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Artificial intelligence (AI) has great potential to increase accuracy and efficiency in
many aspects of neuroradiology. It provides substantial opportunities for insights
into brain pathophysiology, developing models to determine treatment
decisions, and improving current prognostication as well as diagnostic
algorithms. Concurrently, the autonomous use of AI models introduces ethical
challenges regarding the scope of informed consent, risks associated with data
privacy and protection, potential database biases, as well as responsibility and
liability that might potentially arise. In this manuscript, we will first provide a brief
overview of AI methods used in neuroradiology and segue into key
methodological and ethical challenges. Specifically, we discuss the ethical
principles affected by AI approaches to human neuroscience and provisions that
might be imposed in this domain to ensure that the benefits of AI frameworks
remain in alignment with ethics in research and healthcare in the future.
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Introduction

Artificial intelligence (AI) leverages software to digitally simulate the problem-solving and

decision-making competencies of human intelligence, minimize subjective interference, and

potentially outperform human vision in determining the solution to specific problems.

Over the past few decades, neuroscience and AI have become to some degree, sublimated

with the development of machine learning (ML) models using the brain circuits as the model

for the invention of intelligent artifacts (1).

Neuroscience inspired and then ironically, validated the architecture of various AI

algorithms (2) such as artificial neural networks (ANNs). This is a subset of ML

approaches and is composed of units that are called artificial neurons which are typically

organized into input, hidden, and output layers. One of the most successful ANN-based

computational models is termed deep neural networks (DNNs) which consist of multiple

hidden layers to learn more informative features and ubiquitous fields, by employing

intelligence without explicit programming, to solve predictive problems such as

segmentation and classification (3, 4).

Traditional, clinical neuroradiologists identify abnormalities of the spine, head and neck, and

spinal cord through pattern abnormalities on MRI and CT (and occasionally other modalities).

Radiomics and AI leverage imperceptible variations in images. Some have termed this as

seeing the unseen. Research on applying AI to neuroradiology, and all imaging, has rapidly

grown over the past decade. The number of scholarly publications related to the

development and application of AI to the brain has more recently increased astoundingly (5).
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The immense increase in publications on the development of AI

models shows that AI is rapidly gaining importance in

neuroradiologic research and clinical care. The growth in research

is related to the combination of more powerful computing

resources as well as more advanced measurement techniques (6–

8), combined with advances in imaging sequences. Just a few

somewhat basic examples of the application of AI models in

neuroradiology include image reconstruction (9), improved image

quality (10), lesion segmentation (11), specific identification of

hemorrhages (12) and other lesions, as well as patterns in

psychiatric disease (depression and schizophrenia) and neurologic

disorders (such as Huntington’s) (13), among many others. The

more recent works on neuroimaging AI have concentrated on

prognostication and greater personalization of treatments.

For neuroradiology, a deep learning (DL) model receives image

series in the input layer, then the extracted features are analyzed in

the hidden layer using various mathematical functions. The output

layer encodes the desired outcomes or labeled states (e.g., tumor or

normal). The goal of training a DL model is to optimize the

network weights so that when a new series of sample images are

fed to the trained model as inputs, the probabilities measured at

the output are heavily skewed to the correct class (14) (Figure 1).

For the short term, these automatic frameworks will likely serve

as decision-support tools that will augment the accuracy and

efficiency of neuroradiologists. However, the progress in

developing these models has not corresponded with progress in

implementation in the clinic (16). This may be related to

regulatory, reimbursement issues and perhaps most importantly

concerns over the adjudication of liability (17). Relatedly, the

implementation of AI methods leads to systemic risks with

potentially disastrous consequences and societal implications (16).

In this paper, we contribute to the ethical framework of AI in

neuroradiology. Below we present several specific ethical risks of

AI, as well as air some principles that might guide its

development in a more sustainable and transparent way. In our

review, we highlight the ethical challenges that are raised by

providing input for the AI models and the output of the

established frameworks in neuroradiology (Figure 1). In each

section, we also present the strategies that might be useful to

tackle these challenges in the future.
The profit of data

The value of any recorded medical observation - whether it is

images, physical examination results, or laboratory findings -

primarily lies in how they contribute to that patient’s care.

