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Diffusion-weighted Imaging (DWI) is a non-invasive imaging technique based on
Magnetic Resonance Imaging (MRI) principles to measure water diffusivity and
reveal details of the underlying brain micro-structure. By fitting a tensor model
to quantify the directionality of water diffusion a Diffusion Tensor Image (DTI)
can be derived and scalar measures, such as fractional anisotropy (FA), can then
be estimated from the DTI to summarise quantitative microstructural
information for clinical studies. In particular, FA has been shown to be a useful
research metric to identify tissue abnormalities in neurological disease (e.g.
decreased anisotropy as a proxy for tissue damage). However, time constraints
in clinical practice lead to low angular resolution diffusion imaging (LARDI)
acquisitions that can cause inaccurate FA value estimates when compared to
those generated from high angular resolution diffusion imaging (HARDI)
acquisitions. In this work, we propose High Angular DTI Estimation Network
(HADTI-Net) to estimate an enhanced DTI model from LARDI with a set of
minimal and evenly distributed diffusion gradient directions. Extensive
experiments have been conducted to show the reliability and generalisation of
HADTI-Net to generate high angular DTI estimation from any minimal evenly
distributed diffusion gradient directions and to explore the feasibility of applying
a data-driven method for this task. The code repository of this work and other
related works can be found at https://mri-synthesis.github.io/.

KEYWORDS

deep learning, MRI, DWI, DTI, high angular resolution, fractional anisotropy

1. Introduction

Magnetic Resonance Imaging (MRI) is a non-invasive imaging technique based on the

principles of Nuclear Magnetic Resonance to reconstruct detailed images of the internal

structure of the human body. Since its inception, several MRI modalities have been

proposed to probe specific information about different properties of multiple tissues and

organs of interest. On one hand, conventional structural MRI sequences, such as T1- and

T2-weighted images, can provide valuable morphological details of the brain and

pathological conditions. On the other hand, Diffusion Weighted Imaging (DWI) can

measure the water diffusivity within tissues and reveal their microstructure and integrity

(1). DWI is extensively used in clinical neuroscience research because it is particularly
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sensitive to the diffusivity of water molecules in brain tissues and it

can help to reconstruct fibre bundles and estimate brain

connectivity. DWI volumes are acquired by applying different

diffusion-sensitising gradients (b-vectors) with different magnetic

field strengths (b-values) to precisely characterise the movement

of water molecules in different directions as a measure of the

resulting changes in signal intensity. As a consequence, the

number and strength of the gradients used determine the level of

detailed characterisation of diffusivity.

Each set of images at different gradient directions can be

summarised using a Diffusion Tensor Imaging (DTI) model to

uncover microstructural information by describing water’s

directionality and its corresponding quantitative anisotropy (2).

The diffusion of a particular voxel can be characterised as an

ellipsoid that can be mathematically formulated as a symmetric

3� 3 tensor matrix. For the purpose of individual and group-

wise analysis (3), several diffusion scalar measures can be further

derived to better reveal the properties of that tensor. In clinical

settings and neuroscience research, fractional anisotropy (FA),

axial diffusivity (AD), radial diffusivity (RD), and mean

diffusivity (MD) are the most commonly used scalar measures.

In particular, FA and MD are metrics that provide information

about the degree of diffusion anisotropy and the overall

magnitude of diffusion at a voxel, respectively. AD, on the other

hand, quantifies the magnitude of diffusion along the direction of

fibre tracts (primary eigenvector). Disparities of the diffusion

scalar measures between diseased and healthy control

populations can be observed in clinical studies conducted on

various neurological disorders, including multiple sclerosis (MS),

lateral sclerosis (LS), Alzheimer’s disease dementia (ADD),

Parkinson’s disease (PD), schizophrenia, epilepsy, and other

diseases resulting in brain damage (4, 5). For instance,

pathological factors including oedema, demyelination, gliosis, and

inflammation (6) usually lead to a decrement of FA in the

impacted regions. These studies utilise scalar measures as

observation metrics to identify discriminative biomarkers

between patients and controls. For example, DTI has been shown

to be effective in identifying multiple sclerosis lesions with severe

tissue damage and monitoring tissue changes (7). Specifically, the

patient group exhibited lower FA and higher MD in the normal-

appearing white matter (8).

