges and/or textures within an image, or neighborhood-based methods, which
quantify gray-level differences of neighboring pixels/voxels within a set distance.
Given the high dimensionality of radiomics datasets, data dimensionality
reduction methods have been proposed in an attempt to optimize model
performance in machine learning studies; however, it should be noted that
these approaches should only be applied to training data in order to avoid
information leakage and model overfitting. While area under the curve of the
receiver operating characteristic is perhaps the most commonly reported
assessment of model performance, it is prone to overestimation when output
classifications are unbalanced. In such cases, confusion matrices may be
additionally reported, whereby diagnostic cut points for model predicted
probability may hold more clinical significance to clinical colleagues with
respect to related forms of diagnostic testing.
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Key points

• Features of intratumoral heterogeneity are well-represented by spatial assessments of

texture, which may similarly correlate with tumor biology and behavior.

• Spatial filters are used to enhance edges and/or textures of an image by identifying areas

of rapid change within the grayscale.

• Neighborhood-based methods are higher-order texture approaches which quantify

differences in gray-level intensities of particular regions of interest with respect to their

neighbors within a set distance.
Abbreviations

GLCM, Gray-Level Co-Occurrence Matrix; GLRLM, Gray-Level Run-Length Matrix; GLSZM, Gray-Level Size-
Zone Matrix; GLDM, Gray-Level Dependence Matrix; NGTDM, Neighborhood Gray-Tone Difference Matrix;
FD, Fractal Dimension; PCA, Principal Component Analysis; AUC, area under the curve; ROC, receiver
operating characteristic; VOI, variable of importance.
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Introduction

Quantitative assessments of imaging texture characteristics

have been successfully applied to answer a variety of clinically-

relevant queries ranging from lesion classification to disease

prognostication, often in the form of radiomics-based machine

learning decision classifiers (1–13). While some approaches have

previously relied on filtering of high-dimensionality data to

identify the most contributory features or classes of features (14–

17), recent studies have demonstrated a subset of texture metrics

well-equipped to detect regions of heterogeneity in the imaging

grayscale (4, 9) (Supplementary Table S1). These “spatial

assessments” are aptly named for their ability to resolve subtle

areas of voxel-to-voxel variation, or in plainer terms, what might

be subjectively referred to as “coarseness” by a human

interpreting radiologist (4, 7, 8, 18–23). In this review, we detail

the various common approaches to spatial assessment of imaging

texture, as well as their applicability and implications in future

radiomics and machine learning-related studies.
Approaches to spatial assessment

Spatial filters

Spatial filters are image processing methods that enhance

spatial image properties of a region of interest such as edges and/

or textures (23–25). The size and shape of the filter

neighborhood or convolution kernel determines the performance

of the filter, and warrants standardization across multiple studies

to evaluate reliability (26). Some commonly used spatial filters

for texture analysis include statistical filters such as entropy

filters, range filters, standard deviation filters, median filters, and

average filters. However, given that use of spatial filters can lead

to an increase in radiomics feature space (27), it is advised to

avoid using these approaches with small sample sizes.

Directional gradients and direction invariant gradients have

been used to improve edge enhancement. For example, edge

filters such as Kirsch and Sobel have been reported as part of

multiple radiomics panels (28, 29). Likewise, the Laplacian of

Gaussian filter, which captures edges based on detecting areas

of rapid change in grayscale intensity and then smooths them

with a standard-deviation tunable Gaussian bandpass filter,

has been reported frequently in radiomics panels to capture

areas with increasingly coarse texture patterns (24, 27, 30).

Kernels such as the Laws filters identify specific textures

based on five fundamental vectors that emphasize features of

edge, level, spot, ripple, and wave, or a combination thereof,

and have been used for spatial filtering prior to feature

extraction (23, 31).

In some cases, noise can be suppressed using image transforms,

such as Fourier analysis (24). In this method, spatial domain

information can be converted to frequency domain information

and then filtered for high frequencies, low frequencies, bandpass,

etc. However, while the signal to noise ratio can be improved,

this technique merely suppresses the noise without improving the
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strength of the underlying signal (32). Wavelet transforms

further build upon the Fourier technique by decomposing the

original image in both spatial and frequency domains, thereby

providing relatively more precise signal localization (24, 27, 33,

34). The coefficients of these decomposed sub-bands can then be

weighted to enhance specific signal properties along select

directions of a 3-dimensional space.
Neighborhood-based methods

Statistical characterizations of texture can also be assessed

from higher-order texture methods (i.e., analysis based on

both grayscale values and their spatial orientation) such as

Gray-Level Co-Occurrence Matrix (GLCM), Gray-Level Run-

Length Matrix (GLRLM), Gray-Level Size-Zone Matrix

(GLSZM), Gray-Level Dependence Matrix (GLDM) and

Neighborhood Gray-Tone Difference Matrix (NGTDM) (35,

36). In all of these methods, the metrics generated essentially

quantify the differences in grayscale brightness between

neighboring pixels/voxels (9, 27, 37). For example, in GLCM,

texture is quantified based on how often a combination of

gray-level values occur next to each other at a given distance

and direction within a region of interest (23, 27, 31, 37)

(Figure 1, top row). Some commonly reported GLCM metrics

include energy, contrast, entropy, homogeneity, correlation,

variance, sum average, and autocorrelation (9, 35, 36)

(Figure 2).

