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Introduction: Medical image analysis is of tremendous importance in serving
clinical diagnosis, treatment planning, as well as prognosis assessment.
However, the image analysis process usually involves multiple modality-specific
software and relies on rigorous manual operations, which is time-consuming
and potentially low reproducible.
Methods: We present an integrated platform - uAI Research Portal (uRP), to
achieve one-stop analyses of multimodal images such as CT, MRI, and PET for
clinical research applications. The proposed uRP adopts a modularized
architecture to be multifunctional, extensible, and customizable.
Results and Discussion: The uRP shows 3 advantages, as it 1) spans a wealth of
algorithms for image processing including semi-automatic delineation,
automatic segmentation, registration, classification, quantitative analysis, and
image visualization, to realize a one-stop analytic pipeline, 2) integrates a variety
of functional modules, which can be directly applied, combined, or customized
for specific application domains, such as brain, pneumonia, and knee joint
analyses, 3) enables full-stack analysis of one disease, including diagnosis,
treatment planning, and prognosis assessment, as well as full-spectrum
coverage for multiple disease applications. With the continuous development
and inclusion of advanced algorithms, we expect this platform to largely simplify
the clinical scientific research process and promote more and better discoveries.
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1. Introduction

Medical imaging is widely employed in clinical research to investigate effects on

diagnosis, staging, treatment planning, and follow-up evaluations (1–4). Medical imaging

contains multiple imaging sequences or modalities, such as magnetic resonance imaging

(MRI), computed tomography (CT), and positron emission tomography (PET), providing

complementary information (5–8). The processing and quantitative analysis of medical

images ensure their clinical utility in a variety of medical applications, from general

research to clinical workflows.

Most recently, machine learning- and deep learning-based intelligent imaging analyses

have shown enormous advantages in providing consistent and accurate image

quantifications in multiple applications, including image segmentation, registration,
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classification, etc. (9–12). A series of algorithm architectures and

strategies have been developed to meet different requirements.

For example, U-Net (13, 14), V-Net (15), and nnU-Net (16)

exhibit accurate segmentation performance; affine models (i.e.,

FLIRT, A-SIFT) (17) and deformable models [i.e., FNIRT, ANTS,

VoxelMorph (18), Dual-PRNet (19), LDDMM (20)] assist to

image registration; ResNet (21), DenseNet (22) and their variants

have attracted much attention in classification tasks. Also, varied

attention mechanisms and loss functions have been utilized to

optimize the deep learning network and improve its robustness

(23–26). The accurate analysis of medical images accelerates the

development and upgrading of intelligent algorithms that can be

integrated into the software to enable easy-to-use clinical research.

Numerous choices of medical image analysis tools integrating

advanced algorithms are available. For example, MATLAB (27),

Python (https://www.python.org/), 3D Slicer (28) (https://www.

slicer.org/), and Mimics (Materialize, Leuven, Belgium) allow

general image processing, while FreeSurfer (https://surfer.nmr.mgh.

harvard.edu/), chest imaging platform (CIP, https://

chestimagingplatform.org/), and OpenSim (29) are proprietarily

applied to the brain, lung, knee joint analyses, respectively.

Meanwhile, a number of software is dedicated to a specific

modality, such as resting-state fMRI data analysis toolkit (REST)

(30) and statistical parametric mapping (SPM, UCL Queen Square

Institute of Neurology, London, UK) designed for functional MR

images; DtiStudio (31) and medical imaging interaction toolkit

(MITK) (32) applied to diffusion images; SenseCare (33) provides

a range of artificial intelligence (AI) toolkits for specific clinical

scenarios such as lung cancer diagnosis and radiotherapy

planning. Overall, the software greatly simplifies image processing

and makes it easy for clinicians to understand and use.

However, users still face a series of challenges in using the

software to achieve one-stop image analysis. First, complex image

analysis requires introduction of multiple software to adapt to

the respective modalities and organs, which makes it difficult to

integrate information from different modalities organically.

Second, different software relies on specific environments (e.g.,

Windows and Linux) and programming languages (e.g., Python,

C++, and R), requiring extensive computer knowledge to be used

in practice. Third, the feasibility of integrating the latest AI

models into the software to iteratively optimize performance is

yet to be assessed. Finally, manual contouring regions of interest

(ROIs) (34) is always required in scientific research to serve as

the gold standard or to extract quantitative metrics, which is

time-consuming and may suffer from low reproducibility and

consistency due to intra- and inter-observer variability.

Therefore, it is desired to design an integrated platform for one-

stop analysis of medical images, which needs to be compatible,

advanced, easy to use, extensible, and reproducible. In addition,

the ideal platform should offer cloud-based services (public or

private) to reduce configuration requirements on the user end

and allow multiple clients to work simultaneously. A dedicated

data management module is also essential for organizing

multiple clinical projects and massive medical data, which allows

the integration of large-scale data from multiple centers to

develop robust algorithms and facilitate collaborative research.
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In line with the trend, we propose a multifunctional platform,

called uRP (uAI research portal, https://www.uii-ai.com/en/uai/

scientific-research), to perform accurate image processing and

analysis on demand. The uRP can satisfy the following

requirements: (1) Integrating a variety of algorithms with respect

to the image’s modality (i.e., MRI, CT, PET), body part (i.e.,

head, chest, abdomen, pelvis), and processing task (i.e.,

segmentation, registration, classification), to be suitable for diverse

applications; (2) Offering friendly interactive user interface (UI)

to make clinicians easy to understand and independently

implement complete AI-related research; (3) Possessing the

extendable capability to enrich existing modules and ensure

reusable and reproducible analysis across clinicians, even

hospitals; (4) Achieving automatic or semi-automatic image

processing (e.g., delineation) to ensure efficient and accurate

analysis; (5) Supporting cloud-based computing services with high

concurrency and owing a dedicated data management module.

