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Background: Cardiac infiltration is the major predictor of poor prognosis in
patients with systemic amyloidosis, thus it becomes of great importance to
evaluate cardiac involvement.
Purpose: We aimed to evaluate left ventricular myocardial deformation alteration
in patients with cardiac amyloidosis (CA) using layer-specific tissue tracking MR.
Material and Methods: Thirty-nine patients with CA were enrolled. Thirty-nine
normal controls were also recruited. Layer-specific tissue tracking analysis was
done based on cine MR images.
Results: Compared with the control group, a significant reduction in LV whole
layer strain values (GLS, GCS, and GRS) and layer-specific strain values was
found in patients with CA (all P < 0.01). In addition, GRS and GLS, as well as
subendocardial and subepicardial GLS, GRS, and GCS, were all diminished in
patients with CA and reduced LVEF, when compared to those with preserved or
mid-range LVEF (all P < 0.05). GCS showed the largest AUC (0.9952, P= 0.0001)
with a sensitivity of 93.1% and specificity of 90% to predict reduced LVEF
(<40%). Moreover, GCS was the only independent predictor of LV systolic
dysfunction (Odds Ratio: 3.30, 95% CI:1.341–8.12, and P= 0.009).
Conclusion: Layer-specific tissue tracking MR could be a useful method to assess
left ventricular myocardial deformation in patients with CA.
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Introduction

Systemic amyloidosis can lead to a progressive accumulation of insoluble amyloid

protein fibrils in multiple organs, thus destroying the normal tissue structure and

function (1–5). Cardiac amyloidosis (CA) is a major cause of mortality in patients with

amyloidosis because it leads to heart failure and lethal arrhythmia (6, 7). Thus, early

detection of cardiac involvement and an evaluation of heart dysfunction are important

determinants in patients’ prognosis (8).

With the unique capacity for non-invasive analysis of the heart structure and function,

echocardiography has become the conventional diagnostic method for many kinds of

cardiovascular diseases, including CA. Speckle-tracking echocardiography-derived global

longitudinal strain (GLS) provides an alternate measure for systolic dysfunction, which
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has been shown to be superior to left ventricular (LV) ejection

fraction (EF) in identifying various cardiovascular diseases (9).

Recently, tissue tracking MR based on cine-imaging was

introduced as a novel method to evaluate LV deformation by

tracking the whole myocardial tissue voxel motion on routine

MR cine images (6, 10, 11). There is also good agreement in

strain measurements between CMR and echocardiography (6).

Additionally, myocardial orientations in LV myocardial layers are

heterogeneous, and there is a gradient in the myocardial

deformation across the LV wall (9). Previous studies illustrated

layer-specific strain analysis the potential for the diagnostic

performance of ischemic heart diseases and non-ischemic heart

diseases (9, 12). However, no study has reported layer-specific

strain measurement alterations in patients with CA.

Accordingly, the purposes of our study were to: (1) assess the

alteration of global strains at different layers of LV myocardia in

patients with CA using layer-specific tissue tracking MR; (2)

evaluate the power of different layer-specific LV deformation

parameters to discriminate CA patients with reduced systolic

function (LVEF < 40%) from those with mid-range (40%≤ LVEF

< 50%) or preserved LVEF (≥50%).
Material and methods

Study population

The present study enrolled 57 consecutive patients with suspected

CA who were referred to the Department of Radiology, Zhongshan

Hospital for cardiovascular MR imaging from September 2016 to

September 2018. Amyloidosis was confirmed by positive

birefringence with Congo red staining under polarized light for the

biopsy of at least one involved organ. CA was evidenced by end-

diastolic LV wall thickness >12 mm without any other identified

cause and a diffuse pattern of enhancement on LGE imaging (1, 2,

13). The exclusion criteria for our study included contraindications

for CMR examination (e.g., GFR <30 ml/min/1.73 m2) (1, 2, 15),

diseases with increased cardiac afterload (e.g., hypertension and

mid-severe aortic valvular stenosis), severe coronary artery disease,

congenital heart disease, incomplete MR examinations, and poor

image quality. In total, 39 patients were recruited for the analysis.