However, scalar metrics derived from DTI can be unreliable

due to clinical imaging constraints. This is usually caused by

sub-optimal acquisition protocols, which often lead to a low

angular resolution diffusion image (LARDI) (9). By definition,

the symmetric matrix of the DTI model at each voxel contains

only 6 unique values (Dxx, Dxy, Dxz, Dyy, Dyz, and Dzz for a

tensor D with subindices representing one of the Cartesian axes)

and a linear equation system to fit it would only require the

same amount of variables to obtain a unique solution. Therefore,

6 diffusion gradient directions are the minimal number of

directions required to fit a diffusion tensor model. Yet, clinical

scans with a limited number of directions have been found to be

less reliable in the derived DTI scalar measures (10, 11) which

can lead to erroneous observations for clinical studies.
Frontiers in Radiology 02
To address the trade-off between acquisition time and high

resolution (both spatial and angular), image enhancement

techniques have played an important role in generating high-

quality images from their corresponding low-quality acquisitions

(12). U-Net (13), a de-facto architecture for a large number of

deep learning networks, first introduced the skip connections

between the encoder-decoder network structure and its variations

have achieved state-of-the-art in image processing tasks,

including image enhancement. These methods employ strategies

including sub-pixel upsampling, residual learning, pixel loss, self-

ensemble, and attention mechanisms (14) and have been

extensively used in medical imaging applications. For instance,

image enhancement has been applied to structural MRIs to show

detailed morphological information of the organs of interest (15,

16). As stated, DWI also introduces the need for a high angular

resolution acquisition, which can be potentially solved by

scanning protocols (higher cost), upgrades of the acquisition

hardware (with limitations on cost and resolution enhancement

(12)) or via “software” (image enhancement algorithms). On the

latter, a recent work (DeepDTI) proposed to address the issue

directly on DWI by improving the quality of a simulated

acquisition with ideal gradients (17) but none of them has

focused on the minimal number of image gradients required to

greatly reduce the cost for DTI models while retaining the

information from a high-quality acquisition.

To this end, we propose to estimate an enhanced DTI model

from a minimal acquisition of 6 evenly distributed diffusion

gradient directions, by exploiting the corresponding information

from high angular resolution diffusion imaging (HARDI)

training data using a High Angular DTI Estimation Network

(HADTI-Net). For the rest of the paper, we define HARDI as a

high angular resolution of 90 diffusion gradient directions and

LARDI as a sampled DWI set of 6 evenly distributed gradient

directions from all the available 90 directions. The corresponding

estimated DTI models for HARDI and LARDI are defined as

HAR-DTI and LAR-DTI, respectively. We investigated the

feasibility of HADTI-Net to attain FA measurements from

LARDI that are comparable to those obtained through HAR-DTI.

The major contributions of this work are summarised as

follows:

† To the best of our knowledge, this is the first work to estimate a

HAR-DTI model from a minimal number of evenly distributed

diffusion gradient directions.

† The proposed High Angular DTI Estimation Network

(HADTI-Net) is specifically designed to estimate an enhanced

DTI model from LARDI combining the structural

information of T1 and b0 with the diffusion gradient

directions to mitigate FA disparities when compared to HAR-

DTI.

† Evaluation has been conducted and compared with clinical

evidence for various neurological disorders to prove the

effectiveness and consistency of the enhanced LAR-DTI to

reduce noisy estimates and recover missing clinical

information from LARDI.
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† Extensive evaluations have been conducted to prove the

robustness of the proposed HADTI-Net to estimate an

improved and consistent DTI model from LARDI with

significantly lower FA differences from any set of 6 evenly

distributed directions.

2. Materials and methods

2.1. Dataset and pre-processing

2.1.1. The human connectome project
The Human Connectome Project (HCP) database (18) includes

anatomical T1-weighted imaging and diffusion-weighted imaging

acquired using a 3T Siemens “Connectom” Skyra scanner. The

high-resolution T1-weighted data were acquired with 0.7 mm

isotropic resolution, TR=TE ¼ 2400=2:14 ms, and flipangle ¼ 8�.
The high-resolution diffusion MRI data were acquired with

1.25 mm isotropic resolution, TR=TE ¼ 5520=89:5 ms, and

flipangle ¼ 78�. The diffusion MRI protocol consists of three

diffusion-weighted shells which refer to the b-values of 1000,

2000, and 3000, with each shell consisting of 90 directions. 100

different subjects were selected from the HCP database in our

study. Bias correction was applied to the structural T1 images

(19). The corrected images were then registered to the standard

MNI space (20) using linear (FLIRT) and non-linear (FNIRT)

registration tools from the FSL package (21). The preprocessing

steps of the raw diffusion images included corrections for

motion, susceptibility distortions, gradient non-linearity, and

eddy currents (22, 23). FreeSurfer (24) was used to generate the

final brain mask for each subject (25).
FIGURE 1

Mean FA of WM in DTIs generated using different numbers of evenly distributed
Stone algorithm guarantees that the lower number of direction samples are a
part of the 12 evenly distributed ones).
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2.1.2. DWI derivatives
To simulate a single shell acquisition, the 90 directions from

the b ¼ 1000 shell were selected as the ground truth and evenly

distributed directions were sampled to simulate the LARDI data.

