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Accelerating voxelwise annotation
of cross-sectional imaging
through AI collaborative labeling
with quality assurance and bias
mitigation
David Dreizin1*, Lei Zhang1, Nathan Sarkar1, Uttam K. Bodanapally1,
Guang Li1, Jiazhen Hu2, Haomin Chen2, Mustafa Khedr1,
Udit Khetan1, Peter Campbell1 and Mathias Unberath2

1Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland,
Baltimore, MD, United States, 2Johns Hopkins University, Baltimore, MD, United States

Background: precision-medicine quantitative tools for cross-sectional imaging
require painstaking labeling of targets that vary considerably in volume,
prohibiting scaling of data annotation efforts and supervised training to large
datasets for robust and generalizable clinical performance. A straight-forward
time-saving strategy involves manual editing of AI-generated labels, which we
call AI-collaborative labeling (AICL). Factors affecting the efficacy and utility of
such an approach are unknown. Reduction in time effort is not well
documented. Further, edited AI labels may be prone to automation bias.
Purpose: In this pilot, using a cohort of CTs with intracavitary hemorrhage, we
evaluate both time savings and AICL label quality and propose criteria that must
be met for using AICL annotations as a high-throughput, high-quality ground truth.
Methods: 57 CT scans of patients with traumatic intracavitary hemorrhage were
included. No participant recruited for this study had previously interpreted the
scans. nnU-net models trained on small existing datasets for each feature
(hemothorax/hemoperitoneum/pelvic hematoma; n= 77–253) were used in
inference. Two common scenarios served as baseline comparison- de novo
expert manual labeling, and expert edits of trained staff labels. Parameters
included time effort and image quality graded by a blinded independent expert
using a 9-point scale. The observer also attempted to discriminate AICL and
expert labels in a random subset (n= 18). Data were compared with ANOVA and
post-hoc paired signed rank tests with Bonferroni correction.
Results: AICL reduced time effort 2.8-fold compared to staff label editing, and 8.7-
fold compared to expert labeling (corrected p < 0.0006). Mean Likert grades for
AICL (8.4, SD:0.6) were significantly higher than for expert labels (7.8, SD:0.9) and
edited staff labels (7.7, SD:0.8) (corrected p < 0.0006). The independent observer
failed to correctly discriminate AI and human labels.
Conclusion: For our use case and annotators, AICL facilitates rapid large-scale
curation of high-quality ground truth. The proposed quality control regime can
be employed by other investigators prior to embarking on AICL for segmentation
tasks in large datasets.
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Introduction

Scalable artificial intelligence solutions require large datasets with

high quality annotation, and for quantitative visualization tools, this

has traditionally entailed prohibitively painstaking manual voxelwise

labeling (1, 2). To date, few FDA-approved commercially available

tools perform segmentation and quantification tasks (3–5). In 2018,

The NIH, RSNA, ACR, and the Academy for Radiology and

Biomedical Imaging Research held a workshop that stressed data

scarcity as a major obstacle requiring approaches for high-

throughput data curation (6) and spurred research efforts aimed at

accelerating annotation in the domains of federated learning, active

learning, artificial intelligence-assisted annotation (AIAA) with

limited clicks and scribbles, semi-supervised learning, and synthetic

data augmentation (7–18).

A simple AI collaborative labeling (AICL) method distinct from

these approaches, involves training on a subset of manually labeled

seed data, and then editing inference labels on unseen studies. Expert

editing of automated labels was performed as a final annotation step

for the public COVID 19–20 Lung CT Lesion Segmentation

Challenge (19) dataset. Substantial time savings may be possible,

especially for studies with extensive infiltrates, as studies with larger

target volumes take longer to label (13). Another application of this

collaborative approach involves editing inference labels and

iteratively retraining a model in batches (20, 21). Time savings result

with each batch as the model becomes more generalizable and there
FIGURE 1

A prior pelvic hematoma segmentation algorithm correctly labeled hemorrhag
expert missed a small volume of presacral blood in case A, inadvertently labele
left pelvic sidewall hematoma in case C (thin arrows). The model, trained in
arrows).
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are fewer errors to correct. With these approaches, automation and

complacency bias become potential concerns (22)- for example,

labelers may be lulled into assuming automated labels are correct or

second guess their own correct judgement.

