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Confounder-adjusted
MRI-based predictors of
multiple sclerosis disability

Yujin Kim, Mihael Varosanec, Peter Kosa and

Bibiana Bielekova*

Laboratory of Clinical Immunology and Microbiology, Neuroimmunological Diseases Section,

National Institutes of Health, National Institute of Allergy and Infectious Diseases, Bethesda, MD,

United States

Introduction: Both aging and multiple sclerosis (MS) cause central nervous

system (CNS) atrophy. Excess brain atrophy in MS has been interpreted

as “accelerated aging.” Current paper tests an alternative hypothesis: MS

causes CNS atrophy by mechanism(s) di�erent from physiological aging. Thus,

subtracting e�ects of physiological confounders on CNS structures would

isolate MS-specific e�ects.

Methods: Standardized brainMRI and neurological examinationwere acquired

prospectively in 646 participants enrolled in ClinicalTrials.gov Identifier:

NCT00794352 protocol. CNS volumes were measured retrospectively, by

automated Lesion-TOADS algorithm and by Spinal Cord Toolbox, in a

blinded fashion. Physiological confounders identified in 80 healthy volunteers

were regressed out by stepwise multiple linear regression. MS specificity of

confounder-adjusted MRI features was assessed in non-MS cohort (n = 158).

MS patients were randomly split into training (n = 277) and validation (n =

131) cohorts. Gradient boosting machine (GBM) models were generated in

MS training cohort from unadjusted and confounder-adjusted CNS volumes

against four disability scales.

Results: Confounder adjustment highlighted MS-specific progressive loss of

CNS white matter. GBM model performance decreased substantially from

training to cross-validation, to independent validation cohorts, but all models

predicted cognitive and physical disability with low p-values and e�ect sizes

that outperform published literature based on recent meta-analysis. Models

built from confounder-adjusted MRI predictors outperformed models from

unadjusted predictors in the validation cohort.

Conclusion: GBMmodels from confounder-adjusted volumetric MRI features

reflect MS-specific CNS injury, and due to stronger correlation with clinical

outcomes compared to brain atrophy these models should be explored in

future MS clinical trials.

KEYWORDS

magnetic resonance imaging, physiological confounders, multiple sclerosis, disability
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Introduction

Scientific advancements in Multiple Sclerosis (MS)

translated into the development of disease-modifying

treatments (DMTs) that inhibit central nervous system

(CNS) tissue destruction if given to young subjects shortly

after disease onset. Unfortunately, these treatments lose efficacy

with advancing age of patients. On a group level, they show

no statistically-significant inhibition of disability progression

in subjects older than 54 years (1). To develop more effective

MS treatments, we need sensitive outcomes that can quantify

CNS tissue destruction against active comparator, in reasonably

sized cohorts.

Magnetic resonance imaging (MRI) volumetric outcomes

such as brain atrophy, have been successfully used in Phase II

and Phase III MS clinical trials (2–4). However, is brain atrophy

themost sensitive and themost specific imaging outcome inMS?

In terms of sensitivity, there is mounting evidence that

atrophy of deep gray matter (GM) structures, especially

thalamus (5), or enlargement of ventricles (6) exert larger effect

sizes in MS than whole brain atrophy. Additionally, assembling

several of these changing brain volumes into a single model

using machine-learning (ML) algorithm(s) may further increase

effect size.

In terms of specificity, brain atrophy also occurs during

natural aging (7). In what we identified as the largest

published study of healthy volunteers (HV; n = 2,790),

physiological confounders such as age, gender and predicted

intracranial volume (PIV), explained a very high proportion of

variance in thalamic (>60%), caudate (>40%) and ventricular

(57%) volumes (8). In fact, ML-derived models can predict

chronological age [with a mean absolute error of+/-5 years (9)]

using just brain MRI predictors. These are enormous effect sizes

for physiological covariates and yet, mostMSMRI studies do not

subtract these confounder effects when analyzing correlations

between MRI biomarkers and clinical disability (10).

In contrast, a study from European Magnetic Resonance

Imaging in MS (MAGNIMS) consortium (11) examined the

difference between chronological and brain MRI-predicted age,

termed Brain-predicted Age Difference (Brain-PAD). The study

demonstrated that 1204MS patients had on average 6 years

higher Brain-PAD compared to HV. Surprisingly, Brain-PAD

measured in relapsing-remitting [RRMS] was not smaller than

Brain-PAD in secondary- [SPMS] and primary-progressive MS

[PPMS]. Brain-PAD also correlated with disability measured by

Expanded Disability Status Scale (EDSS). Although no effect size

was provided, the associated figures suggested that Brain-PAD

explains <10% of EDSS variance. The authors concluded that

MS is associated with accelerated brain aging (11).