In the below sections, we present an overview of uRP’s

architecture and major functional modules, including semi-

automatic delineation, deep learning-based image segmentation,

registration, and classification, as well as radiomics and statistics.

The clinical utility of the uRP is demonstrated by three domain

analyses of the brain, pneumonia, and knee joint. Representative

use cases are exampled to illustrate some of the outcomes that

clinicians have achieved by using the uRP. In addition, the

modules of the uRP will continue to be developed and extended,

and we prospect future design concepts and directions to achieve a

more intelligent platform for scientific research and even clinical uses.
2. Materials and methods

In this article, we propose the uRP to realize the one-stop

medical image analysis. The architecture and main modules are

shown in the following parts.
2.1. Overview of uRP

From 2018, we began to build the uRP to promote one-stop

advanced medical image analysis in the context of integrating AI

modules. It is intended to facilitate scientific research for

clinicians and is therefore designed as flexible modules that can

be used directly, combined, or customized for specific application

domains. Here, we start by describing its architecture and key

components (Figure 1).

2.1.1. Architecture
The design of uRP architecture takes a modular and layered

approach. Internally, the software consists of three layers: (1) The

lower level is composed of hardware drivers, such as graphics

processing unit (GPU) accelerated using NVIDIA CUDA, and

cloud servers, such as Amazon web services (AWS), that

efficiently use graphics resources of the host system; (2) At the

middle level, there is application programming interface (API),

primarily Python and C++, contributing a range of algorithms
frontiersin.org
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FIGURE 1

Overview of uRP with layered and modular architecture. At the lower level, it involves hardware drivers and cloud servers. At the middle level, it includes
the application programming interface (API) and open-source packages to develop algorithms, ensuring versatility for data management, deep learning,
as well as radiomics and statistics. At the higher level, it provides a series of user interfaces to perform different application domains covering multiple
imaging modalities, full-stack analysis of one disease (i.e., diagnosis, treatment planning, and follow-up), and full-spectrum coverage for multiple diseases.
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(e.g., segmentation, registration, classification) and providing

higher-level functionality and abstractions. Additionally, a variety

of open-source libraries are embedded in the uRP, where the

DICOM toolkit (DCMTK) is used to support DICOM format

data, and Qt to provide a cross-platform graphical user interface

(GUI) framework; (3) The higher level presents UIs of multiple

algorithms and builds blocks to the end users for domain-specific

analysis (Figure 1). All computational demanding modules can

run in parallel on many processors at once, using message

passing between processes and/or shared-memory threads.

Since its inception, uRP has been evolving with major

architecture, UIs, and functional redesigns. The uRP’s version is

updated every 2 months, and each release is formally tested on a

variety of platform configurations to ensure its stability.

2.1.2. Interactive UI
uRP is a web-based platform supporting GPU cloud

computing. It supports plug-ins to deliver task-specific

functionality to the user. uRP mainly consists of three functional
Frontiers in Radiology 03
modules, (1) data management, supporting the upload of

imaging data and non-imaging features, extraction of subject

information from DICOM tags, and image search based on

specific criteria; (2) image processing, including semi-automatic

delineation, deep learning-based segmentation, registration, and

classification; (3) radiomics and statistics, for classification and

regression tasks. Images in DICOM or NIFIT formats from

clinical picture archiving and communication system (PACS) or

external drives are supported with various imaging modalities,

including MR, CT, PET, x-ray, and digital radiography (DR)

images. These technical modules can support a variety of

applications on demand (Figure 1).
2.2. Semi-automatic delineation

Delineation of ROIs is essential in clinical research as the

primary step for quantification and feature extraction. Manual

delineation is generally considered as the gold standard, but it is
frontiersin.org
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limited by its tedious, time-consuming, and error-prone

characteristics, and thus difficult to achieve high-quality and

efficient annotation especially with the massive amount of

medical images. In view of this, various automatic delineation

algorithms have been developed, including fully automatic and

semi-automatic methods. It is worth noting that fully-automatic

delineation is convenient but sometimes hard to reach the

desired accuracy, while semi-automatic delineation allows

human-computer interaction and thus can optimize the results,

which is a time-saving alternative to manual delineation. Our

proposed uRP platform contains a collection of tools for fully-

automatic, semi-automatic, and manual delineation. As shown in

Figure 2, a smart annotation tool and a ROI modification tool

are integrated into the uRP to assist the delineation process.
2.2.1. Smart annotation tool
The uRP offers several smart annotation tools (SATs) for

medical images, including (1) intelligent interactive segmentation

and (2) annotation propagation, which enables fast extraction of

the target from the complex background and 3D propagation of

the annotation.

Intelligent interactive segmentation is a technique that allows the

user to adjust the region of interest (ROI) by manipulating seeds. In

use, the user firstly draws a rectangle to cover the ROI, where the

Canny edge detection algorithm is then performed within the

rectangle to generate the target boundary. After that a positive

seed is generated at the centroid, and 4 negative seeds are placed

at the vertices of the user-defined rectangle, serving as the control

points for the boundary (Figure 2A, Supplementary Video 1).