A broader issue is the general fallibility of expert labelers (23) and

the near-universal assumption in the published literature that manual

ground truth is the ideal benchmark for determining algorithm

performance (24). Taking COVID infiltrates as an example,

annotators are faced with multifocality; highly variable shapes,

locations, and volumes of infiltrates; widely differing attenuation

values; irregular contours; and adjacent opacities such as atelectasis

that can be mistaken for infiltrate. Even when using inference labels

as a starting point, a mean Dice Similarity Coefficient (DSC) of

only 0.70 was achieved between observers in the aforementioned

COVID challenge (19). In a study of traumatic hemoperitoneum, a

similarly complex task, mean test-retest DSC for manual annotator

was also 0.70 (25). Algorithms will tend to ignore outliers in new

data, and this is typically acknowledged as a flaw with respect to

robustness. But when considering outliers related to mislabeling by

humans, this vice of overfitting can become a virtue, as human

inconsistencies may be ignored to arrive at a more uniformly

satisfactory label (Figure 1). Thus, there is a possibility that an

edited inference label with less-than-perfect overlap to a manual

label may be qualitatively more suitable for use as ground truth.

As a “sanity check”, a qualitative or semi-quantitative label

quality assessment could be performed by a blinded expert
e in three examples with human error in manual training data (A-C). The
d a small segment of bladder wall in case B and missed a small volume of
5-fold cross-validation, labeled these areas correctly in inference (open
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observer to determine whether manual or automated labels are the

better ground truth for a given study. Semi-quantitative scores that

are higher for edited automated labels empirically exclude

detrimental automation bias. We are not aware of prior work in

medical imaging segmentation that has employed this approach.

A recent scoping review of AI CAD tools for trauma found that

while very large datasets have been developed for 2D detection tasks

such as for pulmonary abnormalities and extremity factures on plain

radiography, dataset sizes for torso hemorrhage-related pathology

ranged between fewer than 100 to 778 patients (4, 25–31). Despite

the perceived unmet need for hemorrhage-related quantitative

visualization tools (32), due to challenges unique to the torso-

namely small target to total volume ratios and complex pathology-

deep learning (DL) algorithms yielding meaningful visual results for

the chest, abdomen, and pelvis, have been late-comers in medical

image analysis (33). A limited number of studies using small

datasets have demonstrated an association between intracavitary

torso hemorrhage volumes and clinical outcomes (25, 29, 34–36),

with comparable or improved prediction compared to existing

categorical grading systems. In 2021, Isensee et al., introduced nnU-

net (37), an out-of-the-box self-configuring data-driven method

which incorporates a 3D coarse-to-fine multiscale approach that

has shown state-of-the-art performance on numerous public

medical imaging datasets over bespoke multiscale methods.

A rapid-throughput labeling strategy using anAICL approach could

make high-quality voxelwise annotation feasible for very large corpuses

of CT data. Using 57 unseen trauma torso CT exams, we conducted this

pilot study to determine time savings and annotation quality associated

with AICL using nnU-netmodels trained with existing labeled seed data

for several hemorrhage-related features- namely hemothorax,

hemoperitoneum, and extraperitoneal pelvic hematoma. Two

commonly employed labeling approaches- manual expert labeling,

and manual labeling by trained staff with expert editing- are used for

comparison. Label quality is compared using blinded assessment with

a proposed 9-point RAND/UCLA Likert grading system.
Methods

Deep learning method

We trained nnU-net (37) in five-fold cross-validation using three

existing datasets with voxelwise labeling of the feature of interest from

previous pilot studies- a hemoperitoneum dataset of 130 patients, a

pelvic hematoma dataset of 253 patients, and a hemothorax dataset

of 77 patients. Cascaded (3D low-resolution to high-resolution)

nnU-net yielded improved DSCs over prior bespoke methods

for all three use cases (25, 29, 34, 38), with mean DSC increasing

to 0.75 from 0.61 for hemothorax; to 0.67 from 0.61 for

hemoperitoneum, and to 0.75 from 0.71 for pelvic hematoma.
CT imaging

Trauma whole-body CT studies are performed at our institution

on one of two trauma bay-adjacent scanners- a 64-section scanner
Frontiers in Radiology 03
(Brilliance; Philips Healthcare, Andover Mass- scanner 1), and a

dual-source 128-section scanner (Siemens Force; Siemens,

Erlangen, Germany- scanner 2). Studies are performed with

100 ml of intravenous contrast material [Omnipaque (iohexol;