However, there are important logical discrepancies with

this interpretation: 1. If MS caused accelerated aging, then

people with longer MS duration [i.e., progressive MS, (PMS)]

should have higher Brain-PAD compared to people with shorter

MS duration (i.e., RRMS). But this was not the case. 2. If

MS causes accelerated brain aging and MS DMTs inhibit MS-

associated CNS damage, then treated MS patients should have

decreased Brain-PAD. But the authors saw the opposite: treated

MS patients had significantly higher Brain-PAD compared

to untreated MS patients (11). The alternative interpretation,

consistent with the data, is that MS and natural aging destroy

structurally overlapping CNS areas, but MS does so by different

molecular mechanisms.

Indeed, physiological age can be also predicted with high

accuracy by blood (12) or cerebrospinal fluid (CSF) biomarkers

(13). Such CSF proteins-based molecular predictor of age

failed to show accelerated aging in MS (13). These data

strongly support the stated alternative interpretation, in which

(molecular) mechanisms of aging and MS progression are

mostly different.

The logical extension of this alternative interpretation is

that aging and other physiological confounding effects on brain

MRI volumes represent “noise” when measuring MS-specific

processes. Here, we examine this hypothesis by addressing the

following aims: (1) To adjust volumes of the CNS structures for

physiological confounders to understand MS-specific effects on

CNS structures; (2) To examine, whether confounder-adjusted

MRI predictors can be assembled into models that predict

clinical disability in the independent validation cohort, and

whether such model(s) exerts larger effect size(s) than any

singleMRI biomarker; (3) To investigate whether computational

model(s) derived from confounder-adjusted MRI predictors

outperform models(s) from raw MRI volumes in predicting

clinical disability outcomes.

Materials and methods

The study design is shown in Figure 1.

Cohort characteristics

All subjects (MS and non-MS patients and HV) were

prospectively recruited into the protocol “Comprehensive

Multimodal Analysis of Neuroimmunological Diseases of

the Central Nervous System” (Clinicaltrials.gov Identifier:

NCT00794352) and provided written informed consent. The

inclusion criteria for patient cohort are age at least 12 years

and clinical symptoms, CSF results or MRI imaging suggestive

of neuroimmunological disease. Approximately 60% of enrolled

patients eventually fulfill contemporary version ofMS diagnostic

criteria (with all 3MS subtypes represented), while 20% have

other inflammatory neurological diseases (OIND) and 20%

have non-inflammatory neurological diseases (NIND). The HV

inclusion criteria are age at least 18 years, absence of known

diseases and conditions that could affect CNS and normal
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FIGURE 1

Study design. 1: All subjects participating in a prospective collection of standardized clinical and imaging outcomes under a natural history

protocol for 20 years were enrolled. 2: All subjects underwent full neurological examination transcribed to the NeurExTM App that automatically

calculates clinician-derived disability scales. Additional functional tests, such as Symbol Digit Modalities Test (SDMT) and stated confounding

factors were collected and transcribed to research database. 3: All subjects underwent research brain MRI that extended caudally to the C5 level

of the spinal cord (SC). 4: Anonymized MRIs were uploaded to the cloud-based QMENTA platform to derive brain volumetric data using

Lesion-TOADS algorithm. Upper cervical SC C1-C2 volume was calculated using Spinal Cord Toolbox. 5: Resulting quantitative MRI biomarkers

were assessed for quality to identify intra- and inter-individual outliers. Identified outliers were manually checked and scans with incorrect

segmentation were excluded (122/768 = 15.9%). 6: Unblinding of diagnostic categories occurred after exclusion of technical outliers was

completed. 7: We regressed out the e�ects of six stated confounders measured in the HV cohort (n = 80) and applied the same transformation

to non-MS (n = 158) and MS (n = 408) cohorts to eliminate e�ects of physiological confounders on MRI volumes. 8: We validated lack of

residual correlations with the confounding factors in non-MS cohort. 9: MS patients were randomly split into training (n = 277) and validation (n

= 131) cohorts using stratified split to assure equal proportions of gender and MS types in both cohorts. 10: Gradient boosting machine (GBM)

algorithm was applied to the training cohort using confounder-adjusted (and unadjusted) MRI features as predictors to derive two sets of

models for the four stated clinical outcomes. 11: Models were further optimized in the training cohort using 10-fold cross validation. 12:

Resulting eight models were applied to the independent validation cohort that did not contribute, in any way, to the generation or optimization

of the models. Created with BioRender.com.

vital signs at the screening visit. The HV cohort undergoes

exactly same procedures (including same MRI) as patients.

The protocol was approved by the Combined Neuroscience

Institutional Review Board of the National Institutes of Health.

Patient demographics and other clinical characteristics are

provided in Supplementary Figure 1. Note that despite lower

age limit of inclusion criteria, the youngest MS patient was 18

years old.

All subjects (n = 646) with brain MRI images that

passed quality control (see below) and had matched clinical

outcomes were included. Neurological exams documented

in structured electronic medical record note were either

transcribed (before 2017) or directly documented (after

2017) into the NeurExTM App (14) by clinicians with MS

specialization. The NeurExTM App automatically computes MS

disability scales including EDSS (15) (ordinal scale from 0 to 10)

and NeurEx (continuous scale from 0 to theoretical maximum

of 1349).