The corresponding diffusion tensor model was fit at each voxel

(26) of all the processed LARDIs using DTIFIT from FSL to

generate the corresponding DTI volumes with dimensions of

6� 145� 174� 145. Figure 1 illustrates the resulting mean

subject FA distribution values for the fitted tensor models with

different numbers of sampled directions. The line plot clearly

shows how the mean FA values for each sampled DWI set have

significant disparities when comparing the minimum and

maximum number of directions for the HCP dataset, even

though these differences decrease as the number of acquired

directions increases. This observation indicates that FA from

LAR-DTI is less reliable when measuring potential biomarkers in

clinical studies.

Finally, to analyse the performance of HADTI-Net on each

individual white matter (WM) tract, TractSeg was used to

generate 72 white matter tracts on corresponding HARDI for

each testing subject as described in their original paper (27).
2.1.3. Gradient direction sampling
To sample a set of gradient directions from the HARDI

acquisition, two variations of the Kennard-Stone (KS) algorithm

(28, 29) were used. The original algorithm was developed to

sample evenly distributed values from a set by selecting the two

first most distant points (given a specific distance function) and

additional points are added based on the distance to the current

sampled set. In our case, we treat the gradient vectors (bvecs) as
diffusion gradient directions with 95% CI. Due to its nature, the Kennard-
lways included in higher ones (e.g., the 6 evenly distributed directions are
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points in the hemisphere and use the Euclidean distance for the KS

algorithm.

Due to the algorithm’s nature, smaller sets of values are always

a subset of larger ones (e.g. the 6 evenly distributed directions are

part of the 12 evenly distributed ones). Furthermore, KS is a

deterministic algorithm that will always provide the same

samples given a specific set of values. As a consequence, there

would only be one single set of 6 evenly distributed directions if

using the original algorithm for the HCP dataset. To increase the

variability of sampled directions and guarantee generalisation to

unseen minimal acquisitions, we introduce an extension of the

KS algorithm (RandomKS). Specifically, for each subject, a

random direction gradient is selected instead of the two furthest

apart. Afterwards, the regular KS algorithm is applied to select

the furthest value from the current sampled set until 6 directions

are selected.
2.2. High angular DTI estimation network

Common clinical acquisitions rely on a high-quality T1-

weighted image for structural information (faster to acquire than

DWI due to its shorter scanner time and fewer potential

distortion factors) and a single or multiple b0 images (images

acquired using the same acquisition parameters as the other

diffusion volumes but without any diffusion weighting) as a

reference to merge structural information from T1-weighted

images and help with the DWI pre-processing. The design of our

proposed High Angular DTI Estimation Network (HADTI-Net) is

shown in Figure 2. HADTI-Net is based on a 3D U-net (30) and

takes an 8-channel concatenated input (T1, b0, and LARDI with
FIGURE 2

Detailed framework of the proposed HADTI-Net. HADTI-Net takes a concate
6 minimal evenly distributed directions to predict an enhanced LAR-DTI.
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6 evenly distributed directions) and outputs the corresponding

enhanced LAR-DTI. Image-wise z-score normalisation was

applied to the T1-weighted, b0, and each diffusion-weighted

image independently before concatenation. HADTI-Net consists

of a LARDI encoder and a DTI decoder. LARDI encoder has 4

convolution blocks and each convolution block consists of two

consecutive 3D convolutions with stride and dilation set to 1 and

2, respectively. The filter numbers for the 3D convolution layers

in the convolution blocks are 32, 64, 128, and 256, respectively.

Similar to the LARDI encoder, the DTI decoder has 4

deconvolution blocks where each block consists of a 3D

transposed convolution and followed by a 3D convolution layer

which concatenates the residuals from corresponding convolution

blocks in DTI encoder as the input. A bottleneck 3D convolution

layer with 512 filters is integrated to bridge the LARDI encoder

and DTI decoder. The output channels of the LARDI encoder

and DTI decoder are provided in Figure 2. Similarly, each tensor

coefficient was normalised separately using their z-score and

compared to the enhanced LAR-DTI prediction. Neurological

disease research has largely focused on the study of white matter

tract integrity, thus HADTI-Net was supervised with the L1 loss

only in the WM region during the training phase. The final DTI

prediction was de-normalised using the mean and standard

deviation from the training set.
2.3. Implementation details

The 100 preprocessed HCP subjects were split into a training

and testing set with a commonly used 80–20% ratio, respectively.