350 mg/ml iodine)] at an injection rate of 5 ml/sec (scanner 1) or

6 ml/sec (scanner 2) for the first 60 ml followed by 4 ml/sec for

the remainder. For penetrating trauma, we routinely administer

rectal contrast (50 ml iohexol with 300 mg of iodine diluted in 1l

of water) if abdominal penetration is suspected based on the

location of entry and/or exit wounds. Arterial phase images are

acquired from the thoracic inlet through the greater trochanters,

followed by portal venous phase images through the abdomen and

pelvis beginning just above the dome of the diaphragm. Images

are archived at 3 mm section thickness.
Dataset

Our primary aim was to determine time savings using AICL on

new patients. For time analyses using comparison of means, we

expected large effect sizes. Cohen recommended a D value of 0.2,

0.5, and 0.8 for low, medium, and high effect sizes respectively

(39). A pre-hoc power calculation showed that for a power of

0.8, alpha of 0.05, and Cohen’s D of 0.8, 15 patients would be

needed, and with power increased to 0.9, 19 patients would be

needed. Therefore, we created a convenience sample dataset of 19

randomly selected previously unseen adult (age ≥ 18) patients for

each injury type from the period between June 2019 and

September 2022. The total study sample included 57 patients [42

(74%) male, 15 female], with median age of 33 [IQR: 24, 58].

Forty-seven (82%) had blunt, and 10 (18%) had penetrating

injury mechanisms.
Artificial intelligence-collaborative labeling
(AICL) vs. human labeling

Human labeling strategies reflected common research

practices- either (a) de novo annotation (i.e., no AI assistance) by

a radiology attending expert with over 7 years of experience with

voxelwise labeling of CT datasets, or (b) de novo annotation by

trained research staff (a volunteer third-year medical student

with one year of prior cross-sectional quantitative imaging

experience), with editing of staff labels by the attending. Seed

data-trained nnU-net models were used to generate labels for the

57 unseen studies, and these were also subsequently edited by the

expert- a process we refer to as AI-collaborative labeling. A

minimum washout period of two weeks was used between

sessions, and studies were labeled in random order. De novo

human labeling time and attending editing times were recorded.

Labeling was performed using 3D slicer (version 5.0.3; www.

slicer.org) with the spherical threshold paint tool in the range of

−20–100 Hounsfield Units to minimize noise while avoiding

voxels with neighboring fat, lung, or bone. At the margins of

structures with similar density, the brush size is changed or the

image zoomed in as needed to ensure the label conforms to the
frontiersin.org
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desired contour. For hemothorax, labeling and AI inference were

performed in the arterial phase as images of the chest are only

acquired in this phase. For hemoperitoneum and pelvic

hematoma, labeling and AI inference were performed in the

portal venous phase. Labeling was conducted primarily in the

axial plane with supervision and refinement in the three

orthogonal planes as needed. CT volumes and segmentation

masks were saved in the NIfTI and NRRD file formats respectively.
Likert grading

A radiologist domain expert with 15 years of trauma experience

was shown (1) de novo expert labels (2) de novo staff labels (3) staff

labels with expert edits, (4) unedited nnU-net (“AI only”) labels, and

(5) nnU-net labels with attending edits (AICL results). The

radiologist was aware that, given the aim of the study, some

results may involve AI and some would not but was blinded to

the type and provenance of label sources and studies were shown

in random order. The goal of voxelwise labeling is to achieve a

trustworthy verifiable result that could be used at the clinical point

of care. We define labels that meet these criteria as reaching a

standard of “clinical quality”. The blinded radiologist assigned a

Likert grade based on a UCLA/RAND 9-point scale, with a score

of 1–3 indicating poor label quality (this was defined as requiring

substantial edits for a large number of either false positive or false

negative voxels, or ignoring the label and starting again from

scratch), a score of 4–6 indicating moderate label quality

(requiring further editing to reach clinical quality), and a score of

7–9 indicating excellent label quality requiring minimal to no edits

(Table 1). The latter range is considered a clinically acceptable

result. The first six consecutive patients were randomly selected

from each group (hemothorax, hemoperitoneum, and pelvic

hematoma) to determine whether the radiologist could distinguish

between AI-only labels, and de novo expert labels.
Correlations: label times, training cases, and
volumes

We sought to determine to what degree de novo labeling times

were correlated with label volumes (in milliliters) and whether

attending expert editing times for staff or automated labels were

decoupled from volumes. To assess internal validity of the Likert

grading scale, we compare AICL to staff labels in terms of

difference in Likert scales, dice similarity coefficient, and editing
TABLE 1 Segmentation label quality Likert grading system (9-point RAND/UC