Functional tests (i.e., timed 25 foot walk and 9 hole peg test)

are required for computing of Combinatorial weight-adjusted

disability score (CombiWISE; continuous scale from 0 to 100)

(16), and Symbol DigitModalities Test (SDMT) (17). These were

acquired by investigators blinded to clinician-derived disability

scales and were recorded into research database.
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FIGURE 2

Example of the adjustment of single MRI biomarker (i.e., ventricular CSF volume) for six physiological confounders. (A) The final equation for the

confounder-adjusted ventricular volume is shown at the top of the Figure in red outline. This equation was derived from multiple linear

regression models as described in the Method section. (B) In the top right corner is resulting radar chart that shows proportional weights of the

applied confounder adjustment, with confounders with lowest weights (i.e., the innermost circle) representing zeros. (C) Univariate linear

regression models between each tested confounder on x-axis (first 5 graphs) or gender (sixth graph) and measured ventricular volume on the

y-axis in 80 healthy volunteers (HV). (D) Same univariate regressions in the HV cohort after applying adjustment formula show no remaining

e�ect of confounders. (E) Applying HV-derived adjustment formula to MS cohort shows remaining significant residual e�ect of age, when

considering Bonferroni adjustment for multiple comparisons (i.e., p < 0.05/12 = p < 0.004). Analogous Figures showing adjustment for all MRI

features are in the Supplementary material. ns, not significant, **P < 0.01.

Volumetric analysis

Investigators involved in MRI analysis were blinded

to diagnostic categories and clinical outcomes. MRIs were

performed on two scanners: Signa (3TA, General Electric,

Milwaukee, WI) using 16-channel head coil and Skyra (3TD,

Siemens, Malvern, PA) using 32-channel head coil. Sequences

included 3D-MPRAGE (TR, 3000ms; TE, 3ms; TI, 900ms;

FA 8◦; 1-mm isotropic resolution, TA 6min), 3D-FLAIR (TR,

4800ms; TE, 354ms; TI, 1800ms; 1-mm isotropic resolution;

acquisition time, 7min), and PD/T2 (TR, 3540ms; TE, 13

and 90ms; 0.8-mm in-plane resolution; slice thickness, 2mm;

acquisition time, 4min) on 3TD and 3D-FSPGR-BRAVO

(TR, 1760ms; TE, 3ms; TI, 450ms; FA 13◦; 1-mm isotropic

resolution; acquisition time, 5min), 3D-FLAIR-CUBE (TR,

6000ms; TE, 154ms; TI, 1800ms; 1-mm isotropic resolution;
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acquisition time, 9min), and PD/T2 (TR, 5325ms; TE, 20

and 120ms; 1-mm in-plane resolution; slice thickness, 3mm;

acquisition time 4min) on 3TA. Sagittal and axial cuts extended

distally to C5 level, allowing determination of medulla/upper

spinal cord (SC) atrophy using SC Toolbox (18).

After pre-processing steps (1. De-identification, 2. DICOM

to NIFTI transformation, 3. Skull stripping; and 4. Alignment),

images were uploaded to commercial cloud-based imaging

platform QMENTA (https://www.qmenta.com/) which, in

collaboration, implemented the published Lesion-TOADS (19)

algorithm. Lesion-TOADS combines a topological and statistical

likelihood atlas for computation of 12 CNS volumetric

biomarkers: Cerebral white matter (WM), Cerebellar WM,

Brainstem, Putamen, Thalamus, Caudate, Cortical gray matter

(GM), Cerebellar GM, Lesion Volume, Ventricular CSF and

Sulcal CSF. Average cross-sectional area (CSA) of the upper

cervical SC at C1-C2 level was calculated using SC Toolbox from

3DMPRAGE brain MRI images.

Before unblinding, we performed quality control of

volumetric data. A total of 122 (15.9%) MRI scans was excluded

due to inaccurate segmentation of brain structures, low image

quality, motion artifacts, or as intraindividual outliers leaving

646 scans for the final dataset.

After unblinding diagnostic categories, MS patients were

randomly split into training and validation cohort (2:1 ratio)

with equal proportion in gender and MS subtypes.

Adjusting MRI biomarkers for healthy
volunteers confounders

Using only the HV cohort (n = 80), MRI volumes were

adjusted for physiological confounders that were previously

shown to influence brain MRI volumes in the HV (8): age,

age2 (to capture non-linear rates of atrophy), body mass index

(BMI), height, gender, and supratentorial intracranial volume;

using stepwise multiple linear regression. Final linear regression

models (equations provided in the appropriate figures) were

applied to all subjects to regress out physiological confounders.

The example of confounder adjustments for ventricular

volume is shown in Figure 2. Supplementary material contains

analogous data for all remaining MRI biomarkers.

The correlation between the confounders and individual

structural volumes, before and after covariate adjustments, was

evaluated using linear regression models in R Studio, reporting

a coefficient of determination (R2; the proportion of variance

explained ranging from 0 to 1, where higher number signifies

closer fit of experimental data points to the linear regression line

of the model) and HV 95% confidence interval.