However, when the data are collected (and anonymized), this

data can also be used to generate useful information for potential

research. This information also may eventually have commercial

potential. Databases can help us understand disease processes or

may generate new diagnostic or treatment algorithms. These

databases can be used to assess therapies in silico.

Because of the value of medical data, especially images, when

conglomerated, those who participate in the health care system

have an interest in advocating for their use for the most
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beneficial purposes. Hence, the controversy regarding who has

the right to control and benefit from collected images, patients,

or provider organizations.

There has been a paradigm shift over the last decade with

respect to the ethos of data ownership (18). While some authors

have advocated for researchers’ right to access data (19), others

have highlighted embedding trustworthiness into data-sharing

efforts for all who participate in this process and benefit from it,

including patients, providers, healthcare organizations, and

industry (20, 21).

Most AI scientists believe in the ethical responsibility of all

patients to share their data to improve patient care, now, and in

the future. Thus, these researchers believe the data should be

widely available and treated as a form of public good to be used

for the benefit of future patients (21, 22). Individuals, in various

countries and institutions, can and should have the right to opt

out of anonymized data use. However, if that becomes widespread,

it worsens another AI ethical issue-database biases (vide infra).
Protection of data privacy

The significance of the diligent and ethical use of human data

has been highlighted recently to promote a culture of data sharing

for the benefit of the greater population, while also protecting the

privacy of individuals (18). Therefore, before medical images can

be used for the development of research or a commercial AI

algorithm, they are required, in most jurisdictions, to obtain

approval from the local ethical committee. An institutional

review board (IRB) needs to assess the risks and benefits of the

study to the patients. In many cases, existing (retrospective) data

is used. Because the patients in this type of study do not need to

undergo any additional procedures, explicit (written) informed

consent is generally waived. With clinical trials, each primary

investigator may need to provide approval to share data on their

participants. In the case of a prospective study, where study data

are gathered prospectively, written informed consent is necessary.

After ethical approval, relevant data needs to be accessed,

queried, and deidentified for all the health information (PHI) to

meet the health insurance portability and accountability act

(HIPAA) requirements in the United States or general data

protection regulation (GDPR) in Europe, as well as securely

stored. Notably, in certain countries, no formal IRB approval is

needed for retrospective data use, and in others, patients sign

blanket consent when they enter the local medical system.

Although this is legal in those environments, to these authors it

creates its own ethical concerns but does decrease database biases.

Other issues specifically related to neuroradiology, such as the

presence of personal identifiers, which need to be removed both

from the digital imaging and communications in medicine

(DICOM), metadata, as well as from the images prior to data

sharing (23). For example, surface reconstruction of volume

acquisitions of the face and brain may allow re-identification by

providing detailed images of the patient and generalization of

facial recognition techniques (24). To prevent re-identification,

defacing or skull-stripping techniques must be used in
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FIGURE 1

Architecture of a DNN with input, hidden, and two output layers. All layers are fully connected including multiple neurons. The goal of this network is to
classify MR images into two classes of diagnoses (normal and tumor). Multiple images are broken down into their essential voxels and fed to the network
as inputs. At the bottom is a zoomed-in view of an individual neuron in the second hidden layers (this architecture has two hidden layers with five neurons
in each layer) including the summation function that binds inputs (features of image voxel) and the weights (values attached to features) together and the
activation function along with the bias introduces non-linearity in the model. The final output is the values that show the probabilities of the two
classification states. Neuroradiology images were obtained from the Kaggle link (15).
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multicenter studies of neuroradiology (25, 26). Also, it is important

to remove or blur the surface-based features in the high-resolution

MR images to reduce the possibility of re-identification of

individuals based on their surface anatomy through pre-

processing algorithms. Furthermore, recent studies have shown

that the generative adversarial networks (GANs) models and

their synthetically generated data can be used to infer the

training set membership by an adversary who has access to the

entire dataset and some auxiliary information (27). These are

somewhat unique issues in neuroimaging research. In this regard,

there are software packages available that are able to remove the

facial outline from high-resolution radiology images without

removing or altering brain tissue (28, 29). Also, a new GAN

architecture (privGAN) has been developed to defend

membership inference attacks by preventing memorization of the

training set to provide protection against this mode of attack (27).