Score range Description
Poor quality
(Score 1–3)

Mostly erroneous label that does not elicit user trust. Large number
starting again given time effort required to delete false positive por

Moderate quality
(Score 4–6)

Errors negatively impact interpretability/explainability and trust in

Excellent quality
(Score 7–9)

Clinically acceptable label quality with explainable/high trust result
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time- wherein higher differences in grade were expected to correlate

with lower DSCs and longer edits.
Statistical analysis

Analysis of variance (ANOVA) was used to determine a

statistically significant signal within repeated measurements. Post-

hoc paired signed rank tests were used to compare segmentation

time and Likert grade differences. Bonferroni correction was

performed to account for multiple comparisons. Correlations

between label volumes and times were assessed using Pearson r.

Spearman correlation was used for comparison involving

categorical Likert grading. p-values < 0.05 were considered to

indicate statistical significance. Statistical analysis was performed

using STATA software (version 15.1).
Results

Results in the total sample

Median labeling times for the total sample (n = 57) were 788 s

(s) [IQR: 525, 1,418] for de novo staff labels, 602 s [IQR: 368,

1,092] for de novo expert labels, 193 s [IQR: 113, 269] for expert

edits of staff labels, and 69 s [IQR: 48, 106] for AICL (Table 2).

ANOVA yielded a p-value < 0.0001. The AICL approach (expert

edits of automated labels) reduced time effort compared to editing

of staff labels by a factor of 2.8, (p-value < 0.0006; note: Bonferroni

corrected p-values) (Table 3). AICL was faster than de novo

labeling by a factor of 8.7 (expert) to 11.4 (staff) (both p-values <

0.0006). Examples of AI-only labeling errors addressed in AICL

are shown in Figure 2. Mean Likert grades for the total sample

were 8.4 (SD: 0.6) for AICL, which was significantly higher than

for de novo expert labels [7.8 (SD 0.9), p < 0.0006], for edited staff

labels [7.7 (SD: 0.8), p < 0.0006], for AI-only labels [7.8 (SD: 1.0),

p = 0.001], and for staff labels [6.3 (SD 1.5), p < 0.0006]. In the 18-

patient subset (6 per intracavitary hemorrhage feature, Likert score

range: 5–9) presented for discrimination of AI-only and de novo

expert labels, 12 patients were misclassified by the independent

expert observer, yielding a 66% discordance rate. Correctly and

incorrectly classified examples are shown in Figures 3A–C. Using

the best-case scenario, AICL, as the reference standard, and worst-

case scenario (staff only labels) for comparison, the difference in

Likert score was inversely correlated with the DSC with r of −0.55
(p < 0.0001) and directly correlated to attending editing times for
LA scale).

of either false positive or false negative voxels. May require discounting the label and
tions of the segmentation.

volumetric results. Require further editing to reach clinically acceptable quality.

s. An optimal segmentation result is achievable with minimal to no editing.
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TABLE 2 Summary results for total sample and individual features.

Statistic Vol.a (ml) Time effort (s) Likert quality grade (1–9)

Expert Staff Staff edits AICL Expert Staff Staff edits AI-only AICL

Total sample (n = 57)
Mean 362 752 1,092 200 90 7.8 6.3 7.7 7.8 8.4

Std dev 313 468 802 106 74 0.9 1.5 0.8 1.0 0.6

Median 274 602 788 193 69 8 6 8 8 8

IQR [108, 494] [368, 1,092] [525, 1,418] [113, 269] [48, 106] [7, 9] [6, 7] [7, 8] [7, 9] [8, 9]

Min 28 197 304 44 23 6 1 6 5 7

Max 1,226 2,139 4,162 512 526 9 9 9 9 9

Hemothorax (n = 19)
Mean 293 561 594 147 102 8.1 7.5 7.9 7.3 8.5

Std dev 315 378 256 105 46 0.8 1.0 0.8 0.8 0.6

Median 130 422 537 101 99 8 7 8 7 9

IQR [103, 384] [315, 777] [399, 725] [75, 178] [59, 135] [7, 9] [7, 8] [7, 8] [7, 8] [8, 9]

Min 60 197 304 44 42 7 5 6 5 7

Max 1,226 1,749 1,429 445 186 9 9 9 8 9

Hemoperitoneum (n = 19)
Mean 431 890 1,731 241 113 7.4 5.2 7.3 7.7 8.3

Std dev 328 418 932 87 109 1.0 1.6 0.6 1.1 0.5

Median 323 802 1,764 236 84 7 6 7 8 8

IQR [152, 723] [549, 1,346] [929, 2,313] [185, 270] [49, 128] [7, 8] [5, 6] [7, 8] [7, 9] [8, 9]