Differences between HV and MS cohorts in unadjusted

and confounder-adjusted MRI biomarkers were analyzed using

unpaired two-samples Wilcoxon signed-rank test in R (20).

Gradient boosting machine modeling in
the MS training cohort

Unadjusted or confounder-adjusted MRI biomarkers that

showed statistically significant difference between MS and HV

in univariate analyses were used as predictors to model four

clinical outcomes: CombiWISE, EDSS, NeurEx, and SDMT. We

selected a tree-based supervised ML algorithm hypothesizing

that MRI features may have non-linear effects and patients

may exert heterogeneity in which brain/SC structures are

affected by the disease. Among tree-based algorithms, we

selected GBM; while GBM is more difficult to optimize, it

is believed to generally outperform Random Forest. GBM

builds trees sequentially, where each successive tree is built

using residuals from the previous tree’s predictions. The

predictions are iteratively updated by adding the current tree’s

prediction (times a shrinkage parameter) to the previous tree’s

prediction. For each tree constructed, an out-of-bag (OOB)

sample containing half of the observations is withheld from

the training cohort to introduce randomness into the modeling

process. Main GBM tuning parameters are the depth of the

individual trees (interaction depth), the shrinkage parameter

(learning rate), the minimum number of observations in trees’

terminal nodes, and the number of trees. Using the gbm R

package (21), we selected an interaction depth of 6, nodes

of 5, a shrinkage parameter of 0.01, and used a 10-fold

cross validation to select the optimal number of trees that

will prevent each model from overfitting. Improvement in

mean squared error from splits within each individual tree

and the average of these improvements across all trees in the

ensemble calculated the relative influence of each variable in

a model.

Each clinical scale was modeled separately since each

assesses different neurological functions (e.g., SDMT measures

reaction time reflective of cognitive disability whereas other

three scales reflect predominantly physical disabilities). The

models were optimized by observing the lowest root mean

squared error in the combination of feature selections within the

MS training cohort.

GBM model validation

With the final optimized models, two validations

methods were performed: (1) 10-fold cross-validation

and (2) an independent cohort validation. Ten-fold

cross-validation reuses the training cohort data by

randomly partitioning the data into an “internal” training

set (90% of the total training cohort) and validation

set (10% of the total training cohort) on different

iterations. The model then tests prediction accuracy of the

withheld samples.
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FIGURE 3

E�ect of adjustment for physiological confounders on measured di�erences in MRI volumetric features between HV and MS patients. Right side

of the figure shows e�ect sizes of unadjusted (gray bars) and confounder-adjusted (green bars) volumetric MRI features to di�erentiate MS from

HV. E�ect sizes are shown as Standardized Mean Di�erence (i.e., Cohen’s d). Left side of the figure shows the e�ect of applied confounder

adjustment with log p-value. MRI features where confounder adjustment decreased the di�erence between MS and HV are highlighted in blue,

whereas those MRI features where confounder adjustment increased the di�erence are highlighted in red. Eleven out of 15 MRI features

di�erentiated MS from HV with statistical significance. The di�erence between MS and HV was partially driven by confounder di�erences in

majority of these MRI features (6/10). Thus, the applied adjustment decreased the ability of these features to di�erentiate MS from HV. On the

other hand, three measurements of white matter volume (supratentorial WM, normal-appearing WM and cerebellum WM) enhanced their ability

to di�erentiate MS from HV after confounder adjustment.

The independent cohort, a gold-standard

validation technique, utilizes a completely

new dataset that did not participate in

the model development or optimization in

any way.

Correlations between measured and predicted clinical

scores were evaluated using linear regression models in R

Studio version 4.1.0 (22, 23), reporting R2, Spearman Rho

(the relationship strength of the predicted and measured

scores) from R CRAN Package: stats (20) and rstatix

(24); and Concordance Correlation Coefficient (CCC; the

degree of reliability in the method when comparing two

measurements of the same variable) from R CRAN Package:

DescTools (25).

Results

Regressing out physiological
confounders

We regressed out effects of physiological confounders

based on internal HV cohort as described in Methods and

exemplified in Figure 2. For ventricular CSF volume, the

multiple linear regressionmodel selected only effects of age2 and

intracranial volume from the 6 tested confounders. For some

other CNS structures, the multiple linear regression models

were more complex (Supplementary material), but consistent

with published studies examining effects of covariates on CNS

volumes in much larger HV cohorts (8).
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MS-specific residual e�ects of age and
gender on CNS volumes

Consistent with published literature, we observed decrease

in all unadjusted GM volumes with age in MS, HV and

non-MS subjects (Supplementary Figure 2) and significant

decrease in most GM unadjusted volumes in MS vs. HV

cohorts (Figures 3, 4). However, we observed that the

difference between MS and HV for all GM volumes was

highest in young (RRMS) patients compared to older

(PMS) patients (Supplementary Figure 2). Consequently,

when MRI volumes were adjusted for confounding factors

identified in HV cohort, we observed paradoxical positive

correlation of confounder-adjusted GM volumes with age in

MS cohort, that reached statistical significance (i.e., Bonferroni

adjusted p < 0.004) for caudate (R2 = 0.04, p = 0.002;