We can then update the shape and size of the generated boundary

by adjusting the positive / negative seeds. Also, more positive

seeds (green) can be added to enlarge the ROI by clicking on the

area outside the edge, and negative seeds (red) can be added in

the ROI to remove specific regions. Canny’s approach is a widely

used edge detection method with tweakable parameters and thus

suitable to be integrated with a GUI. The algorithm can be

divided into the following 5 steps: (1) Use a Gaussian filter to

smooth the image and reduce the noise; (2) Calculate the gradient

intensity and direction for each pixel point in the image; (3) Edge

candidates are identified by applying the non-maximal or critical

suppression to the gradient magnitude; (4) Apply double-threshold

detection to determine real and potential edges; and (5) Finalize

the edge detection by suppressing isolated weak edges (35). The

implementation for the Canny edge detection algorithm could be

found in the OpenCV library (36).

Another tool is annotation propagation, which applies the

current annotation in one slice to its adjacent slices. Specifically,

the current annotation serves as the initial mask, and the tool

can automatically propagate annotations across entire image

frames (Supplementary Video 2). Especially, the user can

optionally keep the correct region when the ROI is propagated to

other slices and divided into multiple regions. Users can save

annotations for following radiomics and deep learning analyses

on the uRP, or download them for future review.
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2.2.2. ROI modification tool
After labeling the ROI, a variety of specific preprocessing needs

to be performed on the mask to meet diverse image analyses. For

example, studying tumor microenvironment requires obtaining

the peritumor region, whereas studying liver fat requires

extracting the ROI by intensity. The uRP offers a morphological

modification tool to dilate or erode the selected ROI according to

user-defined distances in the x, y, and z directions. For existing

ROIs, separation can be performed by user-defined split

intervals, connectivity, or minimum size (voxels). It can also

merge, intersect, and complement multiple ROIs by performing

linear operations on the pixels at each position of the ROI

(Figure 2B). When conducting multimodal research, ROI can be

duplicated across modalities. The above ROI modification tools

can be applied to 2D and 3D ROI, and users can expand

research directions with a variety of ROI preprocessing tools

available on the platform.
2.3. Deep learning modules

With the advancement of deep learning and its wide

application in medical image processing (37, 38), this technology

has shown great potential in organ segmentation (39), disease

diagnosis (40), etc. Some powerful online trainable deep learning

modules are available on the uRP, such as the segmentation

module, registration module, and classification module. The

network architecture of each module is shown in Figure 3. The

segmentation module can segment various organs of the whole

body using a cascade coarse-to-fine framework (Figure 3A); the

registration module performs unsupervised registration from a

moving image to a reference image (Figure 3B), and the

classification module can focus on ROI to classify the input

image (Figure 3C). These deep learning modules are directly

invoked through a simple parameter configuration, which can be

flexibly applied to various research scenarios.
2.3.1. Segmentation
The input of the segmentation module can be single- or

multimodal 2D or 3D data, where models can be trained to

automatically delineate ROIs, such as organs or tumors. The uRP

integrates a segmentation toolkit named VB-Net (41, 42). Briefly,

we use a V-Net as the backbone for the segmentation task,

which consists of a compression path, an expansion path, and

skip connections (43). The compression path extracts high-level

context information and the expansion path upsamples the signal

to recover its original size, where skip connections allow the

extracted high-level context information to be fused with fine-

grained local information. To reduce model parameters and GPU

memory cost, bottleneck layers are added in the down block and

up block of the network (Figure 3A). Moreover, a variety of

optimization strategies are embedded in the network to improve

segmentation performance and extend application scenarios, as

described below:
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FIGURE 2

Image preprocessing by semi-automatic delineation tool. (A) Smart interactive segmentation. (B) Preprocessing methods of the original ROI (1), including
dilation (2), erosion (3), duplication (4), union (5), intersection (6), complement (7), and separation by intensity (8).
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(1) Adaptive input module, which adds convolutional layers to

large-size images to ensure the network adapts to various input

images; (2) A cascade coarse-to-fine strategy, in which the

coarse-resolution model aims to localize ROIs in the original

image by leveraging the global 3D context, and the fine-

resolution model focuses on refining detailed boundaries of ROIs

(Figure 3A); (3) Self-attention mechanism, which accelerates

network convergence and improves segmentation accuracy; (4)

Various loss functions, such as Dice loss, focal loss, and

boundary loss, which can effectively constrain the segmented

targets in different tasks (41).

Scientific research users can invoke the deep learning

segmentation module directly through the configuration file,

requiring no coding skills in the process (Supplementary Video

3). The configuration file provides the following functions: (1)

setting paths of training data, model storage, and output results;

(2) hyperparameters during the training process (e.g., GPU

selection, batch size, training epochs); (3) data augmentation

(e.g., flipping, rotating, scaling), (4) data preprocessing (e.g.,

sampling method, cropped size, padding type, normalization); (5)

configurations of the loss function, optimizer, and learning rate

scheduler; (6) segmentation evaluation metrics (i.e., Dice, average

symmetrical surface distance, Hausdorff distance); (7)

configurations of networks and strategies, e.g., cascading of

different networks and selection of attention mechanisms. The

configuration file should be configured in a standard format (a

template is provided on the uRP) and called in the training process.

Moreover, the segmentation module integrates more than 100

high-precision organ segmentation models throughout the body.
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Segmentation of organs at risk using the uRP’s segmentation

module has shown great advantages in terms of speed (0.7 s vs.