Min 39 277 537 126 29 6 1 6 6 7

Max 1,063 1,651 4,162 512 526 9 7 9 9 9

Pelvic Hematoma (n = 19)
Mean 364 805 951 213 54 8.1 6.2 7.8 8.5 8.5

Std dev 279 532 566 101 20 0.8 0.9 0.9 0.6 0.6

Median 312 602 830 221 53 8 6 8 9 9

IQR [97, 494] [363, 1,133] [451, 1,245] [119, 277] [35, 76] [7, 9] [6, 7] [7, 8] [8, 9] [8, 9]

Min 28 259 330 57 23 7 5 6 7 7

Max 929 2,139 2,086 446 88 9 8 9 9 9

aVolume is provided based on calculations from AICL.

ml, milliliters; s, seconds; Std dev, 1 standard deviation; IQR, interquartile range [Q1, Q3]; Min, minimum; Max, maximum, AICL, artificial intelligence-collaborative labeling.

“staff edits” refers to expert editing of staff labels.
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the staff labels with r of 0.42 (p = 0.001). These correlations are

considered “moderate” using the Dancey and Reidy qualitative

schema (40). For a Likert difference ≥4, 3, 2, 1, and 0, mean

DSCs were 0.49, 0.67, 0.69, 0.65, and 0.83 respectively.
Hemothorax

nnU-net models were trained on manually labeled seed data

with 77 patients. Among the 19 unseen hemothorax studies, AI-

collaborative labels required less time effort and received the

highest quality Likert grades compared with other methods.

Median AICL time was 99 s [IQR: 59–135]. This was comparable

to median editing time for staff labels 101 s [IQR: 75–178, p =

0.32], but was 4.3-fold faster than de novo expert labeling [422 s

(IQR: 315–777), p = 0.0006], and 5.4-fold faster than de novo staff

labeling [533 s (IQR: 399–725), p = 0.0006] (see Tables 2, 3).

Likert scores for AI-collaborative labeling (mean: 8.5, SD: 0.6)

were significantly higher than AI-only Likert grades (mean: 7.3,

SD: 0.8, p = 0.002) and de novo staff labels (mean: 7.5, SD: 1.0, p

= 0.004), and higher but comparable to de novo expert labels (8.1,

SD: 0.8, p = 0.49). All AI-collaborative labels, de novo expert labels,
Frontiers in Radiology 05
and edited staff labels received Likert scores in the excellent range

(scores of 7–9), whereas 3 automated labels and 2 staff labels

received scores in the moderate range (scores of 4–6). Of the six

studies presented for discrimination between automated and

human labeling, the independent blinded observer believed that

two AI-only labels were the product of human labeling, and that

two of the expert labels were AI-only labels.
Hemoperitoneum

nnU-net models were trained on labeled seed data in 130

patients. Among the 19 unseen hemoperitoneum studies, AI-

collaborative labels again required the least time effort and

received the highest quality Likert grades. AICL required median

time effort of 84 s [IQR: 49–128]). Significantly more time effort

(approximately 2.8-fold difference) was required for attending

edits of staff labels [Median: 236 s (IQR: 185–270), p = 0.011].

Time effort for de novo expert [Median: 802 s (IQR: 549–1346),

p = 0.0006], and de novo staff labeling [Median: 1,764 sec (IQR:

929–2,313), p = 0.0006] were greater than AICL by a factor of 9.5

and 21 respectively (see Tables 2, 3). Likert grades for AICL (8.3,
frontiersin.org
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TABLE 3 Corrected p-values for multiple comparisons- total sample and subanalyses.

Statistic Time effort (s) Likert quality grade (1–9)

Staff Staff ed. AICL Staff Staff ed. AI-only AICL

Total sample (n = 57)
Expert 0.002 <0.0006 <0.0006 Expert <0.0006 1.0 1.0 <0.0006