Supplementary Figure 7), cerebrum GM (R2 = 0.06, p < 0.001,

Supplementary Figure 10), putamen (R2 = 0.08, p < 0.001;

Supplementary Figure 12) and supratentorial GM (R2 = 0.06, p

< 0.001, Supplementary Figure 15). Since these residual effects

were not seen in non-MS cohort (Supplementary Figure 2), they

are MS-specific and are driven by non-physiologically low GM

volumes in young patients.

In contrast, we observed residual loss of supratentorial

WM (R2 = 0.10; p < 0.001) and normal appearing WM (R2

= 0.09; p < 0.001; Supplementary Figure 3) with MS aging,

paralleled by significant residual increase in ventricular (but not

sulcal) CSF volume (R2 = 0.04; p = 0.002). This progressive

non-physiological WM loss also affected the cerebellum WM,

even though the residual correlation of cerebellum WM

with age in MS became non-significant after Bonferroni

adjustment. This loss of WM was MS-specific: the large non-

MS cohort (n = 158) behaved identically to HV regarding

all WM volumes. In contrast, non-MS cohort exhibited

non-physiological atrophy in some GM structures (including

thalamus, Supplementary Figure 4A) and non-physiological

increase in ventricular volume (Supplementary Figure 4B).

We conclude that subtracting effects of physiological

confounders on volumes of CNS structures identified non-

physiological loss of GM volumes in young (RRMS) MS patients

and MS specific, progressive loss of WM volumes across

MS lifespan.

Additionally, subtracting physiological covariates

highlighted gender effects in MS, with males having significantly

higher lesion load and ventricular volume compared to females

(Figure 2E, Supplementary Figure 18E).

Di�erences in unadjusted and
confounder-adjusted MRI features
between HV and MS

As shown in Supplementary Figure 1, HV cohort was

significantly younger than MS (i.e., Median 40.4 years vs.

Median = 52.4 years; p = 1.24e-7). Because most CNS

volumes decrease with age, adjusting for covariates diminished

differences between HV and MS cohorts in most CNS

volumetric biomarkers (Figure 3). The greatest decrease in effect

size was seen for thalamus, caudate and brain parenchymal

fraction (BPFr) - consistent with the reported strong effect of

physiological aging on these CNS structures (8).

Conversely, we observed increase in effect sizes of WM

volumes on differentiating MS from HV after confounder

adjustment: supratentorial WM and normal appearingWM, but

marginally also cerebellumWM.

Confounder adjustment affected correlations between MRI

features (Figure 4). As expected, it eliminated correlations

of MRI biomarkers with age in the HV cohort. But the

adjustment also enhanced correlations of BPFr with

most brain volumes in both HV and MS cohorts. In

MS, confounder adjustments strengthened correlations of

brain WM volumes and ventricular CSF with remaining

MRI features.

Strengthening correlations between MRI features

after confounder adjustment indicate that different

physiological confounders affect different CNS structures

(Supplementary material) (8). This supports the hypothesis that

confounder effects represent noise when analyzing effects of MS

on CNS structures.

Univariate correlations of MRI features
with clinical outcomes

Spearman correlation coefficients (and p-values) of

unadjusted MRI volumes with clinical outcomes (Figure 5,

Supplementary Table 1) show that age correlates stronger

with physical disability outcomes (EDSS, CombiWISE

and NeurEx) than any MRI biomarker. This observation,

underappreciated in MS field, not only highlights the

dominant effect of age on physical disability outcomes but

also raises a question whether (rather weak) correlations of

brain volumes with MS disability outcomes are primarily

driven by their (mutual) correlations with age. In contrast,

lesion volume and ventricular CSF outperformed age in

correlating with SDMT, an outcome focusing on cognitive

disability. These correlations were completely reproduced in

the independent validation cohort of MS patients (Figure 5,

right panels).

If the shared effect of age on MRI volumes and disability

outcomes explained all variance, then subtracting effect of

physiological confounders on MRI volumes should eliminate

correlations of all (adjusted) CNS volumes with MS clinical

outcomes. But this is not what we observed: confounder-

adjusted spinal cord volume, supratentorial and normal

appearing WM volumes and lesion load remained reproducibly

significantly associated with EDSS, NeurEx and CombiWISE.