20 s per organ), accuracy (average Dice score 96.6% vs. 84.3%),

and robustness (successful rate 98.6% vs. 83.3%) compared to

conventional methods (44).

2.3.2. Registration
Image registration is to align a moving image to a reference

image, which is a critical procedure in the analyses of

multimodal images and longitudinal data (45). The uRP provides

both traditional image registration (i.e., rigid, affine

transformation) and deep learning-based nonlinear registration.

Briefly, the nonlinear registration model consists of a registration

network, spatial transform block, and hybrid loss calculation

module. A hybrid loss is calculated to strengthen the alignment

constraints of different structures, which combines image

dissimilarity, deformation regularization, and segmentation

dissimilarity with different weights (Figure 3B). The available

image dissimilarity metrics include mean square difference

(MSD), normalized correlation (NC), mutual information (MI),

etc. Image registration can be performed between the images of

the same modality or of different modalities; for example, MI is

generally selected as the image dissimilarity for cross-modal

registration.

Notably, the segmentation results obtained automatically from

the segmentation module could also be used in the registration

process. In previous studies, organ segmentations served as soft

constraint in the loss function to provide auxiliary information

in the training of the registration model (46, 47). Compared to
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FIGURE 3

Network architectures of deep learning modules in the uRP. (A) Workflow of segmentation network (VB-Net) with a coarse-to-fine strategy, which first
roughly locates the target area and then segments the fine boundary of the ROI. (B) Image registration framework with introduced region segmentations
as constraints. (C) Classification network from images to features, with ROI attention strategy. GAP, global average pooling; FC, fully connected layer.
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using only the intensity image for registration, these studies found

that the large deformation can be more readily estimated with the

help of the segmentation result.
2.3.3. Classification
The uRP integrates a classification module and can be used for

two-class and multi-class tasks. ResNet (48) is used as the

classification backbone and optimized by several strategies: (1) an

online attention module as CAM (49) and Grad-CAM (50), that

ensures the network to focus on ROIs and increases the model

interpretability (Figure 3C); (2) a balanced sampling mechanism,

which can alleviate the imbalanced distribution of the input data;
FIGURE 4

The radiomics analysis workflow. The radiomics analysis module supports fou
(2) data processing and region of interest (ROI) delineation, (3) feature extract
analysis workflow can be used in a variety of clinical applications.
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(3) different sampling methods for inputs; (4) various loss

functions, e.g., focal loss (51), Ap loss (52), and CAM loss. A lot

of classic and mature classification networks such as DenseNet

(53) and EfficientNet (54) have been embedded in the uRP.

Moreover, the classification module can be flexibly invoked via a

configuration file, similar to the segmentation module.
2.4. Radiomics and statistics

Radiomics is a quantitative image analysis technique through

extracting quantitative features from medical images, that aims to
r main functions, including (1) image visualization for multi-modal images,
ion and selection, and (4) model construction and evaluation. The above
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link large-scale data mining of images with clinical and biological

endpoints (55). The uRP implements a one-stop analytic pipeline

of radiomics, providing clinical researchers with a simple UI for

image visualization, image processing, feature analysis, model

construction and evaluation, and statistical analysis (Figure 4).
2.4.1. Data preprocessing and grouping
Previous studies have shown that radiomics features are sensitive

to variations in gray level, pixel size, and slice thickness of images

(56–59). However, it is difficult to standardize parameters during

image acquisition for all patients in a clinical setting. The platform

supports a variety of normalization algorithms to normalize image

signal intensity, such as mean_std, max_min, and center_width.

And it resamples the image and ROI mask to specified pixel

spacing to achieve a standardized variable pixel size and slice

thickness by resampling algorithms, such as the nearest neighbor,

linear interpolation, and B-spline interpolation. A pre-defined bin

number of 64 is used for all analyses. In image processing and

feature calculation, we follow the guidelines of the imaging

biomarker standardization initiative (IBSI) (60).

The uRP supports three data grouping methods, namely

customized grouping, random grouping according to proportion,

and cross-validation grouping. The training set is used for feature

selection and model construction, and the model performance is

evaluated on the testing set.
2.4.2. Feature extraction and standardization
After preprocessing the images, a total of 2,264 radiomics

features can be automatically extracted from each ROI

(Supplementary Table S1). The first-order statistics include 18

features that reflect the quantitative depiction of the distribution

of voxel intensity in medical images. The shape-based features

include 14 features that reflect the shape and size of a region.

The textural features include 21 gray level co-occurrence matrix

(GLCM) features, 16 gray level run length matrix (GLRLM)

features, 16 gray level size zone matrix (GLSZM) features, 5

neighboring gray-tone difference matrix (NGTDM) features, and

14 gray levels dependent matrix (GLDM) features, which

quantify regional heterogeneity differences. Additionally, the

derived images are obtained by applying 24 filters (box mean,

additive Gaussian noise, binomial blur, curvature flow, box-

sigma, normalize, Laplacian sharpening, discrete Gaussian, mean,

speckle noise, recursive Gaussian, shot noise, LoG (sigma: 0.5, 1,

1.5, 2), and wavelets (LLL, LLH, LHL, LHH, HLL, HLH, HHL,

HHH)), and are used to extract first-order statistics and textural

features (2,160 derived features). Most features defined in the

uRP conform to feature definitions described in the IBSI (60).