The concatenated input had a total of 8 channels which include
nated patch of 3D T1-weighted, b0, and diffusion-weighted images with
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https://doi.org/10.3389/fradi.2023.1238566
https://www.frontiersin.org/journals/radiology
https://www.frontiersin.org/


Tang et al. 10.3389/fradi.2023.1238566
a channel for T1, a channel for b0, and 6 channels for minimally

evenly distributed diffusion gradient directions. The patch size of

the input was set to 64� 64� 64 with a 32� 32� 32 overlap.

We discarded any patches containing only the background

region to reduce the computational cost during the training

phase. The HADTI-Net was trained for 100 epochs using Adam

with an initial learning rate of 0.0001 and batch size of 8 on a

single NVIDIA GTX 1080. For inference, the averages from

different overlapping regions between adjacent patches were

calculated to reconstruct the final enhanced LAR-DTI volume.

The code was implemented on PyTorch (version 1.10.1) and

Numpy (version 1.21.2).
2.4. Metrics and statistical analysis

To evaluate the differences between two sets of DTI volumes

(i.e. LAR-DTI and HAR-DTI), we used the following common

similarity metrics: mean absolute error (MAE), structural

similarity index (SSIM), and normalised cross-correlation. For

each metric, we report the mean and standard deviation values

of different regions of interest (depending on the experiment) for

all the subjects.

Finally, for each set of values, we performed a normalcy test to

determine whether the requirements to run t-tests were met. If

the requirement was met, paired t-tests were performed to

determine differences between paired values (e.g. the metrics for

the same subject for the LAR-DTI and enhanced DTI

predictions), while independent t-tests were runned when there

was no direct way to pair different measurements (e.g. when

shuffling the input images). When normalcy was not met,

Wilcoxon rank-sum and the Mann-Whitney U statistical sets

were run, respectively. For all the hypothesis testing

experiments, the level of significance was set at a ¼ 0:01 and

Bonferroni correction was applied (a=20) when running

multiple comparisons.
2.5. Experimental design

To validate the proposed algorithm, we performed 4 different

experiments, where each one addressing a different research

question. These experiments are briefly described as follows:

† What is the gap between our prediction and HAR-DTI from an

image similarity perspective for the whole brain? (Section 3.1).
To address this question, we compute different common

image similarity metrics (as described in the previous section)

to determine the original gap between the LAR-DTI using KS

sampling and the ground truth HAR-DTI and whether that

gap was bridged using our enhanced prediction focusing on

the whole brain.

† What is the gap between our prediction and the HAR-DTI

metrics on different WM tracts? (Section 3.2). For this

experiment, we focus exclusively on FA which is the most

affected metric when using a minimum number of gradient
Frontiers in Radiology 05
directions. Furthermore, we use the TractSeg segmentations

from corresponding HARDI to determine 72 regions of interest.

† How are the prediction errors relevant in clinical practise when

analysing group-wise differences according to relevant

literature? (Section 3.3). First, we performed a literature

review for group-wise FA differences in different tracts for

neurological disorders. Afterwards, we compare these

differences with the margin error obtained by our method to

determine whether these group-wise differences could still be

observed with the original LAR-DTI model and our enhanced

prediction.

† How important is the sampling of gradient vectors and their

order? (Section 3.4). We propose three different hypotheses

that we statistically test to determine the importance of how

the diffusion-weighted images are seen by introducing

randomness to different aspects during inference.

3. Results and discussion

3.1. Diffusion tensor analysis

To evaluate the gap between the DTI estimates from LARDI

(both the original LAR-DTI and the enhanced predictions by

DeepDTI and HADTI-Net) in the whole brain, we calculated

four different DTI-derived scalars commonly used in clinical

practice (FA, MD, AD, and RD). The results are summarised

separately for WM and GM in Table 1. One of the first

important conclusions is the need for a robust set of metrics that

evaluate different properties and that are not sensitive to the

scale of the intensity values. While MAE is commonly used to

estimate the error between the images, its scale might lead to a

misinterpretation of the results. For instance, if we focus on AD

and RD, it is hard to argue that the HADTI-Net predictions are

truly better (even though significant differences were observed).

However, looking at SSIM and cross-correlation (metrics that

focus on structural information on local and global level

respectively), we can clearly see how the AD and RD estimates

are subpar for LAR-DTI and we can also observe a large and

significant improvement using our proposed model. This is

important, as any analysis that focuses on specific regions of the

brain or uses structural information based on these images might

lead to erroneous conclusions if using LAR-DTI, while using the

enhanced predictions would be a better choice due to bridging

the gap with HAR-DTI (both SSIM and cross-correlation at

bounded with a maximum value of 1).