Regarding the increasing usage of digital data in neuroscience,

it is important to manage data resources credibly and reliably from

the beginning. Data governance is the set of fundamental and

policies that illuminate how an organization manages the data

assets (30). Data governance is a pivotal module in the analysis

of neuroradiology data and includes data stewardship, ownership,

policies, and standards (30). The important underlying principle

of data governance is the sense that those who manage patient

data have an ethical responsibility to manage the data as trustee
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for the patients profit, the institution, and the public. Therefore,

understanding data governance principles is critical in enabling

healthcare professionals to adopt AI technologies effectively and

avoid progress of these techniques due to concerns around data

security and privacy (31).

Centralized and distributed networks are two organized methods

that have been developed for tactical governance of data sharing

(32). While in the centralized network the data such as

repositories of neuroradiology images from multiple sites are

aggregate into single central database, the distributed network

model limits the flow of patient data to control the use of

information and adhere to applicable legal regulations (32). While

the former method improves the consistency of the data, enabling

data access is more complex since it needs to adhere to the legal

statutes of several organizations. The latter method enables users

encounter less barriers related to participant willingness to share

data, and legal obstacles. However, they struggle with

harmonization of site-specific data before performing analyses at

each site to make sure the data are consistent.
Quality of annotated data

The quality and amount of the annotated images for training

AI models are variable, based on the target task. Although using
frontiersin.org
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poor-quality images may lead to poor predictions and assessments,

in heterogeneous large quantities, it is known that AI algorithms

can be trained on relatively poor-quality images (23, 33).

However, knowing the correct label for a given task to correlate

with the imaging findings is a critical topic in policy documents

and essential for the development of any AI system. In general,

imaging data can be labeled in a variety of ways, including image

annotations and segmentations. We have an ethical imperative to

do AI research well, and one of the requirements is to have an

adequate population, to reach conclusions from.

Most currently implemented AI algorithms for medical image

classification tasks are based on a supervised learning approach.

This means that before an AI algorithm can be trained and

tested, the ground truth needs to be defined and attached to the

image. The term ground truth typically refers to information

acquired from direct observation [either of the images, or the

patient (dermatology and surgical exploration), pathologic proof,

or occasionally clinical follow-up]. For direct observation

references standards images are annotated by medical experts-

such as neuroradiologists.

Manual labeling is often used in the labeling and annotation of

brain imaging data for AI applications. When a relatively small

number of images are needed for AI development, medical

expert labeling and segmentation may be feasible. However, this

approach is time-consuming and costly for large populations,

particularly for advanced modalities with numerous images per

patient, such as CT, PET, or MRI. Prior to the widespread use of

AI, and markedly improved through AI, semiautomated and

automated algorithms have become somewhat widely used in labs.

Radiology reports are not created for the development of AI

algorithms and the extracted information may contain noise.

Although, recently more reports are structured, or protocol-

based, more often they are narrative. These narrative reports

have previously been assessed through natural language

processing programs.

Neural networks can still be relatively robust when trained with

noisy labels (34). However, one should be careful when using noisy

labels for the development of clinically applicable algorithms

because every labeling error could be translated to a decrease in

algorithm accuracy. It is estimated that about 20 percent of

radiology reports contain noticeable errors due to technical

factors or radiologists’ specific oversight or misinterpretations

(35). Although errors or discrepancies in radiology are inevitable,

some can be avoided by appropriate available strategies such as

the fusion of radiological and pathological annotation, the use of

structured reporting and computer-aided detection, defining

quality metrics, and encouraging radiologists to contribute to the

collation of these metrics (36).