To ensure the clinical utility of the model, features beyond

radiomics should also be considered to improve the model’s

generalizability, such as demographic information and biological

data. Considering that radiomics features and clinical features

have different ranges, feature standardization algorithms are also

provided in the uRP, such as z-score_scaler, min_max_scaler,

quantitle_transformer, yeojohnson_transformer, boxcox_transformer,

L1_normalization, L2_normalization, and max_abs_scaler (61).
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2.4.3. Feature selection and model construction
The feature selection module is used for feature selection or

dimension reduction to improve model performance. It includes

variance thresholding for removing low variance features, SelectKBest

for removing high p-value features, as well as least absolute shrinkage

and selection operator (LASSO) for sparse feature selection. It also

includes factor analysis, independent component analysis (ICA),

linear discriminant analysis (LDA), principal component analysis

(PCA), and more than 10 algorithms for dimension reduction to get

fewer new features formed by original features.

Based on the selected features, various machine learning-based

models can be constructed for classification or regression tasks.

Our proposed uRP integrates 13 machine learning algorithms,

including adaptive boosting (AdaBoost), bagging decision tree,

decision tree, Gaussian process, gradient boosting decision tree

(GBDT), K-nearest neighbors (KNN), random forest (RF),

logistic regression (LR), extreme gradient boosting (XGBoost),

stochastic gradient descent (SGD), support vector machine

(SVM), quadratic discriminant analysis (QDA), partial least

squares-discriminant analysis (PLS-DA), and allows for

hyperparameters adjustment. The nomogram model is also

included in this module, which combines radiomics and clinical

factors to facilitate the clinical utility of predictive models. It is

necessary to first calculate the score of each predictive variable,

obtain the total point, and then find the probability of the

disease outcome corresponding to the total score.
2.4.4. Evaluation metrics
To evaluate model performance, the uRP provides two sets of

quantitative metrics for classification and regression models.

(1) Classification model: The platform can automatically

generate receiver operating characteristic (ROC) curves and

calibration curves in the training and validation cohorts, and

calculate multiple metrics, such as the area under the ROC curve

(AUC, with 95% confidence interval), F1 score, precision,

sensitivity, specificity, and accuracy. It also provides a visual

representation of the confusion matrix and supports the

comparison of multiple models. In addition, the histogram, box

chart, violin chart, correlation analysis heatmap, and clustering

analysis heatmap are optionally plotted to establish the relationship

between features. For clinical applications, the decision curve and

clinical impact curve can be plotted to assess the clinical usefulness

of models by quantifying net benefits at different risk thresholds.

(2) Regression model: The platform automatically generates

prediction curves and scatter plots to visualize the results, and

calculates mean absolute error (MAE), mean absolute error

(MSE), R-squared, and Pearson correlation coefficient for

regression model evaluation.
3. Results

To illustrate the clinical utility of the uRP, we list three domain

analyses (i.e., brain, pneumonia, and knee joint) and representative

use cases.
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3.1. Specific domain analysis

It is worth noting that uRP can be extended and applied to a

variety of designated applications (Figure 1), e.g., brain structural

analysis, pneumonia analysis, and knee joint analysis. In this
FIGURE 5

One-stop brain analysis module integrated into the uRP. (A) Segmentation pip
skull, tissue segmentation of white matter, gray matter, and cerebrospinal fluid
user interface (UI) of brain analysis, including (1)–(2) image visualization of the
scale score. (C) UI showing abnormal regions and follow-up analysis.

Frontiers in Radiology 09
section, we focus on these three specific scenarios to describe the

versatility and scalability of uRP, covering segmentation,

quantitative analysis of ROI, classification for disease prediction,

and prognosis, where image analysis modules are integrated into

sequential to form an automatic analysis pipeline.
eline of brain structure, including the bias field correction, removal of the
(CSF), bilateral segmentation, and parcellation of 109 sub-regions. (B) The
specific region or disease, (3) quantitative volume analysis, and (4) MTA-
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3.1.1. Brain analysis
Neuroimaging shows tremendous potential in the early

diagnosis of neurodegenerative diseases (62, 63), in which

structural imaging (MRI) serves as a foundation to provide brain

tissue and parcellation information (Figure 5).

First, uRP can handle high-resolution MR images and

hierarchically segment brain structures (Figure 5A). The

workflow mainly involves: (1) the bias field correction, (2)

removal of the skull, (3) tissue segmentation of white matter,

gray matter, and cerebrospinal fluid (CSF), (4) bilateral

segmentation, and (5) parcellation of 109 sub-regions. A total of

109 sub-regions includes 22 temporal lobe structures, 20 frontal

lobe structures, 12 parietal lobe structures, 8 occipital lobe

structures, 8 cingulate gyrus structures, 2 insular structures, 12

subcortical gray matter structures, cerebral white matter

structures, ventricles, cerebellum, and other structures (64). To

emphasize, this segmentation process depends on VB-Net,

achieving efficient, precise, and end-to-end segmentation of

multiple sub-regions. The model was trained on T1 images of

1,800 subjects and tested on 295 subjects with an average Dice of

0.92, where the images were acquired from the Consortium for

Reliability and Reproducibility (CoRR) dataset (65) and Chinese

brain molecular and functional mapping (CBMFM) project (66).

Based on the segmentation results, the volume, volume ratio of

each sub-region, and the asymmetry index of paired sub-region

are calculated quantitatively and compared to the relevant

parameters from the gender- and age-matched normal dataset

(Figure 5B). Abnormal brain sub-regions are identified, where

those below the 5th percentile of the normal range are

considered likely to be abnormally atrophic, and those above the

95th percentile are considered abnormally enlarged (Figure 5C).