A clear observation from the results is the overall improvement of

the diffusion scalar metrics for the whole brain (even in the GM

region which was not supervised by HARDI-Net). Regarding FA

measures, the differences can already be apparently observed

exclusively at the MAE values. This is not necessarily surprising as

FA images have in general higher intensity values leading to a

higher range of error values. Nonetheless, enhanced LAR-DTI by

HADTI-Net is capable to obtain the highest SSIM (when

compared to MD, AD, and RD) for FA and comparable results for

cross-correlation. This is important, as FA is one of the most

commonly used metrics for clinical studies as it provides a good
frontiersin.org
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TABLE 1 Summary of the results for the whole brain region according to the differences on common DTI-derived metrics.

Method FA MD AD RD

White matter

MAE #
LAR-DTI 0:2732+ 0:0810� 0:0000+ 0:0000 0:0004+ 0:0003� 0:0002+ 0:0001�
DeepDTI 0:1349+ 0:0094� 0:0000+ 0:0001 0:0002+ 0:0002� 0:0001+ 0:0000�
HADTI-Net 0:0595+ 0:0213 0:0000+ 0:0000 0:0001+ 0:0001 0:0000+ 0:0000

SSIM "
LAR-DTI 0:2652+ 0:0818� 0:6069+ 0:1191 0:2692+ 0:1024� 0:2865+ 0:1078�
DeepDTI 0:6260+ 0:0314� 0:7113+ 0:1732 0:5024+ 0:1371� 0:5932+ 0:1256�
HADTI-Net 0:8401+ 0:0574 0:7337+ 0:1479 0:7227+ 0:1038 0:7367+ 0:1243

Cross-correlation "
LAR-DTI 0:3941+ 0:1002� 0:9170+ 0:0926 0:5511+ 0:1175� 0:6016+ 0:1595�
DeepDTI 0:7331+ 0:0633� 0:9108+ 0:1432 0:7597+ 0:1810� 0:8701+ 0:1009�
HADTI-Net 0:8980+ 0:0671 0:9372+ 0:0895 0:9019+ 0:0943 0:9291+ 0:0772

Grey matter

MAE #
LAR-DTI 0:3377+ 0:1022� 0:0000+ 0:0000 0:0004+ 0:0002� 0:0002+ 0:0001�
DeepDTI 0:0597+ 0:0171� 0:0001+ 0:0002 0:0001+ 0:0002 0:0001+ 0:0002

HADTI-Net 0:0513+ 0:0061 0:0000+ 0:0000 0:0001+ 0:0000 0:0000+ 0:0000

SSIM "
LAR-DTI 0:1414+ 0:0636� 0:8787+ 0:0874 0:3989+ 0:1315� 0:5761+ 0:1467�
DeepDTI 0:6593+ 0:0592� 0:8663+ 0:2063 0:7676+ 0:1800 0:8455+ 0:2031

HADTI-Net 0:7295+ 0:0448 0:8047+ 0:1246 0:7474+ 0:1186 0:8003+ 0:1184

Cross-correlation "
LAR-DTI 0:2794+ 0:0529� 0:9669+ 0:0506 0:6362+ 0:1302� 0:7553+ 0:1435

DeepDTI 0:5268+ 0:0691� 0:9341+ 0:1167 0:8303+ 0:1266 0:9230+ 0:1183

HADTI-Net 0:6857+ 0:0568 0:8614+ 0:1031 0:8348+ 0:1080 0:8645+ 0:1001

�Indicates significantly worse results when compared to HADTI-Net (higher or lower values depending on the metric) with the significance level a ¼ 0:01.
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proxy to understand anisotropy (even though it is not suitable for

regions with crossing fibres). Furthermore, due to its computational

complexity (it requires obtaining the eigenvalues of the tensor and

it involves a more complex equation than the other three metrics),

it is the most prone to numerical errors. Therefore, being able to

predict a DTI tensor that is closer to a HARDI acquisition (with

90 directions) with a clinical acquisition is important.

Finally, while improvements are shown for MD, the differences

were not found to be significant. In fact, the cross-correlation

values for both LAR-DTI and the network predictions are the

highest among all the diffusion scalar measures. These results

suggest that the MD information is preserved and is not as

sensitive to noise in the acquisition. This is to be expected when

taking into account the definition of MD and the limitations of

the DTI model. MD is related to the magnitude of diffusivity on

the three axes of the tensor. As such, it is not much affected by

the direction of the tensor (main eigenvector and eigenvalue like

AD), or its relationship between axes (like FA would). In

conclusion, erroneous LARDI MD measurements may be

undetected if the sum of the magnitude of each axis is not

changed regardless of the changes of the fitted ellipsoid shapes.