For SDMT, spinal cord volume did not correlate, and other

Frontiers in Radiology 07 frontiersin.org

https://doi.org/10.3389/fradi.2022.971157
https://www.frontiersin.org/journals/radiology
https://www.frontiersin.org


Kim et al. 10.3389/fradi.2022.971157

FIGURE 4

Correlation matrix of unadjusted and confounder-adjusted MRI features. The top row shows correlations in HV cohort. Bottom row shows

correlations in MS training cohort. Left panel shows correlations of unadjusted MRI features. Right panel shows correlations of

confounder-adjusted MRI features. Correlations that are not statistically significant are marked as (x), positive correlations are marked in red and

negative in blue colors. The size of the circle corresponds to Spearman’s correlation coe�cient. Confounder adjustment eliminated correlations

of MRI features with age, while it generally strengthened correlations of brain parenchymal fraction with remaining MRI features.

than cerebellum WM, all remaining covariate adjusted MRI

volumes remained significantly and reproducibly correlated

with cognitive disability.

We conclude that brain volumes are stronger determinant

of cognitive disability in MS than age, while age has stronger

correlation with physical disability outcomes than any CNS

volume. However, even after subtracting effects of physiological

aging (and other confounders) on MRI volumes, spinal cord

volume, lesion load and supratentorialWM volumes continue to

correlate with physical disability outcomes, demonstrating effect

of MS on these CNS structures beyond natural aging.

Models from MRI volumetric data
adjusted for physiological confounders
achieve stronger e�ect sizes in predicting
MS clinical outcomes in the independent
validation cohort

Unadjusted and confounder-adjusted MRI features that

reproducibly differentiated HV and MS cohorts were inputted

into ML-based models of four clinical outcomes. Because age

and gender exerted significant influence on clinical outcomes

and their effects were subtracted from confounder-adjustedMRI
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FIGURE 5

Unilateral correlation matrix of unadjusted and confounder-adjusted MRI features with disability outcomes. The top row shows unilateral

correlations of disability outcomes with unadjusted MRI features. Left panel shows correlations of MS training cohort and right panel shows

correlations of MS validation cohort. Bottom row shows analogous correlations with confounder-adjusted MRI features. Correlations that are

not statistically significant are marked as (ns). Positive correlations are marked in red and negative in blue colors. Correlation p-values indicate

statistical significance (*P < 0.05, **P < 0.01, and ***P < 0.001). Additional descriptive statistics are shown in Supplementary Table 1.

volumes, we added these demographic variables into the model

that used adjusted MRI volumes. The full statistical results from

all models are in Supplementary Table 2.

In the training cohort (represented by circles in Figure 6A),

models from raw MRI biomarkers (circles with black outlines)

exerted stronger effect sizes compared to models from covariate-

adjusted MRI biomarkers (circles with green outlines) for

physical disability outcomes (i.e., CombiWISE, EDSS, NeurEx).

Model from covariate-adjusted MRI biomarkers outperformed

model from raw MRI biomarkers for SDMT.

However, ML-algorithms are extremely powerful: they can

use spurious observations (i.e., noise) to derive overly optimistic

models. Therefore, ML-derived models must be validated to

derive better estimate of their true effect sizes, even though

this is done in only 15% of MS publications based on recent

meta-analysis (10).

There are two approaches tomodel validation: one reuses the

training cohort data and is generally called “cross-validation.”

We used 10-fold cross-validation, shown in Figure 6A as violin

plots with medians marked by red cross-sectional line. Cross-

validation have broad distribution of effect sizes in comparison

to the full training cohort, showcasing the poor estimate

of model’s performance depending on the training cohort

splits. Nevertheless, cross-validation medians had uniformly

lower effect sizes than the training cohort; the decrease in

effect sizes was substantial (between 40 and 60% for R2;

Supplementary Table 2).

However, because all training cohort data contributed to

some aspects of model development (e.g., selection of MRI

outcomes for modeling), the gold standard of assessing model

performance is applying the final model to the independent

validation cohort. This type of validation is performed in <8%

of published MS studies (10).

The independent validation cohort (shown as diamonds in

Figure 6A) achieved effect sizes consistently below the cross-

validation medians, showcasing that cross-validation medians

still over-estimate models’ performance. Nevertheless, all eight

models validated with very low p-values (all below 9e-8;

Supplementary Table 2).

Most importantly, confounder-adjusted models consistently

outperformed models from unadjusted features in the

independent validation cohort. The absolute difference in R2

values between unadjusted and adjusted models was up to R2

= 0.08 (i.e., EDSS unadjusted model achieved R2 = 0.18, while
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FIGURE 6

Summary of model performances. (A) The left panel shows Spearman Rho correlation coe�cients while right panel shows coe�cient of

determination (R2) for the same 8 models. For each outcome (arranged in vertical columns), the unadjusted models are on the left side outlined

(Continued)
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FIGURE 6 (Continued)

in black, and the confounder-adjusted models are on the right side, outlined in green. The model performance in the training cohort is shown as

circle; the distribution of cross-validation (i.e., re-using of the training cohort) results is shown as a violin plot with the median marked as a red

horizontal line; the independent validation cohort performance is shown as diamond. The size of the symbols (i.e., circle and diamond)

correspond to the Linh’s concordance correlation coe�cient (CCC). Finally, the color of each symbol represents p-value (-log10) with lower

p-values displayed in purple color and higher p-values in orange in accordance with the heatmap displayed in the figure legend. Unequivocal

and robust decrease in model’s performance is seen from training cohort to cross-validation to independent validation. Detailed statistics of the

model performances are shown in Supplementary Table 2. (B) For each clinical outcome modeled (presented in rows) we show number of

features selected in the final model(s) arranged in descending order of variable importance. The unadjusted models are displayed on the left,

while confounder-adjusted models are displayed on the right.

adjusted model had R2 = 0.26; Supplementary Table 2). This

represents relative improvement of 30%.