We also randomly enrolled 39 healthy volunteers with no history or

risk factors of heart disease as healthy controls. This study was

approved by the institutional review board committee, and all

patients provided written informed consent.
CMR imaging protocol

CMR imaging was performed on a clinical 1.5 Tesla whole-body

scanner (Magnetom Aera; Siemens Healthcare, Erlangen, Germany),

using a spine and 18-channel body phased-array coil during a

breath hold. End expiratory cine images were obtained including

consecutive short-axis covering the whole LV and standard long axis

(two-, three-, and four-chamber views) (2, 15). Parameters were as

follows: repetition time (TR): 35.5 ms; echo time (TE): 1.1 ms; slice
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thickness: 8 mm; flip angle: 60°. LGE images (field of view:

340 mm× 329 mm, TR: 740 ms, TE: 3 ms, slice thickness: 8 mm,

flip angle: 25°, and inversion time: 300 ms) were all acquired in

imaging planes matched to cine images 10 min. after intravenous

injection of contrast agent (Magnevist, Bayer Healthcare, Berlin,

Germany). All participants were stable during the entire

examination period.
Image analysis

Cardiovascular MR image analysis was performed by two

experienced cardiovascular radiologists who were independent

and blind to the subjects’ clinical information.

Body surface area indexed LV end-diastolic volume (LVEDVi),

LV end-systolic volume (LVESVi), LV stroke volume (SVi), and

LVEF were assessed using dedicated software (Argus, Siemens

Healthcare). Papillary muscles and trabeculations were excluded

from myocardial mass and recorded in LV volume.

Endo- and epicardial borders of LV were manually drawn at the

end-diastolic phase of all cine images using off-line commercial

software (CVI 42, vs. 5.2.2; Circle Cardiovascular Imaging, Calgary,

Alberta, Canada) by the two cardiovascular radiologists mentioned

above. The insertion of the right ventricle and LV at the end-

diastolic phase of short-axis images were defined as short-axis

reference points, and the rest phases of all cine images were

automatically traced and segmented according to the 16 American

Heart Association segmentation of a bull’s-eye plot. LV global whole

layer strain values were automatically calculated in longitudinal,

circumferential, and radial directions, then expressed as GLS, global

circumferential strain (GCS), and global radial strain (GRS), as

described in the study of Xu et al. (9). Moreover, peak longitudinal

strain from all long-axis slices was averaged to provide

subendocardial GLS (GLSendo) and subepicardial GLS (GLSepi);

similarly, peak circumferential strain from all short-axis slices were

averaged to provide subendocardial GCS (GCSendo) and

subepicardial GCS (GCSepi). In addition, subendocardial GRS

(GRSendo) and subepicardial GRS (GRSepi) were recorded as the

average systolic strain from all slices. Moreover, the relative

subendocardial-subepicardial strain value gradients were defined

were defined as subendocardial 22 strain value minus subepicardial

strain relative to subendocardial strain.

%DGLS ¼ GLSendo� GLSepi
GLSendo

;

%DGCS ¼ GCSendo� GCSepi
GCSendo

;

and %DGRS ¼ GRSendo� GRSepi
GRSendo

:

Subgroup analysis

A sub-analysis was performed to evaluate the differences in layer-

specific parameters stratified by LVEF. Patients with CA who had
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preserved LVEF (≥50%) or mid-range LVEF (40%≤ LVEF < 50%)

were compared to those with a reduced LVEF (<40%).
Intra- and interobserver variabilities

Intra- and interobserver variabilities for strain values were

assessed in 15 randomly selected patients with CA using intraclass

correlation coefficient (ICC) analysis. Interobserver variability was

assessed on the same image set analyzed by two independent

cardiovascular radiologists. Intraobserver variability was assessed on

the same image set by one cardiovascular radiologist 2 weeks later.
Statistical analyses

All statistical analyses were performed using IBM SPSS

Statistics version 25 (IBM Corp., Armonk, NY, USA) and

GraphPad Prism version 8.0.0 (GraphPad Software Inc., San

Diego, CA, USA). Continuous variables were tested for normality

using the Kolmogorov-Smirnov normality test and were

presented as mean ± standard deviation, while categorical

variables were expressed as counts with percentages. Differences

in continuous data were compared using a student t-test.