To better illustrate these results, we visualise the axial, coronal,

and sagittal views (and a zoomed-in region) of the diffusion tensors

for a testing subject in Figure 3. From the zoomed-in region of

interest, we can observe how the network is capable of correcting

most of the inaccurate directionality and shape of the diffusion
Frontiers in Radiology 06
tensors (as discussed with the numerical results). Furthermore,

while there might be small differences, it is hard to visually

distinguish the gap between the HAR-DTI model and the

enhanced prediction. In summary, both the quantitative and

qualitative results showed strong disparities between LARDI and

HARDI, and HADTI-Net was able to mitigate the differences

caused by a minimal set of DWI gradients.
3.2. White matter fractional anisotropy
analysis on WM tracts

As discussed in the previous experiment, FA is highly sensitive

to microstructural changes (31) and is significantly heavily impacted

due to the low angular resolution of DWI. As demonstrated in the

previous section, HADTI-Net’s prediction can mitigate the overall

differences in the WM region. However, since microstructural

changes may be regional depending on the neurological disorder,

we would like to further explore the performance of HADTI-Net

to reconstruct FA measures for relevant WM tracts. Specifically,

the MAE of FA was calculated on each WM tract bundle

provided by TractSeg when comparing LAR-DTI and enhanced

LAR-DTI to HAR-DTI, as shown in Figure 4. The experimental

results show that the enhanced LAR-DTI reduces the average

MAE of FA in all the WM tract bundles to below 0.1, while

LAR-DTI presented average MAE values ranging from 0.15 to
frontiersin.org
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FIGURE 3

Visualisations of (A) LAR-DTI, (B) HAR-DTI, enhanced LAR-DTI by (C) DeepDTI and (D) HADTI-Net using (A) as the input for a testing subject. From the top
to bottom are the axial, coronal, and sagittal views, each including a zoomed region of interest. The color coding of the diffusion tensor indicates
directionality, whereby red, green, and blue represent right-left, anterior-posterior, and inferior-superior directions, respectively.
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0.4. These results, further demonstrate that the improvements

shown in Section 3.1 are not just a global phenomenon for the

WM region, but rather all WM tracts present a more accurate

representation of their anisotropy. This is encouraging news as

some of these tracts overlap leading to regions with crossing

fibres where the lack of gradient information could lead to

erroneous FA estimates, even if the gradient directions are evenly

distributed in the hemisphere. However, HADTI-Net is capable of

reducing errors to a similar level for any WM tract.
Frontiers in Radiology 07
3.3. Clinical impact

To underscore the potential clinical significance of our work,

evidence was gathered from relevant works to carry out further

analysis. In particular, different clinical studies have

demonstrated that aging-related neurodegeneration can lead to

FA reduction (32), and a severe cognitive impairment can cause

a significant decrement of FA (33). Moreover, FA differences in

specific WM tracts were observed in various brain diseases
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FIGURE 4

Mean absolute FA differences for LAR-DTI and enhanced LAR-DTI by HADTI-Net in 72 WM tracts and entire WM region. Analysed WM tracts in order of
apperance: arcuate fascicle (AF), anterior thalamic radiation (ATR), commissure anterior (CA), corpus callosum (CC) and its subregions (rostrum, genu,
rostral body, anterior midbody, posterior midbody, isthmus, and splenium), cingulum (CG), corticospinal tract (CST), Middle longitudinal fascicle (MLF),
fronto-pontine tract (FPT), fornix (FX), inferior cerebellar peduncle (ICP), inferior occipito-frontal fascicle (IFO), inferior longitudinal fascicle (ILF),
middle cerebellar peduncle (MCP), optic radiation (OR), parieto-occipital pontine (POPT), superior cerebellar peduncle (SCP), superior longitudinal
fascicle (SLF), superior thalamic radiation (STR), uncinate fascicle (UF), thalamo-prefrontal (T_PREF), thalamo-premotor (T_PREM), thalamo-precentral
(T_PREC), thalamo-postcentral (T_POSTC), thalamo-parietal (T_PAR), thalamo-occipital (T_OCC), striato-fronto-orbital (ST_FO), striato-prefrontal
(ST_PREF), striato-premotor (ST_PREM), striato-precentral (ST_PREC), striato-postcentral (ST_POSTC), striato-parietal (ST_PAR), and striato-occipital
(ST_OCC).
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between age and gender-matched healthy controls and patients,

