AUTHOR=Tang Zihao , Chen Sheng , D’Souza Arkiev , Liu Dongnan , Calamante Fernando , Barnett Michael , Cai Weidong , Wang Chenyu , Cabezas Mariano TITLE=High angular diffusion tensor imaging estimation from minimal evenly distributed diffusion gradient directions JOURNAL=Frontiers in Radiology VOLUME=3 YEAR=2023 URL=https://www.frontiersin.org/journals/radiology/articles/10.3389/fradi.2023.1238566 DOI=10.3389/fradi.2023.1238566 ISSN=2673-8740 ABSTRACT=
Diffusion-weighted Imaging (DWI) is a non-invasive imaging technique based on Magnetic Resonance Imaging (MRI) principles to measure water diffusivity and reveal details of the underlying brain micro-structure. By fitting a tensor model to quantify the directionality of water diffusion a Diffusion Tensor Image (DTI) can be derived and scalar measures, such as fractional anisotropy (FA), can then be estimated from the DTI to summarise quantitative microstructural information for clinical studies. In particular, FA has been shown to be a useful research metric to identify tissue abnormalities in neurological disease (e.g. decreased anisotropy as a proxy for tissue damage). However, time constraints in clinical practice lead to low angular resolution diffusion imaging (LARDI) acquisitions that can cause inaccurate FA value estimates when compared to those generated from high angular resolution diffusion imaging (HARDI) acquisitions. In this work, we propose High Angular DTI Estimation Network (HADTI-Net) to estimate an enhanced DTI model from LARDI with a set of minimal and evenly distributed diffusion gradient directions. Extensive experiments have been conducted to show the reliability and generalisation of HADTI-Net to generate high angular DTI estimation from any minimal evenly distributed diffusion gradient directions and to explore the feasibility of applying a data-driven method for this task. The code repository of this work and other related works can be found at