On the other hand, the medial temporal lobe atrophy (MTA)

score, also known as Schelten’s scale, is developed with an AI

model for automated assessment of the hippocampus atrophy

status (67). The score ranges from 0 to 4, in which the higher

the score, the more severe the hippocampal atrophy (Figure 5B).

It should be noted that the segmentation and computation of the

109 sub-regions take less than 1 min.

Based on this, uRP holds enormous ability in the follow-up

data analysis, i.e., (1) comparing volume changes of ROIs over

time to explore pathological progression of neurodegenerative

diseases; (2) constructing AI models to predict the odds of other

diseases such as Parkinson’s disease (PD) or mental diseases for

early diagnosis and early intervention; (3) promoting the brain

functional analysis with established structural ROIs, as well as

fiber connectivity analysis in diffusion tensor imaging (DTI)

(Figure 5C).
3.1.2. Pneumonia analysis
With the worldwide spread of coronavirus disease (COVID-

19), the early diagnosis and prognostic analysis of pneumonia

have become an urgent need, which inspires a large number of

related researches to serve the clinic (68–71). CT has been

popularly used to monitor pneumonia’s progression and measure

the disease severity (72–74). Based on chest CT scans, three
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important issues need to be explored: (1) the location of the

pneumonia infection, (2) the severity of the infection, and (3) the

etiology of the disease. uRP meets these requirements by

integrating segmentation, classification, and registration

algorithms (Figure 6A).

The first step is to locate the infected lesions. First, the whole

lung is obtained by embedded VB-Net, followed by bilateral

segmentation (75). Then, the left lung is segmented into 2 lung

lobes (superior and inferior lobes), while the right lung is

segmented into 3 lung lobes (superior, middle, and inferior

lobes). Afterward, 5 lung lobes are then finely segmented into 18

bronchopulmonary segments (Figure 6B). Infected lesions are

also auto-contoured in this process, and can be visualized from

the UI. Noted that the human-in-the-loop strategy is designed to

iteratively update VB-Net to address the problem of limited

annotated data (73). To be specific, an initial segmentation

model based on a small amount of delineated data is applied to

the new data, and segmentation results are manually corrected

and then fed into the model, so that a more robust model will be

trained through 3∼4 iterations, greatly improving the efficiency

of delineation.

Following the segmentation, a diverse set of handcrafted

features are calculated to quantitatively assess the severity of the

pneumonia infection (75), including (1) 26 volumetric features—

the volume and percentage of infections in each lobe and

pulmonary segment, (2) 31 numeric features—the number of

infected lobes and pulmonary segments, (3) 32 histogram

features—the histogram distribution of CT intensity, (4) 7 surface

features—the surface area of infections and lung boundary. A

total of 96 location-specific features are displayed in the UI to

reflect the severity of pneumonia infection. In addition, follow-up

data can be registered with previously acquired images to extract

changes in infection-specific features to monitor the progression

of pneumonia and to accurately determine the severity (Figure 6C).

Importantly, uRP can also distinguish different types of

pneumonia and predict possible pneumonia causes via uRP’s

built-in classification algorithms. Based on the segmented masks

and extracted features, dual-sampling attention 3D ResNet is

used to diagnose COVID-19 from community acquired

pneumonia (CAP) (76). Moreover, masks, handcrafted features,

as well as radiomics features can be used to classify the cause of

pneumonia (e.g., viruses, fungi, and bacteria), and to report the

corresponding probabilities.

Therefore, uRP-based pneumonia analyses involve automatic

segmentation of infected lesions, extraction and visualization of

quantitative metrics, and classification of different types of

pneumonia, which largely accelerates scientific research on

pneumonia.

3.1.3. Knee joint analysis
Knee osteoarthritis (OA), known as a degenerative joint

disease, results from the wear, tear, and progressive loss of

articular cartilage, which may eventually lead to disability (77).

The severity staging of knee OA should be carefully taken into

consideration for the treatment, which relies on a range of

morphological parameters, including the volume and thickness of
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FIGURE 6

One-stop pneumonia analysis module integrated into the uRP. (A) Schematics of pneumonia analysis, including segmentation, computation, registration,
and classification. (B) Hierarchical segmentation of lungs and infected lesions. (C) The user interface of pneumonia analysis on the uRP, including (1) image
visualization to compare images from two-time points, (2) quantitative analysis for pneumonia diagnosis and severity assessment, and (3) histogram
analysis of CT intensity distribution of images for comparison.

Wu et al. 10.3389/fradi.2023.1153784
articular cartilage, and minimal joint space width (mJSW) (78). To

benefit clinical practice, uRP implements a complete analysis

pipeline that automatically segments knee tissues and calculates

morphological metrics.

At first, a cascade coarse-to-fine strategy is applied to obtain

fast and accurate segmentation results (Figure 3A). Through two

3D-VNet segmentation models, multiple knee joint tissues are

accurately segmented, including bones (i.e., femoral bone, tibial
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bone, patella bone), cartilages (i.e., femoral cartilage, tibial

cartilage, patella cartilage), as well as menisci, and visualized in

the UI of uRP (Figure 7A).