In contrast to GLCM, GLRLM quantifies the pattern of gray-

level intensity pixels in a fixed direction from an interference

pixel (Figure 1, middle row). Run-length is defined as the

number of adjacent pixels that have the same gray-level intensity

in each direction (37). Some commonly reported GLRLM metrics

include short and long run emphasis, gray-level non-uniformity,

run-length non uniformity, low and high gray-level run

emphasis, and their combinations (9, 35).

Similar to GLCM, in GLSZM texture is also quantified based

on how often a combination of gray-level values occurs next to

each other at a given distance within a region of interest (27, 37);

however, in contrast to GLCM, GLSZM is direction independent

(40) (Figure 1, bottom row). Some commonly reported GLSZM

metrics include short and long zone emphasis, gray-level non-

uniformity, zone-size non-uniformity, low and high gray-level

zone emphasis, and their combinations (9, 35).

Likewise, GLDM quantifies the number of connected voxels

within a set distance that are dependent on a center voxel (37).

A neighboring voxel is considered dependent on the center voxel

if the absolute difference of their respective gray-levels falls

within a set value (9, 41). Some commonly reported GLDM

metrics include short and long dependence emphasis, gray-level

non-uniformity, dependence non-uniformity, gray-level and

dependence variance, and high grey-level zone emphasis, and

their combinations.

Lastly, NGTDM evaluates the difference between a particular

gray-level intensity and the average gray-level intensity of its

neighborhood within a given distance (23, 37, 42). Some
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FIGURE 1

Top row: (A) grayscale image with four different gray-levels. (B) Digitized version of the gray-level image with unique numerical values corresponding to
the gray-level or a range of gray-levels (dependent on bin size of bin width) for each theoretical pixel/voxel. (C) GLCM map of the image obtained for
distance 1 and direction 0 degrees. (D) This same process is then repeated in all other directions: i.e., 45, 90, and 135 deg, respectively. To obtain direction
invariant results, all results are normalized and averaged. Middle row: (A) Grayscale image with four different gray-levels. (B) Digitized version of the gray-
level image with unique numerical values corresponding to the gray-level or a range of gray-levels (dependent on bin size of bin width) for each
theoretical pixel/voxel. (C) GLRLM map of the image obtained for direction zero degrees. This same process is then repeated in all other directions:
i.e., 45, 90, and 135 deg, respectively. To obtain direction invariant results all results are normalized and averaged. Bottom row: (A) grayscale image
with four different gray-levels. (B) Digitized version of the gray-level image with unique numerical values corresponding to the gray-level or a range
of gray-levels (dependent on bin size of bin width) for each theoretical pixel/voxel. (C) GLSZM map of the image. GLCM, Gray-Level Co-Occurrence
Matrix; GLRLM, Gray-Level Run-Length Matrix; GLSZM, Gray-Level Size-Zone Matrix.
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commonly reported NGTDMmetrics include busyness, coarseness,

contrast, strength, and complexity (9, 35).
Other approaches

Structural methods involve techniques of decomposing an

image into basic units and then identifying the rules required

to construct that given image from its basic units. For instance,

Fractal Dimension (FD) is a metric that evaluates image

complexity by quantifying how changes in image scale affect

image detail (9, 43, 44). FD uses self-repeating structural

patterns in order to quantitatively assess the homogeneity of

the region of interest, and increases with greater geometric

complexity (35, 43, 45, 46). This in essence functions as an

objective evaluation of how consistent a shape is with itself,

and thus serves as an excellent measurement of the regularity

of a tumor’s morphology (23, 44).
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Applications in radiomics and machine
learning

In oncologic imaging, radiomics analysis has shown great utility

in evaluating features of intratumoral heterogeneity, which may

correspondingly reflect tumor behavior (4, 5, 7–9, 11, 13, 14, 35,

47, 48). There is a growing body of literature to suggest that

radiomics-based machine learning algorithms perform well with

various classification tasks, including differentiating benign from

malignant lesions, stratifying lesions by tumor grade, predicting

risk of distant metastases, and predicting overall survival (1–13).

Additional work suggests that subtle differences in the underlying

texture grayscale may also correlate well with tumoral genetic and

phenotypic variations, furthering the case for potential future

integrations of radiomics classifiers as risk stratification schema in

prospective clinical workflows (31, 35, 49, 50).