We conclude that the stronger validation performance

of confounder-adjusted models supports our hypothesis

that effects of aging and other physiological covariates on

MRI volumes represents noise when predicting MS-related

clinical disability.

This does not indicate that age does not play role in MS. In

fact, age was selected as the strongest feature in all confounder-

adjusted models (Figure 6B), implying that age is the most

important determinant of MS-related disability. Our results

simply support the hypothesis that age exerts effects on CNS

structures by (mostly) different mechanisms in physiological

aging and in MS. By separating the effect of age on MS from

its effect on brain structures during natural aging, we built more

reliable models that predict MS-associated disability with higher

effect sizes in the independent validation cohort.

Validated models from
covariate-adjusted MRI biomarkers
predict MS physical (EDSS) and cognitive
(SDMT) disability with comparably
highest e�ect sizes in reported literature

Thanks to recent meta-analysis of 302 papers describing

models of MS clinical outcomes (10), we can compare our

results with other published MRI biomarker-based models.

Using an associated website that allow users to dynamically

explore this rich dataset, we identified 40 papers that

used MRI biomarkers to model EDSS as ordinal scale and

reported p-values, and 20 papers that reported effect sizes

as R2.

Studies that use small cohorts or fail to implement

methodological design limiting bias can overestimate

effect sizes (26–28). Thus, the meta-analysis scored

methodological rigor of reviewed studies by grading 7

criteria: 1. Blinding, 2. Defined strategy to deal with outliers,

3. Explanation of missingness, 4. Adjustment for confounders,

5. Number of comparisons made and whether p-values

were adjusted, 6. Presence of controls and 7. Validation

(cross-validation of the training cohort vs. independent

validation cohort).

The median numbers of criteria fulfilled by published

studies that modeled EDSS was 2, and the majority studied

<100MS patients. Only 25% of studies applied covariate

adjustments. Only 38% of studies adjusted p-values for multiple

comparisons, and studies that did not adjust performed up to

500 comparisons. The studies with the highest methodological

rigor and largest cohorts originated from the MAGNIMS

consortium. MAGNIMS study of effects of GM brain volumes

on differentiating MS (n = 961) from HV (n = 203) and on

disability prediction found negative association between deep

GM (β = −0.71; p < 0.0001) and cortical GM (β = −0.22; p

< 0.0001) and EDSS. Unfortunately, R2 was not reported. For

much smaller studies that reported R2, the range was 0.7 to 0.05

in the training cohort. Only one study reported cross-validation

results (29) and achieved R2 = 0.19 (p-value range from <0.001

to 0.04) in RRMS (n = 250) and R2 = 0.16 (p-value range from

0.02 to 0.04) in PMS (n= 114).

Current study fulfills 7/7 criteria of methodological rigor

and is the only study that includes independent validation

cohort. For the confounder-adjusted EDSS model, the

training cohort R2 is 0.69 (p = 3.8e-43). Median cross-

validation R2 is 0.29 and the independent validation cohort

R2 is 0.26 (p = 2.4e-08). To our knowledge, this is the

strongest reported effect size for predicting EDSS as ordinal

scale from quantitative MRI biomarkers in the literature

thus far.

Analogously, we identified 12 studies that used MRI

predictors for modeling SDMT. 11/12 reported p-values and

5/12 reported R2. The median methodological rigor score

was 2/7 and most cohorts were smaller than 100 subjects

(the largest had 151 subjects). Again, only 25% applied

covariate adjustments. Only 16.7% adjusted for multiple

comparisons and the studies that did not adjust p-values

performed up to 100 comparisons. No studies reported

cross-validation or independent validation. The reported R2

(for the training cohorts) ranged from 0.62 to 0.3. Again,

our confounder-adjusted SDMT model achieved R2 = 0.78

(p = 7.3e-75) with independent validation R2 = 0.34

Frontiers in Radiology 11 frontiersin.org

https://doi.org/10.3389/fradi.2022.971157
https://www.frontiersin.org/journals/radiology
https://www.frontiersin.org


Kim et al. 10.3389/fradi.2022.971157

(p = 2.9e-11), which represents the best performance among

published studies.

Discussion

The goal of this project was to gain understanding of MS-

driven volumetricMRI changes and to examine if computational

models of confounder-adjusted MRI volumes reproducibly

predict different clinical outcomes.