including Huntington’s disease (HD), amyotrophic lateral

sclerosis (ALS), Alzheimer’s disease dementia (ADD),

Parkinson’s disease with dementia (PDD), multiple sclerosis

(MS), and primary lateral sclerosis (PLS). For analysis purposes,

these clinical differences were collected and reported with our

experimental results in Figure 5, to compare the distribution of

the observed absolute FA difference when comparing LAR-DTI

and enhanced LAR-DTI to HAR-DTI for all the testing subjects

in specific WM tracts related to corresponding neurological

disorders. The goal of the experiment was to compare the

distribution of the observed differences (errors), to the clinical

differences observed in clinical studies (34). The hypothesis is

that if the distribution of the differences between FA values

between HAR-DTI and LAR-DTI (specifically, the mean) is

higher than the clinically observed differences between subjects,

the measurement errors would make it impossible to find these

group-wise differences.

The figure demonstrates that LAR-DTI has a higher mean and a

wider distribution of FA differences, which highlight the limitations
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of using a LARDI acquisition in clinical studies without further

enhancement. For instance, a 0.1 FA difference was observed in

the Genu tract (CC_2) between healthy controls and HD patients

(35), where the FA differences for most LAR-DTI subjects are

above 0.1. This could potentially impact the observed group

differences between healthy controls and patients. Similar results

can be concluded for the same tract in ALS and ADD patients

(36, 37), the Splenium tract (CC_7) in ALS and MS patients (38),

the Fornix tract (FX_left and FX_right) and the Optic radiation

tract (OR_left and OR_right) in MS patients (39), and the

Corticospinal tract (CST_left and CST_right) in ALS and PLS

patients (40). The proposed enhancing deep learning network is

capable of reducing measurement errors to a level lower than the

gap between controls and patients, which suggests the ability to

still measure these group-wise differences after the prediction of

the enhanced LAR-DTI volume. Paired t-tests were further

conducted between FA values of LAR-DTI and enhanced LAR-

DTI for each reported WM tract that showed the ability of

HADTI-Net to significantly reduce the FA errors brought by a

LARDI acquisition (p , 0:01, annotated as � in the figure).
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FIGURE 5

The distribution of the absolute FA differences when comparing LAR-DTI and enhanced LAR-DTI by HADTI-Net to HAR-DTI for all the testing subjects in
each individual WM tract. The reported FA differences for different brain disorders are marked with corresponding annotations. Significant differences
between LARDI and enhanced LAR-DTI values inside the selected WM tracts are marked on the top of each violin plot with a � (p , 0:01).
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3.4. Generalisation test

We have shown that HADTI-Net can estimate an improved

DTI model from LARDI with a fixed set of 6 diffusion gradient

directions using the deterministic KS algorithm (referred to as

LAR-KS). To further validate the proposed HADTI-Net, we

conducted a set of experiments to understand the importance of

the 6 sampled gradient directions during inference and whether

our random sampling training strategy led to a more general

framework for any 6 evenly distributed gradient directions.

Specifically, we defined 3 hypotheses to statistically test. Similarly

to Section 3.2

design and data preparation for this section are shown in

Figure 6, and the details of each experiment are discussed in the

following subsections.
3.4.1. Hypothesis 1: HADTI-Net is robust to the
choice of gradient directions as long as they are
evenly distributed

For this experiment, we define two sets of testing images. On

the one hand, we have the LAR-KS images previously analysed

in Sections 3.1–3.3. On the other hand, we have a new set of

images with 6 randomly selected but evenly distributed gradient

directions using our extension of the KS algorithm described in

Section 2.1.3 (referred to as LAR-Random). Specifically, we

randomly chose 10 different starting directions and sampled the

other 5 directions using the KS algorithm. Both sets of images

were then combined with T1 and b0 and passed into the

HADTI-Net model and their FA MAE was calculated.

Since these sets of images cannot be paired (the FA of different

random samplings are not measurements of the same property)
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and due to the lack of normalcy for the LAR-Random

measurements we designed a subject-wise statistical test based on

the Wilcoxon signed test. Specifically, for each subject, we

designated the LAR-KS MAE as the “ground truth” estimate and

subtracted it from the LAR-Random estimates. This gave us a

distribution of the differences between LAR-KS and LAR-

Random. Therefore, we could formulate our null hypothesis as

the distribution of these values to be symmetrical around 0

(meaning that LAR-Random does not obtain lower or higher

errors). After testing for each subject independently and

correcting for multiple comparisons (20 subjects), no significant

difference was found with a significance value after correction of

a ¼ 0:0005, p�value [ (0:005, 0:45)) and therefore we could not

reject the hypothesis of systematic differences between the ideal

evenly distributed sampling (LAR-KS) and a random set of

evenly distributed directions (LAR-Random).
3.4.2. Hypothesis 2: HADTI-Net is not sensitive to
the order of the gradient directions in the input
tensor