AI could serve a role to reduce these errors and may help in the

more accurate and time-efficient annotation of CT and MRI scans.

However, this assumes a sufficiently sized dataset to adequately

train the AI models. Furthermore, recent efforts in the

automation of the annotation process particularly in

neuroimaging data have shown a significant increase in the

performance of the annotation process by using AI systems in

large scale of data. For example, a study in brain MRI tumor
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mined image annotations can improve tumor detection

performance significantly by achieving an F1 score of 0.95 (37).

There is a trend toward interactive collaboration between AI

systems and clinical neuroradiologists. The ability to self-validate

and learn from mistakes of AI systems makes the system able to

recognize their errors and self-correct their own data sets. On the

other hand, external validation by neuroradiologists, manually

fine-tuning the AI system, that it has made an error, and

allowing the AI system to update its algorithm to avoid errors is

helpful for the improvement of these models. Such interactive

collaboration annotations have been used effectively for labeling

open-source data sets to improve annotation quality while saving

radiologists time (38, 39).
Collaboration of AI and
neuroradiologists

Neuroradiology is overall the third most common imaging

subspecialty (40), and this subspecialty already heavily utilizes

computing and machine technologies. As AI frameworks

progress, they can support neuroradiologists by increasing their

accuracy and clinical efficiency. However, it is important to

recognize that AI applications can also replace some aspects of a

neuroradiologist’s work and therefore neuroradiologists may have

concerns about the progress of AI beyond the role of assistance

and replace them. This brings to mind, wider societal concerns

about the future role of AI and human work.

A recent review paper explored the application of AI in

neuroradiology and identified the majority of these applications

provide a supportive role to neuroradiologists rather than

replacing their skills. For example, assessing quantitative

information such as the volume of hemorrhagic stroke and

automatically identifying and highlighting areas of interest such

as large vessel occlusions on CT angiogram (41). AI can facilitate

and assist neuroradiologists’ workflow at several stages. It can

extract relevant medical information autonomously and exclude

findings not relevant to the investigation. AI can standardize

every scan and reduce any artifacts. It can help neuroradiologists

by identifying abnormalities that are the most time-sensitive

decision and annotating multiple images and other related

clinical information at the same time (42).

While these capabilities are very promising, AI systems are not

without limitations. For an AI system’s algorithm to accurately

work, they require large datasets and accurate expert labeling that

may not always be possible. Therefore, as Langlotz suggested

(43), maybe the neuroradiologists who use AI will replace those

who don’t keep up to date with AI technologies.

Despite the widespread application of AI, it is important that

radiologists remain engaged with AI scientists to both

understand the capabilities of existing methods and direct future

research in an intelligent way that is supported by the sufficient

clinical need to drive widespread adoption (14). An AI-

neuroradiologist collaborative model will have high value in

potentially improving patient outcomes.
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The subject of explicability is crucial as AI models are still

considered as black box, due to lack of clarity regarding the data

transformations after various passages within the convolutional

neural networks (CNNs) despite the mathematical and logical

processes (44). Therefore, the close collaboration between

neuroradiologists and AI scientists with different expertise aids the

development of AI models. While neuroradiologists may annotate

images and query the quality of datasets, AI scientists build the

algorithms and frameworks. Neuroradiologists who are familiar

with digital imaging and informatics have the potential to

investigate the black box and accompany the development process,

confirming the respect of standards. This collaboration establishes

trust and establishes criteria for validating the performance of the

AI models. The result of collaboration between AI scientists and

neuroradiologists highlights the variety of benefits including the

interpretability of the output of the algorithm. Also, while the AI

scientists become familiar with the image features from the

neuroradiologists’ point of view, radiologists are trained to

understand how AI works and how to integrate it into practice,

how to evaluate its performance as well as recognize the ethical

matters involved. In this formal accreditation process, the

endpoint is the evaluation of the performance of the AI

frameworks, neuroradiologists learning and using the AI systems,

and patients trusting the physician using AI tools.