Staff <0.0006 <0.0006 Staff <0.0006 <0.0006 <0.0006

Staff ed. <0.0006 Staff ed. 1.0 <0.0006

AI-only 0.001

Hemothorax (n = 19)
Expert 1 0.0006 0.0006 Expert 0.274 1.0 0.06 0.493

Staff 0.0006 0.0006 Staff 0.19 1.0 0.004

Staff ed. 0.3204 Staff ed. 0.064 0.029

AI-only 0.002

Hemoperitoneum (n = 19)
Expert 0.0066 0.0012 0.0006 Expert 0.002 1.0 1.0 0.02

Staff 0.0006 0.0006 Staff 0.001 0.002 0.001

Staff ed. 0.0114 Staff ed. 1.0 0.001

AI-only 0.249

Pelvic hematoma (n = 19)
Expert 0.8844 0.0012 0.0006 Expert 0.002 1 0.477 0.299

Staff 0.0006 0.0006 Staff 0.004 0.001 0.001

Staff ed. 0.0006 Staff ed. 0.053 0.018

AI-only 1.0

AI-only refers to inference labels without editing.

Staff edits (abbreviated “Staff ed”) refer to expert edits of staff labels.

All p-values are corrected using Bonferroni method such that e.g., a p-value of <0.0001, becomes <0.0006.

Dreizin et al. 10.3389/fradi.2023.1202412
SD: 0.5) were significantly higher than those for attending labels

(mean: 7.4, SD: 1.0, p = 0.02), edited staff labels (mean: 7.3, SD:

0.6, p = 0.001), and de novo staff labels (mean: 5.2, SD: 1.6, p =

0.001). Differences between AICL and AI-only labels (mean: 7.7,

SD: 1.1) did not reach significance (p = 0.25). All AICL labels

had excellent-range Likert scores. AI-only labels, and de novo

attending labels received scores in the moderate range in four

instances each, whereas de novo staff labels received moderate

scores in 13 studies, and poor-quality scores (range: 1–3) in

three. Of the six studies presented for discrimination between

automated and human labeling, the independent blinded

observer again believed that two of the AI-only labels were

labeled by the expert, and that two of the expert labels were AI-

only labels.
Pelvic hematoma

nnU-net models were trained on labeled seed data in 253

patients. Among the 19 patients, AICL annotations required the

least time effort [Median: 53 s (IQR: 35–76)], and were 4.2-fold,

11.4-fold, and 15.7-fold faster than edited staff labels [Median:

221 s (IQR: 119–277), p = 0.0006], de novo expert labels [Median:

602 s (IQR: 363–1,133), p = 0.0006], and de novo staff labels

[Median: 830 s (IQR: 451–1,245), p = 0.0006], respectively (see

Tables 2, 3). AI-only and AICL annotations received the same

mean Likert grades (Mean: 8.5, SD: 0.6). All scores for these two

groups were in the excellent range (score 7–9) with discrepancy

by 1 Likert grade in 4 studies, and a discrepancy by 2 grades in

1 study. Likert quality grades for AICL were significantly higher
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than for de novo staff labels (mean: 6.2, SD: 0.9, p = 0.001) and

edited staff labels (mean: 7.8, SD: 0.9, p = 0.018), and were higher

but similar to de novo expert labels (mean: 8.1, SD: 0.8, p = 0.30).

All de novo expert labels were also scored within the excellent

range, whereas edited staff labels were scored in the moderate

range for 2 studies, and de novo staff labels were scored in the

moderate range in 13 studies. No scores were rated in the “poor”

range. Of the six studies presented for discrimination between

automated and human labeling, the blinded observer believed

that three AI-only labels were annotated by the expert and

believed that one attending segmentation was an AI-only

inference label.
Correlations: volumes, training cases, and
time effort

Volumes ranged between 59.6 and 1,225.9 ml for hemothorax;

between 38.6 and 1,062.6 ml for hemoperitoneum; and between

28.1 and 929.4 ml for pelvic hematoma. In the 57 patients,

Pearson correlation (r) for i. de novo expert labeling time and ii.

de novo staff labeling time vs. target volume were r = 0.61 (de

novo expert), and 0.50 (de novo staff). Pearson’s r for i. AICL

and ii. staff label editing time vs. target volume were r = 0.36

(AICL), and 0.59 (staff edits). de novo and edited staff label times

were moderately correlated with segmentation volume, but AICL

times and volumes were only weakly correlated (40). Large AI-

inferred volumes often required short editing times when much

of the pathology was already correctly “filled-in”, thus, AICL

disassociates time effort from volume. This was not the case for
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FIGURE 2

Automated labeling errors. Two slices are shown for each case example, one with an error and one without. (A) Pelvic hematoma (red). Arrow (left) shows
extension of label into the right pelvic sidewall, requiring minimal edits. (B) Hemoperitoneum (yellow). Arrows show extension of label into the bladder
margins, requiring minimal edits. (C) Hemothorax (blue). Open arrow, image right, shows unlabeled hemothorax from beam hardening artifact requiring
more substantial editing. This artifact was not appreciated for hemoperitoneum or pelvic hematoma and may be related to the comparably small number
of hemothorax training cases.
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edited staff labels. Time effort to correct staff errors (which

corresponded with significantly lower mean Likert scores)

increased as targets increased in size.