At the same time, a series of morphological parameters are

automatically calculated from corresponding segmented masks

(79), including (1) volumes of cartilages, menisci, and cartilage

damage, (2) the mean thicknesses of cartilages, (3) the medial and

lateral mJSWs, calculated with the minimal Euclidean distance
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FIGURE 7

Knee joint analysis module integrated into the uRP. (A) The user interface (UI) of segmentation results of the knee joint, in which multiple knee joint tissues
are segmented including femoral bone and cartilage, tibial bone and cartilage, patella bone and cartilage, as well as menisci. (B) Quantitative metrics
calculated for knee osteoarthritis (OA) diagnosis, i.e., volume, thicknesses, minimal joint space width (mJSW), and severity assessment. (C) UI showing
quantified features and classification results for OA severity grading.
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between the femoral and tibial surfaces, (4) the severity assessment—

the ratio of the tibial cartilage covered by menisci, the grade of

cartilage damage and corresponding probability (Figure 7B).
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Severity grading is also performed by a classification algorithm

(Figure 7C). All the above results can be viewed from the uRP,

which is helpful for clinicians to make a quick diagnosis of knee OA.
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Overall, the knee joint analysis module on uRP can handle MRI

images in a fully automatic manner, in which knee joint tissues are

segmented and key features (i.e., volume, thickness, mJSW) are

calculated to identify the severity of knee OA, thus guiding the

optimal treatment.
3.2. Use cases

To illustrate the utility of the uRP, we example several use cases

and organize them into the following four parts:

3.2.1. Segmentation use
The automatic segmentation module on the uRP has been used

in many medical scenarios, for example, to diagnose COVID-19

infections. Chest CT scans of 549 patients were collected from

Shanghai Public Health Clinical Center and several other

hospitals, and were automatically segmented and quantified the

infected regions throughout the lungs (80). Researchers used the

pneumonia analysis module of the uRP, yielding a Dice

similarity coefficient of 91.6% ± 10.0% for the segmentation of

infected areas, and a mean estimation error of the infected

percentage of 0.3% for the whole lung on the validation dataset

(300 patients). Besides, to predict the severity of COVID-19

patients, quantitative features of 5 lung lobes and 18

bronchopulmonary segments were calculated and used to

construct a classification model based on the SVM algorithm.

The best accuracy of severity prediction was 73.4% ± 1.3%, which

demonstrated that uRP’s pneumonia analysis module owned

good performance on patient severity prediction.

3.2.2. Classification use
The image classification module built into the uRP has been

experimentally explored in various applications such as disease

diagnosis, risk classification, and treatment selection.

Gastrointestinal stromal tumors (GISTs) are mesenchymal

neoplasms with variable malignant potentials (81). In clinics,

accurate preoperative risk classification is important for surgical

resection and adjuvant treatment (82). Researchers from

Shandong Provincial Hospital and the Affiliated Hospital of

Qingdao University collected contrast-enhanced CT images and

clinicopathological characteristics from 733 patients and the goal

was to develop a model for predicting the GISTs risk

stratification (83). A deep learning model with an attention

mechanism was constructed on the uRP’s classification module

to divide patients into three categories (i.e., low-malignant,

intermediate-malignant, and high-malignant). The obtained

AUCs were 0.90, 0.80, and 0.89 on the testing sets for low-

malignant, intermediate-malignant, and high-malignant GISTs,

respectively. Therefore, this multi-center study demonstrated that

the quantitative CT and deep learning-based approach can be an

objective means of predicting the risk stratification of GISTs.

3.2.3. Registration use
Image registration is widely needed for the analyses of

multimodal images and longitudinal data. For example, precise
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registration of dynamic contrast enhanced MR images (DCE-

MEIs) with pre-contrast images can be used to obtain accurate

subtraction images, which helps to better differentiate the true

enhancement of residual viable tumors from coagulative necrosis.

In our recent study, Qian et al. collected 3D liver DCE-MRI

series from 97 patients, with each series including pre-contrast

T1-weighted, post-contrast T1-weighted scan at the arterial

phase, and post-contrast T1-weighted scan at the portal venous

phase (84). To overcome the intensity enhancement (due to the

contrast agent) and spatial distortions of the liver, the cascade

registration framework integrated into uRP was used to register

the post-contrast images to the pre-contrast images. The

registration performance of the proposed method was compared

with the traditional registration method SyN in the ANTs toolkit,

and the results demonstrated that the proposed framework

embedded in the registration module of uRP owned a

comparable performance and significantly improved efficiency.

3.2.4. Radiomics use
The radiomics module is particularly suitable for image-based

classification and regression tasks, deployed and used well in

multiple centers. Radiomics analysis was conducted in the Fourth

Affiliated Hospital of Harbin Medical University to discriminate

acute myocardial infarction from unstable angina (85). A total of

210 patients with coronary computed tomography angiography

(CCTA) images were retrospectively collected and randomly

divided into the training and validation cohorts. Following the

workflow of radiomics analysis in uRP, three vessel-based

pericoronary adipose tissue (PCAT) radiomics features and fat

attenuation index (FAI) were extracted from CCTA images, and

then selected features were used to construct the classification

model. Results demonstrated that the combined model achieved

superior performance with AUC values of 0.97 and 0.95 for

training and validation cohorts, respectively. The Affiliated

Hospital of Southwest Medical University applied a radiomics

model to predict the T stage, perineural invasion, and

microvascular invasion of extrahepatic cholangiocarcinoma

(CCA). This retrospective trial included 101 CCA patients

scanned with four MR images, including T1-weighted imaging

(T1WI), T2-weighted imaging (T2WI), diffusion-weighted

imaging (DWI), and apparent diffusion coefficient (ADC) map.