Categorical variables were compared by χ2 or Fisher exact tests

(two-sided). Correlations were assessed by Pearson correlation or

Spearman coefficient. The diagnostic accuracy of LV deformation

parameters was evaluated by means of area under the curve

(AUC) of receiver operating characteristic (ROC) and logistic

regression; odds ratio(OR) and 95% CIs were calculated. A two-

sided P-value < 0.05 was considered statistically significant.
TABLE 1 Clinical, echocardiographic, and cardiac magnetic resonance imagin

Parameters Control group (n = 39) CA

Clinical characteristics
Age (years) 49.15 ± 13.86 54.69 ± 12.25

Gender, Male [n (%)] 23 (58.97%) 30 (76.92%)

Hemodynamic data
Heart Rate 69.00 ± 12.26 80.77 ± 14.60

Echocardiology
LAD (mm) 34.38 ± 4.18 45.00 ± 7.25

LVEDD (mm) 45.73 ± 4.75 45.05 ± 9.04

LVESD (mm) 29.23 ± 2.83 32.97 ± 7.99

IVST (mm) 8.96 ± 1.40 14.27 ± 2.22

PWT (mm) 8.58 ± 1.14 13.35 ± 2.52

PASP (mmHg) 31.54 ± 3.61 40.89 ± 10.98

CMR parameters
LVEDVi (ml/m2) 73.93 ± 15.78 80.41 ± 32.19

LVESVi (ml/m2) 30.89 ± 9.16 52.29 ± 28.78

SVi (ml/m2) 43.08 ± 8.37 28.12 ± 9.63

LVEF (%) 59.68 ± 6.38 37.48 ± 10.55

CA, cardiac amyloidosis; LAD, left atrial dimension; LVEDD, left ventricular end-diasto

septum thickness; PWT, left ventricular post wall thickness; PASP, pulmonary arterial

volume; LVESVi, body surface area indexed left ventricular end-systolic volume; Svi, b

P1: CA vs. control group; P2: CArEF vs. CApEF.
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Results

Baseline characteristics

Baseline clinical, echocardiography, and CMR

characteristics are summarized in Table 1. There were 23

men and 16 women (mean age 49.15 ± 13.86 years) in the

control group. Compared with the control group, there was

a significantly increased heart rate, left atrial dimension, LV

end-systolic dimension, interventricular septum thickness, LV

post-wall thickness, pulmonary arterial systolic pressure

(PASP), and LVESVi, whereas there was a significant

decrease in SVi in patients with CA. No significant

difference was found in gender, age, LV end-diastolic

dimension, or LVEDVi (P > 0.05, Table 1).
LV global deformation parameters

Table 2 summarizes the LV deformation analysis findings. A

significant reduction in LV strain values, including whole layer

and layer-specific components, was found in patients with CA

when compared to the control group. These findings suggest

LV deformation deterioration in patients with CA. (Table 2;

Figure 1).
Subgroup analysis

Of all patients with CA, 10 (eight men and two women, mean

age 58.40 ± 11.92 years; age range 35–72 years) had preserved
g characteristics for all groups.

P1 CArEF (n = 29) CApEF (n = 10) P2

0.061 53.55 ± 12.31 58.40 ± 11.92 0.286

0.072 22 (75.86%) 8 (80.00%) 0.581

0.001 82.21 ± 15.61 76.60 ± 10.76 0.301

0.000 44.93 ± 8.11 45.22 ± 3.80 0.918

0.701 45.82 ± 9.47 42.67 ± 7.52 0.370

0.012 34.36 ± 8.28 28.67 ± 5.32 0.062

0.000 14.04 ± 2.32 15.00 ± 1.80 0.263

0.000 13.07 ± 2.51 14.22 ± 2.49 0.238

0.000 42.36 ± 11.90 36.33 ± 5.77 0.155

0.268 84.22 ± 34.68 69.35 ± 21.25 0.212

0.000 58.19 ± 30.70 35.16 ± 11.23 0.002

0.000 26.03 ± 7.81 34.19 ± 12.12 0.019

0.000 32.87 ± 7.46 50.87 ± 5.85 0.000

lic dimension; LVESD, left ventricular end-systolic dimension; IVST, interventricular

systolic pressure; LVEDVi, body surface area indexed left ventricular end-diastolic

ody surface area indexed systolic volume; LVEF, left ventricular ejection fraction.
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TABLE 2 Left ventricular deformation parameters for all groups.