Although correlation does not equal causation, we observed

that the tasks with more training cases had higher AI label

quality and decreasing AICL time. Mean AI-only Likert grades

increased by task from 7.3 to 7.5 to 8.5, and median automated

editing times decreased from 99 to 84 to 53 s for hemothorax (n

= 77 training cases), hemoperitoneum (n = 130), and pelvic

hematoma (n = 253) respectively. Hemothorax is considered the

easiest task with well-defined crescentic shape and dependent

distribution but had the fewest training examples, the longest

editing times, and the lowest Likert scores.
Discussion

A paucity of labeled data is generally acknowledged as the

primary bottleneck for CAD research and development (6, 41).

The cost, time, and human capital needed for voxelwise

annotation of hemorrhage-related or similarly complex pathology
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on computed tomography is tremendous (42), and this is

reflected in the comparatively small datasets reported in

published studies to date (4). There is a recognized need for such

tools, but few have come to market (4, 32).

A variety of emerging methods, including federated learning

(43), synthetic data augmentation and semi-supervised

approaches (30), active learning (13), and AI-assisted

annotation or contour editing (7, 16, 17) are being explored

for overcoming the scarcity of labeled data in cross-sectional

imaging (6). In the meantime, investigators are beginning to

use collaborative human-in-the-loop strategies with

supervision and editing of automated labels to accelerate

voxelwise annotation (19–21). In a recent COVID CT

infiltrate segmentation challenge, automated labels edited by

experts were used as the reference standard (19). In a pilot

study with a maxillary sinus segmentation use case, nnU-net

inference labels were edited and used for iterative retraining

in several rounds, with final results compared to expert labels

as the ground truth (21). Preliminary data from our early

experience with deep learning-based pelvic hematoma

segmentation showed that our model ignored outlier labeling
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FIGURE 3A

Hemothorax. The independent observer correctly classified the hemothorax label source as AI-only or expert for case A, but not for case B. Both cases
received scores in the 7–9 range and were considered adequate for clinical use.

FIGURE 3B

Hemoperitoneum. The independent observer correctly classified the hemothorax label sources in A. Both AI-only and expert labels received scores in the
excellent range. In case B, hemoperitoneum in the right paracolic gutter is incompletely labeled. The observer believed this to be due to algorithm error.
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errors, suggesting that modest overlap metrics for this complex

feature could be due in part to an imperfect reference standard.

AICL was proposed as a means of overcoming both the time
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effort and fallibility associated with manual labeling for

difficult tasks requiring high cognitive load. Such a strategy

could potentially lead to higher agreement but lower quality
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FIGURE 3C

Pelvic hematoma. The independent observer correctly classified case A, but not case B. The expert annotator under-segmented blood along the right
pelvic sidewall. The independent observer interpreted this as machine error.
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due to automation bias. To our knowledge, this had yet to be

explored using semi-quantitative grading of label quality.

Labeling of Intracavitary pooled hemorrhage such as

hemothorax, hemoperitoneum, and pelvic hematoma poses

similar challenges to COVID infiltrates and surveillance of

advanced malignancy; volumes can vary greatly, sometimes

exceeding a liter of fluid for a given body cavity. Other

challenges include the often multifocal, irregular, and ill-defined

characteristics of pooled unopacified blood, and small differences

in contrast with neighboring structures, including viscera and

body wall (25, 29, 34).

CT is the routine imaging workhorse for patients with major

trauma (44–46). Exsanguination remains a leading cause of

preventable death, but clinical indices such as the shock index (SI)

or Assessment of Blood Consumption (ABC) score are only

modestly predictive and insensitive for life-threatening blood loss

(47–49). The ability to predict outcomes or personalize treatment

based on granular measurements of hemorrhage-related pathology

on CT is a major precision medicine and personalized treatment-

related value proposition of automated segmentation tools in the

trauma domain (25, 30, 31, 34–36, 50–53), but large scale out-of-

sample studies are required to confirm proof-of-principle.