There is insufficient practicality related to the final stages such

as reporting and communication compared to the early stages of

the AI application (e.g., image pre-processing) (41). This

indicates the opportunities for AI scientists and neuroradiologists

to develop AI systems in areas beyond image interpretation that

can be helpful for communicating the results of medical

procedures to patients, particularly in the case that such results

could alter the choice of therapy. Patients can benefit from

counterfactual recommender systems that learn unbiased policies

from data and it can be applied prospectively to support

physicians’ and patients’ management decisions. Using this

system have great potential and can be possible in the future

when annotated patient data are accessible at the scale (4).

Future development of AI applications that integrate software

platforms intended for automatic rapid imaging review and

provide a communication platform and optimized workflow to

multidisciplinary teams will undoubtedly play a key role in more

rapid and efficient identification for therapy, resulting in better

outcomes in neurological treatments.
Availability of models and data

The emergence of using AI in neuroradiology research has

highlighted the necessity of code sharing because these are key

components to facilitating transparent and reproducible

experiments in AI research (45). However, despite the

recommendations by editorial board members of the radiological

society of north america (RSNA) journals (46, 47), recent studies

revealed that less than one-third of the articles share code and

adequately documented methods (48, 49) and most articles with

code sharing by radiographic subspecialty are in neuroradiology (49).
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documentation may be discouraging, it has shown that code

sharing over time is an uphill journey (49). Nonetheless, there is

room for improvement, which can be facilitated by journals and

the peer-review process. For example, reproducible code sharing

can be improved by radiology journals through mandatory code

and documentation availability upon article submission,

reproducibility checks during the peer-review process, and

standardized publication of accompanying code repositories and

model demos which lead to faster and more collaborative

scientific innovation.

In addition to code sharing, data availability is another key

component of the reproducibility of AI research studies, because

DL models may have variable performance on different

neuroimaging datasets (50). However, the rate of data availability

is even less than code-sharing (less than one-sixth of studies)

(49) due to the challenges related to medical data sharing that

we discussed earlier in this review. The latter study showed that

the majority of studies that provided data used data from open-

source datasets (51) such as TCIA which highlights the

importance of these publicly released datasets to research (49).

Code and data availability are ethical imperatives for AI research.
Equal distribution of AI

Medical imaging, including MRI, is one of the most common

ways of brain tumor detection. MRI scans such as T2-weighted

and post-contrast T1-weighted are preferred since they provide

more precise images and provide better visualization of soft

tissue, therefore they can be used for brain tumor segmentation

(52). CNNs, a class of DNNs, are used as prominent methods for

medical image analysis. Therefore, neuroradiologists have become

interested in obtaining image features and detecting brain tumors

using CNNs to devote less time to screening medical images and

more time to image analysis. Using AI tools by neuroradiologists

at “the top of their license” is the most ethical construct. Hence,

the use of AI to “flag” images, allows highly trained physicians to

do what they do best, and what AI might not do best (for now).

Bias is an important ethical theme in research and clinical care.

It is quite easy for potential bias to be embedded within algorithms

that grow from “selected” data that are used to train algorithms (53,

54). Most research is performed at academic centers, more of this

at the most prestigious academic centers. These centers see a biased

population that skews towards affluence, education, and often

disproportionately small numbers of patients of color. If

algorithms are developed on datasets that are under- or over-

representative of certain population subgroups, they may exhibit

bias when deployed in clinical practice, leading to unequal access

to care and potential harm to patients. Using biased data sets not

only can potentially cause systemic inequities based on race,

gender, and other demographic characteristics, but they may also

limit the performance of AI as a diagnostic and treatment tool

due to the lack of generalizability (54, 55).