LV strain variables (%) Control group (n = 39) CA (n = 39) P1 CArEF (n = 29) CApEF (n = 10) P2
GLS −15.14 ± 12.71 −6.49 ± 3.12 0.000 −5.82 ± 2.42 −8.44 ± 4.15 0.085

GLSendo −17.15 ± 1.62 −7.41 ± 2.79 0.000 −6.78 ± 2.17 −9.24 ± 3.62 0.014

GLSepi −16.48 ± .1.60 −7.14 ± 2.58 0.000 −6.47 ± 2.01 −9.08 ± 3.16 0.004

%△GLS 3.86 ± 3.82 1.99 ± 12.57 0.381 4.12 ± 8.90 −4.16 ± 19.09 0.245

GCS −18.74 ± 2.47 −10.89 ± 3.64 0.000 −9.47 ± 2.96 −15.01 ± 1.81 0.000

GCSendo −20.92 ± 2.23 −12.91 ± 3.75 0.000 −11.57 ± 3.25 −16.78 ± 2.07 0.000

GCSepi −16.74 ± 1.73 −8.46 ± 2.29 0.000 −7.71 ± 2.03 −10.67 ± 1.42 0.000

%△GCS 19.33 ± 4.63 33.44 ± 7.37 0.000 32.46 ± 7.81 36.28 ± 5.26 0.160

GRS 31.92 ± 7.57 13.74 ± 6.50 0.000 11.37 ± 4.68 20.61 ± 6.27 0.000

GRSendo 36.33 ± 6.08 17.45 ± 6.49 0.000 15.00 ± 5.09 24.57 ± 4.63 0.000

GRSepi 27.16 ± 3.68 10.61 ± 3.41 0.000 9.41 ± 2.76 14.10 ± 2.73 0.000

%△GRS 24.11 ± 6.42 37.32 ± 9.12 0.000 35.65 ± 9.16 42.17 ± 7.47 0.050

GLS, left ventricular global longitudinal strain; GCS, left ventricular global circumferential strain; GRS, left ventricular global radial strain; GLSendo, endocardial GLS;

epicardial GLSepi, epicardial GLS; %△GLS, relative differences of endocardial and eipicaridal GLS; GCSendo, endocardial GCS; GCSepi, epicardial GCS; %△GCS,

relative differences of endocardial and eipicaridal GCS; GRSendo, endocardial GRS; GRSepi, epicardial; %△GRS, relative differences of endocardial and eipicaridal GRS.

Other abbreviations are as those in Table 1.

P1: CA vs. the control group and P2: CArEF vs. CApEF.

FIGURE 1

The characterization of left ventricular strain polar maps, cine imaging, and LGE imaging. Longitudinal (panels A1–A3), circumferential (panels B1–B3),
radial strain polar maps (panels C1–C3), cine imaging (panels D1–D3), and LGE imaging (panels E1–E3). A healthy volunteer has normal cine (D3),
LGE images (E3), normal left ventricular longitudinal (A3), circumferential (B3), and radial strain (C3) values. While a patient with CA and preserved
LVEF (D2) has left ventricular transmural enhancement on LGE imaging (E2), reduced longitudinal (A2), circumferential (B2), and radial (C2) strain
values. A patient with CA and reduced LVEF (D1) also has transmural enhancement on left ventricular LGE imaging (E1) and even reduced longitudinal
(A1), circumferential (B1), and radial (C1) strain values.

Li et al. 10.3389/fradi.2023.1115527
(≥50%) or mid-range LVEF (40% ≤ LVEF < 50%) and 29 (21

men and 8 women, mean age 53.55 ± 12.31 years; age range

18–78 years) did not (LVEF < 40%). There were significantly

increased LVESVi and decreased SVi in patients in the CArEF

group (P < 0.05, Table 1)when compared to those with CApEF.

No statistically significant difference was found with regard to

other measures of echocardiography or cardiac MR volume

parameters.
Frontiers in Radiology 04
When compared to the CApEF group, GRS and GCS were

diminished in patients in the CArEF group, whereas no

significant difference in GLS was found between the two

subgroups. The comparison of layer-specific LV deformation

parameters also showed notable findings; subendocardial and

subepicardial components of GLS, GRS, and GCS were all

reduced in patients in the CArEF group when compared to the

CApEF group (Tables 1,2, and Figure 1).
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FIGURE 2

Receiver operating characteristic (ROC) curve for GCS. AUC, area of
under curve.

TABLE 3 Inter- and intraobserver variability of left ventricular deformation
parameters by ICC analysis.