In this work, we found that AICL for hemothorax,

hemoperitoneum, and pelvic hematoma resulted in an overall

2.8-fold reduction in time effort over editing of staff labels, and

an 8.7-fold reduction in time effort compared to de novo manual

labeling by an expert. Further, AICL had significantly higher

quality Likert scores (mean 8.4) than human de novo or edited

labels (means from 6.3 to 7.8, p = 0.02 to < 0.001). For staff
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labels, increasing deviations in Likert grades from AICL grade as

the reference standard correlated with lower DSC and longer

editing times. The domain expert performing Likert grading was

unable to correctly discriminate between manual expert labels

and AI-only labels in the majority of patients, with an overall

discordance rate of 66%.

Based on these results, the use of AICL appears justified as a

reference standard for future experiments with our models and

expert annotator. Such an approach can be extrapolated to very

large datasets to substantially reduce costs and human capital as

model-derived labels can be edited in place of those from trained

staff. Our results do not necessarily generalize to other use cases

or research teams and are not meant to justify using AICL as

ground truth without appropriate quality control. However, our

quality assessment framework could be used by other

investigators and for other use cases to evaluate AICL annotation

as an optimal high-throughput, high-quality reference standard.

This would facilitate scaling voxelwise annotation to large cross-

sectional imaging datasets for large-scale experiments. Once

high-quality data annotation is complete and algorithms trained,

they can be shadow-tested in the clinical environment with

PACS-integrated software (54).

Before using AICL labels as ground truth, three conditions

should ideally be met:

1. AICL should take less time effort than human labeling or editing

of human labels. To achieve this, we recommend that sufficient

manually-labeled seed data are used to generate at least

moderate quality AI-only labels, using the proposed grading
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scale. All grading should be performed by a blinded observer

with relevant clinical domain expertise not involved in the

labeling process. The number of manually labeled studies

used as seed data will vary by task and will need to be

determined on an individual basis.

2. Semi-quantitative quality scores for AICL should be improved

compared with human labels. This ensures that automation or

complacency bias does not adversely affect label quality.

3. The external blinded observer performing Likert grading should

have difficulty correctly discriminating AI and human labels.

This serves as an additional indicator that the AI-only labels

are of sufficient quality to result in substantial time savings

when using AICL. The proposed Likert grading system can

also be employed as a preliminary assessment of the readiness

of segmentation models for “in-the-wild” deployment.

Our study has several limitations. We were primarily

constrained by the effort required from multiple participants in

four different scenarios. Consequently, a small number of unseen

studies were included. Models were trained using historical data

from the same institution. Further, different numbers of patients

were used to train each model. The pelvic hematoma model

(trained with 253 CTs, compared to 130 for hemoperitoneum,

and 77 for hemothorax), had the shortest editing times and

highest Likert scores. Although we are unable to establish with

certainty the degree to which this is related to more training

cases, considering that pelvic hematoma is highly irregular and

multi-compartmental, it is our experience that this represents a

substantially more challenging task than labeling of hemothorax

(compare for example Figures 3A,C). Based on comparative task

simplicity alone, we would expect the hemothorax nnU-net

model to yield the highest rather than the lowest quality labels.

Additionally, our study was only powered to detect differences in

time effort. However, differences in Likert scores were still found

to be significant.

In the future, our approach could likely be combined with

active learning and semi-automated AI-assisted annotation for

further improvements in throughput.
Conclusion

The precision-medicine-related value of volumetric imaging

has been explored in a variety of domains such as surveillance

for cancer progression, COVID infiltrate quantification, and

hemorrhage burden in trauma. However, studies typically have

insufficient sample sizes to ensure model generalizability and

robustness in the clinical setting, which limits opportunities for

productization and regulatory approval. The time effort and

human capital required for manual voxelwise labeling prevents

scaling to large datasets, particularly for pathology with

irregular, multifocal, and potentially very large targets. Further,

manual labels suffer from human error and are an imperfect

ground truth.

We evaluated an AICL approach using models initialized on

manually-labeled seed data. AICL annotations met three
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conditions for use as a reference standard: 1. They required

significantly less time effort than human labeling, with time

savings approaching an order of magnitude. 2. Semi-

quantitative quality scores were improved compared with

human-only labels, and 3. Automated and manual labels were

not readily distinguishable. When these conditions are met,

edited automated labels can be considered a high-quality gold

standard for rapid curation of voxelwise data. Further

improvements in throughput and performance may be possible

with human-in-the-loop iterative retraining, interactive semi-

automated labeling (AI-assisted annotation), and active

learning strategies.
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