A recently published review by Das et al. (56) investigated the

risk of bias in AI data and methods that are used in brain tumor
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segmentation. They showed variance in designing the AI

architecture and input data types in medical imaging increase the

risk of bias. In another study to identify skin cancer from

images, the researchers trained a model on a dataset including

129,450 samples, but less than 5% of these images were

associated with dark-skinned individuals, thus the performance

of the classifier could vary significantly across different

populations (57). Furthermore, Larrazabal et al. (58) highlighted

the importance of gender balance in medical imaging datasets for

training AI systems in computational diagnosis. Using multiple

DNN architectures and available image datasets, they showed

dramatic changes in performance for underrepresented genders

when balance and diversity are not fulfilled.

Some studies suggested using AI itself to potentially mitigate

existing bias by reducing human error and biases that are present

within healthcare research and databases (59). These studies

addressed the issue of bias including building AI systems to

reflect current ethical healthcare standards and ensuring a

multidisciplinary approach to the deployment of AI (53, 60). To

ensure that AI systems are fair and equitable, it is essential to

address this challenge by developing algorithms that are trained

on diverse datasets, including data from underrepresented

populations. Furthermore, it is important to continually monitor

AI systems to detect and mitigate any potential biases that may

emerge over time. By addressing these challenges, we can help

ensure that AI systems in neuroradiology are developed and

deployed in a responsible and ethical manner and that they

ultimately benefit more patients.
Liability of the developed AI methods

In this section, we explore a frequent question regarding the

application of AI in neuroradiology as to who is responsible for

errors that may happen through the process of developing and

deploying AI technology. AI algorithms may be susceptible to

differences in imaging protocols and variations in patient

numbers and characteristics. Thus, there are by the nature of the

beast, specific scenarios where these algorithms are less reliable.

Therefore, transparent communication about selection criteria

and code sharing is required to validate the developed model by

external datasets to ensure the generalizability of algorithms in

different centers or settings (61).

Despite the success and progress of AI methods, they are

ultimately implemented by humans, hence, some consideration of

user confidence and trust (62) is important. Also, if AI systems

were to fail - as is inevitable - especially if they are involved in

medical decision-making, we should be able to determine why and

how they failed. Hence, AI processes need to be auditable by

authorities, thus enabling legal liability to be assigned to an

accountable body (63). The transparency of AI applications in

neuroradiology should be considered to ensure that responsibility

and accountability remain with human designers or operators (64).

To which degree, is liable, becomes an urgent and necessary question.

Several studies recommend that since healthcare professionals

are legally and professionally responsible for making decisions in
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the patient’s health interests, they should be considered

responsible for the errors of AI in the healthcare setting,

particularly with regard to errors in diagnostic and treatment

decisions (65, 66). However, other studies emphasize that it is AI

developers’ responsibility to ensure the quality of AI

technologies, including safety and effectiveness (67, 68).

Although a small number of articles suggested commercial

strategies for responsible innovation (69), the question is still

debatable because AI processes are often complicated to

understand and examine the output of AI systems (70).

The use of AI technology in neuroradiology should be

cognizant that ultimately it is a person or persons who are

responsible for the proper implementation of AI. Part of this

responsibility lies in the appropriate implementation and use of

guidelines to minimize both medical errors and liability.

Guidelines should be implemented to reduce risks and provide

reasonable assurance including the well-documented developed

methods, research protocols, appropriate large datasets,

performance testing, annotation and labeling, user training, and

limitations (71). Especially since adopting AI in neuroradiology

is increasing and it has enormous potential benefits,

implementation of AI in this field requires thoughtful planning

and diligent reassessment.
Case numbers

When we do research, we have a moral obligation to provide

the highest quality product we can. That is why IRBs not only

look at the risks and benefits but also the research protocol, to

ensure that the results will be worthwhile. One of the aspects of

this IRB assessment is the size and type of population studied.

Similarly in AI research, the database should include a large

enough number of subjects to avoid overfitting. In addition, an

external validation set is ethically required, to ensure

generalizability. The numbers needed in the development set

have been a moving target but are appropriately moving towards

substantive requirements.