Before we discuss our findings, we want to point out

following limitations: our HV cohort is relatively small

and the Lesion-TOADS automated segmentation algorithm,

implemented from the inception of our natural history protocol,

has relatively narrow adoption. Despite the differences in cohort

sizes and the segmentation algorithms, our observations are

aligned with published literature, both for HV (8) and MS

(30, 31). Specifically, although we tested six confounders, only

age (and age2), gender and total intracranial volume influenced

volumetric brain MRI features with effect sizes comparable to

those reported previously (8). Second, we did not examine

the interaction between confounders because others (8) found

that these had negligible effects. To facilitate broader use and

potential external validation of our results, we collaborated

with QMENTA to implement publicly available Lesion-TOADS

algorithm on their platform. The other important limitation is

that by the virtue of being national referral center, our patient

population may be skewed toward subject with more aggressive

disease. However, this limitation applies to all MS imaging

studies, as these are performed almost uniformly in tertiary

academic centers.

Notwithstanding these limitations, our study achieved its

aims and highlighted under-appreciated aspect of age (and

other physiological covariates) on CNS volumes that are

generally believed to reflect solely MS disease process. Instead,

age had consistently stronger univariate correlations with MS

physical disability than any single MRI biomarker. In other

words, age of the MS patient more accurately predicts his/her

physical disability than any single volumetric CNS biomarker,

including upper cervical spinal cord volume. Ignoring such

large effects of confounders on MRI volumes overestimates

how well the measured change reflects MS progression. It

also poses problem for development of new treatments,

especially for progressive MS patients who no longer form

new lesions, and thus Phase II trials can’t use contrast-

enhancing lesions (CELs) as outcome. If physiological aging

exerts stronger effect size on brain volumes thanMS progression,

then treatments that target MS-specific process may have

limited effect on brain volumes (e.g., brain atrophy), which

is precisely what was seen in the trial of lamotrigine in

SPMS (32).

These observations support underlying premise for this

work, that if we want to understand disease-specific effects and

test disease-targeting treatments, we cannot ignore physiological

confounders with large effect sizes. Indeed, correcting for

covariates provided two important insights inMS-specific effects

on brain tissue: very early decrease in GM volumes in young

MS patients and progressive, non-physiological loss of CNS

WM volumes.

How do we explain the apparent discrepancy between

MS-specific effects on GM vs. WM volumes when these are

biologically related (i.e., axonal loss must lead to neuronal loss)?

Unfortunately, processes such as edema, inflammation, gliosis

and restructuring of extracellular matrix may mask cellular (e.g.,

neuronal) loss during disease process. Even relative stability

of T2 lesion load after patients stopped forming new lesions

may be molecularly dynamic, where spread of diseased tissue at

lesion edge (e.g., in chronic active lesions) maybe compensated

by the volume collapse at severely affected lesion center.

Because volumetric MRI can’t differentiate such molecularly

distinct processes, all we can conclude that after subtracting

the effects of natural aging and sexual dimorphism, WM

pathology (represented by formation of MS lesions associated

with atrophy of deep GM structures and enlargement of

ventricles) is the dominant effect of MS visible on conventional

volumetric brain MRI. The resulting correlation matrix of

confounder-adjusted MRI volumes supports this conclusion

by demonstrating relatedness of MS-induced changes in

all aforementioned structures. Similarly, these related brain

structures were selected by most GBM models, with predictably

higher influence of WM volumes in the models based on

confounder-adjusted biomarkers.

Our GBM models from confounder-adjusted MRI features

predicted four MS disability scales with high statistical

significance in the independent validation cohort. These models

outperformed analogous models derived from unadjusted

MRI features and significantly outperformed any single MRI

biomarker in the independent validation cohort.

Our results also highlight the limitation of studies that

model MS clinical outcomes in the single cohort and do

not validate model performance in the new set of patients

who did not contribute to model generation or optimization.

We show that training cohort data, including cross-validation,

overestimate effect sizes and do not reliably predict the

performance of themodels in the independent validation cohort.

Specifically, apparently stronger models derived from raw

(covariate unadjusted) MRI biomarkers in the training cohort

under-performed compared to covariate-adjusted models in the

independent validation cohort, for all outcomes tested.

This is consistent with our extensive observations using

independent validation in all our projects (33–36). Therefore,

while cross-validation should be included in all modeling

studies, the independent validation must be considered a

gold standard. However, only 15% of published MS studies

used any validation strategy and only 8% used independent

validation (10).
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In conclusion, covariate-adjusted models outperform

correlations of any single MRI biomarker with clinical

outcomes. These models are therefore likely more sensitive

imaging outcomes. Additionally, by subtracting covariates,

these models should more accurately reflect MS-specific

effects on CNS tissue and thus might be more responsive to

MS-targeted treatments.

This hypothesis should be tested in future clinical trials,

especially when targeting older subjects with progressive

MS who no longer form acute MS lesions. Current paper

provides all equations for adjusting MRI volumes and

list of variables in each model. The final models should

be recreated from pre-treatment (baseline) data collected

during clinical trial to compensate for the variance caused

by differences in scanning protocols and volumetric

analysis methods.
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