Intraobserver Interobserver

ICC 95% CI P ICC 95% CI P
GLS 0.959 0.883–0.986 0.000 0.924 0.789–0.974 0.000

GLSendo 0.987 0.946–0.997 0.000 0.983 0.932–9.996 0.000

GLSepi 0.985 0.940–0.996 0.000 0.980 0.919–0.995 0.000

%△GLS 0.892 0.566–0.973 0.001 0.731 −0.085–0.933 0.032

GCS 0.967 0.905–0.989 0.000 0.961 0.887–0.987 0.000

GCSendo 0.988 0.951–0.997 0.000 0.995 0.979–0.999 0000

GCSepi 0.986 0.942–0.996 0.000 0.988 0.950–0.997 0.000

%△GCS 0.936 0.744–0.984 0.000 0.850 0.396–0.963 0.000

GRS 0.977 0.932–0.992 0.000 0.952 0.863–0.984 0.000

GRSendo 0.996 0.986–0.999 0.000 0.993 0.972–0.998 0.000

GRSepi 0.989 0.955–0.997 0.000 0.996 0.985–0.999 0.000

%△GRS 0.926 0.703–0.982 0.000 0.922 0.686–0.981 0.000

ICC, intraclass correlation coefficient, other abbreviations as those in Tables 1,2.

Li et al. 10.3389/fradi.2023.1115527
The value of strain parameters as predictors
of reduced LVEF

When reduced LVEF (<40%) was used as a dependent

variable, the logistic regression model showed that GCS was an

independent predictor of LVEF reduction (OR: 3.30, 95%

CI:1.341–8.12, and P = 0.009). ROC curve analyses demonstrated

that GCS showed the largest AUC (0.9952, P = 0.0001) with a

sensitivity of 93.1% and specificity of 90% to predict reduced

LVEF (Figure 2).
Intra- and interobserver variability

As shown in Table 3, the inter- and intraobserver variability of

all LV deformation parameters was calculated. The ICC values

showed moderate to excellent reproducibility of all LV

deformation parameters (intraobserver ICC≥ 0.892, P all <0.01;

interobserver ICC ≥0.731, P all <0.05).
Discussion

Main findings

In this study, we assessed LV deformation in patients with CA

using layer-specific tissue tracking MR, and our study yielded

several important findings. First, whole-layer and layer-specific

LV deformation parameters, including GLS, GCS, and GRS, were

all significantly diminished in patients with CA. Second, when

compared to the patients with preserved or mid-range LVEF,

GRS and GLS, as well as subendocardial and subepicardial GLS,

GRS, and GCS, were all incrementally diminished in patients

with reduced LVEF. Last, GCS was the only independent

predictor of LVEF reduction to below 40% in patients with CA.
Layer-specific tissue tracking MRI

Heart involvement is a strong predictor of poor outcomes in

patients with systemic amyloidosis (16, 17); the etiology of cardiac
Frontiers in Radiology 05
dysfunction in patients with CA might include: (1) restriction of

the myocardia due to the infiltration of amyloid fibrils into the

myocardial interstitial matrix, (2) myocardial edema induced by

specific cardiotoxic effects of amyloidosis precursor in the

circulation, (3) microvascular ischemia-induced cellular ischemia

and metabolic dysfunction, and/or (4) secondary myocardial

fibrosis (13, 16, 18–22). Although myocardial biopsy is considered

the gold standard for assessing heart involvement in patients with

CA, due to the invasive nature of associated potential

complications, diagnoses of CA are usually made by serum cardiac

biomarkers, electrocardiography (ECG), echocardiography, and

other cardiac imaging methods in clinical practice (16, 23).

Cardiovascular MR has emerged as an effective non-invasive

diagnostic technique for patients with CA. The characteristic

manifestation and extent of left ventricular (LV) diffused

transmural late gadolinium enhancement (LGE) is associated

with the burden of interstitial fibril protein infiltration and

myocardial viability (24–31). But the use of contrast medium is

often restricted in patients with suspected CA who also have

significant renal function impairment, and some studies reported

that LGE cannot absolutely quantify diffuse myocardial fibrosis

(26, 32, 33). Recently, considerable interest has emerged in using

tissue tracking MR to quantitatively evaluate LV global and

segmental myocardial deformation (2).