Given the sheer number of radiomics features extracted as part

of standard pipeline workflows, analyses of radiomics datasets are
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FIGURE 2

Axial contrast-enhanced T1-weighted MR image with fat suppression of a 70-year-old male with leiomyosarcoma of the posterolateral calf (A), with
corresponding texture parameter maps for Gray-Level Co-Occurrence Matrix (GLCM) homogeneity (B), GLCM contrast (C), GLCM energy (D) and
GLCM correlation (E). The GLCM homogeneity map (B) reflects the closeness of the distribution of elements in the GLCM map relative to the GLCM
diagonal. Highly homogenous regions (i.e., regions with less variation; close to the GLCM diagonal) receive a value of 1, while highly heterogenous
regions receive a value of 0. The GLCM contrast map (C) measures the intensity contrast between an index pixel and its neighborhood pixels.
Regions of high contrast show high heterogeneity in values up to a maximum value of 1. A constant image receives a value of 0. In some studies,
contrast may also be referred to as variance and inertia. The GLCM energy map (D) measures the sum of the squared elements in the GLCM,
whereby highly homogenous regions receive values of 1 and highly heterogenous regions receive values of 0. In some studies, energy may also be
referred to as angular second moment, uniformity, or uniformity of energy. The GLCM correlation map (E) reflects how correlated a given pixel is to
its neighboring pixels, with highly correlated regions receiving values of 1. In general, a neighborhood of 3 × 3 was adopted for the GLCM approach.
Original image (A) courtesy of The Cancer Genome Atlas Sarcoma Collection (TCGA-SARC) based on data generated by the TCGA research network:
http://cancergenome.nih.gov/ (38, 39).
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often necessarily complex and difficult to comprehend. Moreover,

segmentation approaches (i.e., manual vs. semi-automated vs.

fully-automated) can likewise affect the extracted radiomics

parameters and—particularly in the case of manual segmentation

—be a source of intra- and inter-observer variability (51, 52).

Initial statistical considerations should include descriptive

analyses to evaluate for skewness, kurtosis, and outlier detection,

which in turn hold implications for the reproducibility of a study

(53). Missing data may arise from situations where a given

radiomics approach does not yield a numerical value, possibly

due to image quality degradation or methodological failure.

When working with sufficiently high-quality images, missing

radiomics data are rarely encountered; however, missing data

become much more prevalent as image quality degrades, and, in

such cases, imputation methods will often be inaccurate (54, 55).

Given this, we believe best practice is to simply exclude subjects

with poor image quality and high numbers of missing radiomics

features in order to avoid spurious associations. In cases of

random missing phases in multiphase studies, we have found in

our own research paradigms that imputation methods, such as

the Markov Chain Monte Carlo (MCMC) method, work well

given high correlation of radiomics features between contrast

phases (56).
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Data dimensionality reduction methods have often been

described in the literature with both supervised and unsupervised

machine learning constructions in an attempt to optimize

classifier performance. These approaches mainly include data

filtering, principal component analysis (PCA), and elimination of

highly correlated features (57). However, if used, dimensionality

reduction techniques must only be conducted with the training

data in order to avoid information leakage, which can in turn

bias the decision classifiers and lead to problems of overfitting

(58). For example, PCA often suffers from poor reproducibility

when applied to test data because its components are derived to

maximize the variance explained in the training data (57, 59).

Instead, we recommend that removal of highly correlated data

(e.g., redundant features with r > 0.8 suggesting collinearity)

should be performed as the initial approach for dimensionality

reduction (60).

Reporting of machine learning performance for radiomics

based models is commonly done using area under the curve

(AUC) of the receiver operating characteristic (ROC). In

general, while AUC can well-represent overall model prediction

accuracies, it is prone to overestimating performance in cases of

unbalanced classification outputs. To overcome this, a common

approach is to report confusion matrices—including sensitivity
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(recall), specificity (selectivity), positive predictive value

(precision), and negative predictive value—corresponding to

various cut points for model predicted probability. These values

likewise tend to be more easily understood by clinical

colleagues, whereby diagnostic cut points in some ways hold

more tangible clinical significance with respect to other forms

of diagnostic testing. To obtain optimal cut points, common

practice includes statistical approaches such as Youden’s J

statistic (also referred to as Youden’s index), defined as J =

sensitivity + specificity—1, or simply selecting the cut points

that maximize the product of sensitivity and specificity (61, 62).

An arguably more sophisticated approach would be to adapt

the concept of decision analysis. Decision analysis includes

assessing for clinical value by also considering clinical

consequences when making determinations of cut point

appropriateness, such as weighing the benefits of finding a

malignant tumor against the harms of unnecessary biopsies

(63). Finally, reporting of machine learning performance should

also highlight the variables of importance (VOIs). VOIs are

defined as those metrics which are identified as having the

greatest impact on classification accuracy and tend to be the

most robust features for predicting the queried clinical

outcomes. While different machine learning approaches have

different methods for selecting VOIs, many also incorporate

some form of ranking procedure based on the relative

contribution of each metric or class of metrics. These rankings

may in turn be useful for identifying potential correlative

relationships between the investigated quantitative imaging

features and phenotypic observations of disease state (64, 65).
Conclusion

Machine learning analyses of radiomics feature sets have been

applied to a wide array of classification and prognostication tasks in

oncologic imaging. Spatial assessments in particular have shown

great potential to quantitatively evaluate features of intratumoral

heterogeneity and may one day prove to be important prognostic

biomarkers of phenotypic behavior in oncologic care. In this

review, we discussed some of the most common approaches to

spatial assessment of texture in radiologic imaging as well as
Frontiers in Radiology 05
familiar reporting metrics to assess model performance in

machine learning studies.
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