Radiomics features were extracted from four MR images,

followed by dimension reduction, and selected features were used

to construct three classification models corresponding to the

three tasks. The AUC values of models in the testing cohort for

predicting T stage, perineural invasion, and microvascular

invasion were 0.962, 1.000, and 1.000, respectively (86). Similarly,

researchers from Zhongshan Hospital constructed a multi-

parametric radiomics nomogram for predicting the microvascular

invasion (MVI) based on multiple MR sequences from 130

patients pathologically confirmed with intrahepatic CCA. The

nomogram incorporating tumor size, intrahepatic duct dilatation,

and the radiomics model, achieved good prediction performance

with AUC values of 0.953, 0.861, and 0.819 in the training,

validation (n = 33), and time-independent testing cohorts (n =

24), respectively (87).
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4. Discussion

Over the years, uRP has gained broad acceptance within the

medical image analysis community, which can be attributed to

its breadth of functionality, extensibility, and cross-platform

portability.
4.1. Extendable modules

One key strength of uRP is the modularization for customized

extensibility, where plug-ins can be designed for specific purposes,

and can be freely combined to accomplish complex analyses,

suitable for a variety of scenarios. uRP’s extensible structure

means that new functionality can be integrated on top of the

existing platform, rather than being created from scratch,

showing significant advantages over monolithic software. The

modular design benefits users in several ways:

(1) Reusability: uRP has integrated multiple algorithms that are

embedded into axiomatic building blocks and are invoked

for specific analysis workflows. An algorithm may

participate in many tasks and perform a similar function,

meaning that advanced techniques can be reused in new

research areas. In addition to existing algorithms, new

algorithms can also be developed and integrated into the

uRP, for example, transfer learning, transformer networks,

etc., to meet clinical needs. Besides, uRP can be extended

with third-party software (i.e., 3D Slicer) to import historical

annotation data or clinical information.

(2) Reproducibility: The design of plug-ins of uRP follows the

criteria of standardization and interoperability, which can be

easily shared among research groups, thus minimizing the

need for duplication and facilitating reproducibility and

consensus building. uRP collects detailed parameters set by

the user and generates a report summarizing quantitative

metrics and results so that a study can be replicated by

different researchers or even different institutions. Equally

important, uRP can be used for data management and fair

data repositories are essential for reproducible research.

Meanwhile, uRP owns reproducibility at scale, e.g.,

producing high-dimensional radiomics features for ROI in

each image or applying the same quantitative analysis in

high-throughput images.

(3) Community: uRP has an active community of more than 50

hospitals in China. The feedbacks provided by users fuel

improvements of uRP, especially the development of

innovative algorithms for clinical needs.

4.2. Advantages

The uRP platform has shown great potential for one-stop

image analyses in multiple scientific researches. There are several

other platforms for image analysis, such as 3D Slicer (28),

SenseCare (33), MITK (32). The proposed uRP has several

advantages. (1) uRP can provide cloud-based services allowing
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for high user concurrency, a data management module to

facilitate collaborations, and batch processing capability for

efficient analysis. (2) Some of these platforms are for clinical

diagnostic and treatment planning usages, with modules such as

lung cancer diagnosis, radiotherapy planning for head and neck

cancers. uRP is designed for clinical scientific research,

supporting image analysis and research idea validation. (3) The

uRP integrates machine learning algorithms and statistical

analysis methods to provide a more powerful analytical tool for

clinical research. (4) The uRP also offers smart annotation tools

for medical images, to remedy the time-consuming manual

annotation process that serves as a prerequisite for ROI based

analysis.
4.3. Outlook

Although uRP already has many applications as a one-stop

medical image analysis platform, some issues are still to be

addressed. Firstly, uRP currently focuses on the analysis of

radiological images, while other types of images could be future

supported, such as those from pathology. Secondly, most existing

applications are oriented towards the adult population, while

applications specific for the fetal, infant, and children are needed.

We have only two applications for now, i.e., infant brain

segmentation, skeletal age prediction, and would be further

increased in the future. While uRP cannot meet all the scientific

needs, it is fortunately a dynamic software that evolves together

with the new scientific research derived from clinical problems.

In the future, we will continue to develop more tools and

domain-specific methods, including algorithms, statistics, as well

as radiomics, to improve the efficiency, accuracy, robustness, and

generalization of one-stop analysis. Represented by ChatGPT,

generative AI is a hot research topic for now. It would bring

many improvements to the current scientific research, such as

better integrating multi-omics data to assist clinical diagnosis and

prognosis assessment. We are also exploring the possibility of

integrating generative AI in the platform at suitable scenarios

(88). We anticipate that the uRP can be applied to diverse

domains covering an increasing number of analytic pipelines for

diverse pathological diseases.
5. Conclusion

In summary, uRP is a one-stop medical image analysis software

for scientific research, and it not only supports versatile

visualizations, but also provides advanced functionality such as

automatic segmentation, registration, and classification for a

variety of application domains. More specifically, it has three

major merits, (1) advanced built-in algorithms (>100) applicable

to multiple imaging modalities (i.e., CT, MR, PET, DR), diseases

(i.e., tumor, neurodegenerative disease, pneumonia), and

applications (i.e., diagnosis, treatment planning, follow-up); (2)

an iterative deep learning-based training strategy for fast

delineation of ROIs of large-scale datasets, thereby greatly saving
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clinicians’ time and obtaining novel and more robust models; (3) a

modular architecture with customization and extensibility, where

plugins can be designed for specific purposes. As a result, it will

be necessary to investigate and develop new algorithms and

strategies to expand application domains and really solve clinical

problems.
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