Layer-specific strain measurements provide better detection of

subtle myocardial pathology (34). To the best of our knowledge,

this is the first study to investigate the differences in layer-

specific strain measurements in patients with CA. Previous

studies proved that GLS was sensitive in predicting subclinical

LV contractile dysfunction on early-stage heart failure (HF) (2,

35), and reduced GLS was associated with a shortened survival of

patients with CA (3, 18, 36). Wan et al. (2) found patients with

CA had reduced GLS, GCS, and GRS, compared with healthy

controls and patients without clinical CA. In accordance with

previous studies, our study revealed a significant degradation of

whole layer and layer-specific GLS, as well as GRS and GCS, in

CA patients, compared with healthy volunteers. Moreover,

besides decreased subendocardial and subepicardial strain
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measurements, our study also documented incrementally increased

relative gradient in GRS and GCS of patients with CA, when

compared to healthy volunteers, whereas no significant difference

in %△GLS was found between patients with CA and healthy

volunteers. Therefore, our results may indicate that tissue

tracking MR imaging-derived LV deformation parameters could

be a simple method to detect LV myocardial systolic function in

patients with CA. Although the physiologic underpinning of

more severely deteriorated subepicardial layer strain in patients

with CA is unclear, we speculate that these results may reflect LV

tissue characteristics of amyloid fibers infiltration and structural

remodeling (9).
Strain measurements in LV systolic function
stratification

Myocardial infiltration of amyloid fibrils typically leads to

restrictive cardiomyopathy, then progressive congestive heart

failure (HF), and even sudden death. Survival time after

diagnosis could shorten significantly if patients presented with

congestive HF (7). Consequently, the evaluation of heart function

and early intervention of specific management are also important

for patients’ survival. Setting 40% of LVEF as the cutoff point of

LV systolic function, our study evaluated the ability of strain

measurements to predict LV systolic dysfunction in patients with

CA, and our study demonstrated that strain measurements,

including whole-layer GRS, GCS, and the layer-specific GLS,

GRS, and GCS were found incrementally decreased in patients

whose LVEF fell to below 40%; in addition, ROC curve analysis

and logistic regression analysis also illustrated that GCS was the

independent factor of predicting LV systolic dysfunction with

high sensitivity and specificity. These results suggest that LV

strain measurements may provide detailed information on the

systolic function and may serve as an alternative method for

detecting LV systolic dysfunction in patients with CA.

Interestingly, the discrepancy of GLS, GCS, and GRS and their

layer-specific components to predict LV systolic dysfunction was

found in the present study. In the study of Xu et al. (9), they

found that GLSepi, GRS, as well as the difference in endocardial

and epicardial strains were sensitive to systolic dysfunction

among HF patients with preserved LVEF. Stokke et al. (36)

performed a combined mathematical and echocardiographic

study, and they found that GCS contributes more than twice as

much to EF than GLS. Thus, the discrepancy of strain measurements

in the study can be explained that GLS may be more sensitive in

systolic function, which affects the subendocardial region first.

However, both GLS and GCS deterioration may suggest a more

transmural dysfunction affecting circumferential fibers in the

mid-layer (36). In consistency with the theory, the CA patients

enrolled in our study were all confirmed with LV transmural

LGE, which is suggestive that cardiac infiltration of amyloid fibril

may have been expanded to the mid and even all cardiac layers.

The relative increase in GCS and GRS in patients with LVEF

reserve than in patients with reduced LVEF is also in accordance

with the theory that mid-layer myocardial fibers compensate
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for the loss of longitudinal mechanic to preserve LV pump

function (36).
Limitations

There were several limitations that warrant comments on our

study. First, we used combined criteria with LV wall thickness,

LV transmural enhancement on LGE, and biopsy from any site

as the definition of cardiac amyloidosis, thus myocardial biopsy

was not done in the present study. However, this combined

criterion was reported to be sensitive and specific for CA.

Second, the sample size was relatively small; we recruited CA

patients with transmural LGE, but the LGE pattern may be

atypical and patchy in patients with CA. Thus, some patients

may be excluded from our study. Third, other diseases causing

LV wall thickening were not included in this research, such as

hypertensive heart disease and hypertrophic cardiomyopathy.

Finally, this was a cross-sectional study without long-term

follow-up. For these reasons, further investigations with larger

numbers of different types of patients are required to confirm

the predictive value of LV deformation parameters.
Conclusions

In conclusion, layer-specific tissue tracking MR imaging

provides a useful non-invasive method to evaluate LV systolic

dysfunction in patients with CA.
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