While the previous experiment proved that the sampling is not

important, it did not necessarily prove that different orderings on

the input vector would not lead to different results. While our

modified KS algorithm introduces an element of randomness (by

choosing the first gradient direction), the sampling is still

deterministic for the other 5 gradient directions. Furthermore,

the ordering of the directions is not relevant and the network

should not try to learn that. To test this hypothesis, we created a

new testing dataset called LAR-Shuffled, where we conducted 5

random shufflings for the 6 gradient directions in each DWI

image within the 10 sets of LAR-Random, leading to 50 different
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FIGURE 6

The flow chart for the genralisation experimental design and data preparation. Each set of inputs is then fed to the trained HADTI-Net to generate the
enhanced LAR-DTI estimates and the MAE of FA when compared to HAR-DTI is calculated.

Tang et al. 10.3389/fradi.2023.1238566
sets of input images. Similarly to the previous experiment, the

images were combined with the T1-weighted and b0 images and

fed to HADTI-Net to obtain an enhanced DTI and the MAE of

FA values was calculated.

Once again, samples could not be paired and for each subject

we compared the distributions between the set of LAR-Random

and LAR-Shuffle errors. In that case, we formulated our null

hypothesis as both sets have the same distribution of error

values. Due to the lack of normalcy for both sets, we performed

a Mann-Whitney U test for each subject independently and

corrected for multiple comparisons. Once again, we found no

significant differences between the error values for any of the

subjects (with a significance value after correction of a ¼ 0:0005,

p�value [ (0:005, 0:49)) meaning that we could not reject the

null hypothesis of both distributions being equal.

3.4.3. Hypothesis 3: the network depends on the
b0 information and is able to locate the position of
b0 in the input vector

While we have proven that the sampled directions are not

important as long as they are evenly distributed (according to

our variations of the KS algorithm), the question still remains of

whether the network exploits the relationship between b0 and

the diffusion-weighted information (which is a key part of the

common algorithm to fit a DTI tensor). To test this hypothesis,
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we need to assume that positional information in the input is

important (i.e. the order of the given channels). Unlike self-

attention mechanisms or graph convolutions that do not rely on

positional information in a sequence, convolutional and linear

layers have different weights for different channels. We have

proven with the previous experiment, that this is not the case, at

least for the last 6 channels. However, that does not prove that

the first two channels do not have specific weights (implying that

the network knows the difference between diffusion-weighted

images and structural ones). Therefore, assuming that the

position of b0 is important, we now create a new set of files once

again based on the LAR-Random set of images. Specifically, for

each image in the LAR-Random set we randomly place b0 as

one of the diffusion-weighted images (refer to as LAR-b0). T1

was then combined as the first image again and the input was

fed to the network to estimate the enhanced DTI and calculate

the FA MAE.

Similarly to the previous experiment, two sets of unpaired

errors were obtained per subject. Therefore, we could reformulate

our hypothesis as the distributions of errors for LAR-b0 and

LAR-random being equal and perform a Mann-Whitney U test

per subject (corrected for multiple comparisons). Unlike in the

previous experiment, we found significant differences for all the

subjects (with a significance value after correction of a ¼ 0:0005,

p�value [ (0, 3:53� 10�18)), rejecting the hypothesis that the
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errors were equal. In fact, the results were significantly worse and

close to the MAE for LAR-DTI from Table 1 suggesting that the

network treats b0 and the diffusion-weighted images differently.
4. Conclusion

In this work, we have proposed HADTI-Net, a deep learning

network to estimate the enhanced DTI model from LARDI with

a set of minimal evenly distributed diffusion gradient directions.

We conducted extensive experiments on subjects from the HCP

dataset to validate the feasibility of applying HADTI-Net to

generate enhanced DTI volumes and to evaluate the randomised

training strategy for generalisation to any set of 6 directions.

These results have shown comparable DTI scalar measures when

compared to those from HARDI on the whole WM region and a

large improvement for each WM tract independently.

Furthermore, our quantitative analysis of WM tracts from a

clinical perspective demonstrated that HADTI-Net has clinical

significance by mitigating the FA errors brought by a set of

minimal diffusion gradient directions. Finally, a set of statistical

tests have proven that the network could generalise to any set of

evenly distributed directions while highlighting the ability to

distinguish between b0 and diffusion-weighted information. In

conclusion, HADTI-Net can be used as a post-scanning

technique to allow clinical studies with a set of minimal evenly

distributed diffusion gradient directions while achieving reliable

DTI metrics, comparable to a HARDI acquisition.
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