Dataset size is a major driver of bias and is particularly

associated with the size of training data; the AI models should be

trained on large, heterogenous, annotated data sets (72). Small

training brain image datasets lead to overfitting in CNN models

which causes diminishing robustness of developed methods due

to data-induced bias.

Previous studies also have shown that using a large dataset

decreases model bias and yields optimal performance because

each MRI technique has different characteristics, therefore,

integrating various modalities and techniques yields more

accurate results than any single modality. Using multimodality

and heterogenous datasets also can handle the overfitting

problem regarding the trained model using a specific dataset to

make the model generalize for an external validation set (33, 73).

In diseases, or neurologic disorders that are less common,

finding large enough datasets may be difficult and may require

pooled resources. When providing larger datasets is not possible

due to rare diseases and under-represented populations, transfer
frontiersin.org

https://doi.org/10.3389/fradi.2023.1149461
https://www.frontiersin.org/journals/radiology
https://www.frontiersin.org/


Khosravi and Schweitzer 10.3389/fradi.2023.1149461
learning, and data augmentation can be used to avoid overfitting

due to small or limited data sets (74). The studies also presented

some recommendations for improving the risk of bias in AI and

providing a direction toward selecting appropriate AI attributes.

They highlighted the role of some characteristics such as data

size, gold standard, DL architecture, evaluation parameters,

scientific validation, and clinical evaluation (56) in developing

robust AI models. For instance, deep reinforcement learning and

deep neuroevolution models have generalized well based on

sparse data and successfully used for the evaluation of treatment

response in brain metastasis and classification of brain tumors

using MR images (75, 76). Nonetheless, for the time being, some

assessments of unusual conditions may not be ethically

researched and evaluated by AI, due to the limited availability of

copious patient data.
Context

Several ethical themes of the applications of AI in neuroradiology

were presented in this review including privacy and quality of data

that are used for training AI systems as well as the availability and

liability of the developed AI models. In this scoping review, we

addressed the ethics of AI within neuroradiology and reviewed

overarching ethical concerns about privacy, profit, liability, and bias,

each of which is interdependent and mutually reinforcing. Liability,

for instance, is a noted concern when considering who is

responsible for protecting patient privacy within data-sharing

partnerships and for AI errors in patient diagnoses. We note that

liability is related to specific laws and legislation, which by

definition vary from one to another jurisdiction.

These broad ethical themes of privacy and security, liability,

and bias have also been reported in other reviews on the

application of AI in healthcare and radiology in general, and

neuroradiology in particular. For example, in a review by

Murphy et al. (69), the authors discussed ethical issues including

responsibility surrounding AI in the field of health and pointed

to a critical need for further research into the ethical implications

of AI within both global and public health.

In another study, the authors discussed ethical principles

including accountability, validity, the risk of neuro-

discrimination, and neuro-privacy that are affected by AI

approaches to human neuroscience (6). These latter two terms

likely will be increasingly part of our conversations going forward.

Another article with a focus on patient data and ownership

covered key ethical challenges with recommendations towards a

sustainable AI framework that can ensure the application of AI for
Frontiers in Radiology 07
radiology is molded into a benevolent rather than malevolent

technology (17). The other recent studies highlighted the

intersection of data sharing, privacy, and data ownership with

specific examples regarding neuroimaging (18). It is therefore clear

from all review articles that the ethical challenges in AI should be

considered in relation to all people who participate in developing

AI technology including neuroradiologists and AI scientists.

In conclusion, the ethical challenges surrounding the

application of AI in neuroradiology are complex, and the value

of AI in neuroradiology increases by interdisciplinary

consideration of the societal and scientific ethics in which AI is

being developed to promote more reliable outcomes and allow

everyone equal access to the benefits of these promising

technology. Issues of privacy, profit, bias, and liability have

dominated the ethical discourse to date with regard to AI and

health, and there will undoubtedly be more that arise. AI is

being developed and implemented worldwide, and thus, a greater

concentration of ethical research into AI is required for all

applications amidst the tremendous potential that AI carries, it is

important to ensure its development and implementation are

ethical for everyone.
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