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The gut microbiome profoundly influences brain structure and function. The gut

microbiome is hypothesized to play a key role in the etiopathogenesis of neuropsychiatric

and neurodegenerative illness; however, the contribution of an intact gut microbiome

to quantitative neuroimaging parameters of brain microstructure and function remains

unknown. Herein, we report the broad and significant influence of a functional

gut microbiome on commonly employed neuroimaging measures of diffusion tensor

imaging (DTI), neurite orientation dispersion and density (NODDI) imaging, and SV2A
18F-SynVesT-1 synaptic density PET imaging when compared to germ-free animals. In

this pilot study, we demonstrate that mice, in the presence of a functional gut microbiome,

possess higher neurite density and orientation dispersion and decreased synaptic density

when compared to age- and sex-matched germ-free mice. Our results reveal the

region-specific structural influences and synaptic changes in the brain arising from the

presence of intestinal microbiota. Further, our study highlights important considerations

for the development of quantitative neuroimaging biomarkers for precision imaging in

neurologic and psychiatric illness.
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INTRODUCTION

Interactions between commensal gut bacteria and the central nervous system (CNS) profoundly
impact brain structure and function (1). Clinical and epidemiological studies have shown changes
in gut microbiota are associated with neurologic, neurodegenerative, and psychiatric disorders
(2–6) and collectively reflect the relationship between intestinal microbiota and neurologic
and psychiatric health throughout the lifespan. Although the causal links between altered gut
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microbiota and neurologic and psychiatric illness remains
unknown, cellular and molecular studies of germ-free (GF) and
gnotobiotic animals have shown disruptions to neurogenesis
(7), cortical myelination (8) and microglia-mediated synaptic
pruning (9) as well as deficits in microglia maturation
(9) and fear extinction learning (10). However, despite a
growing understanding of the microbiota-gut-brain axis and
their clinical correlates, our ability to characterize, quantify,
and track microbiota-gut-brain interactions in clinical practice
remains limited.

These limitations largely stem from the absence of clinically
accessible measures of brain structure and function that are both
neurobiologically salient and sensitive to the composition of gut
microbiota. Many currently employed strategies use structural
techniques (qT1, T2) to study the relationship between gut
microbial composition and the brain, but these methods do
not provide meaningful insights into neurobiology. Additionally,
even though previous work has demonstrated strong associations
between altered gut microbiomes and psychiatric illness, the
small number of imaging studies exploring the link between the
gut and the brain are confounded by an inability to distinguish
neuropathological changes occurring as a result of the disease
process from those potentially arising from the gut microbiota
themselves (11). And critically, although studies of germ-free
(GF) and gnotobiotic animals have uncovered the molecular
and cellular effects of commensal gut bacteria on the brain,
little is known about the contribution of gut microbiota to
baseline measures of neural microstructure or brain function,
which further hampers our collective ability to understand and
ultimately assess the impact of altered gut microbiota in the
disease state.

Guided by previous evidence demonstrating that GF and
conventionally colonized mice possess significant differences
in neurite morphology (12) and that alterations in synaptic
density, a crucial marker of overall brain function, is associated
with neurodevelopmental disorders such as autism spectrum
disorder (ASD) and psychiatric illnesses such as schizophrenia
and major depressive disorder (13–15), we performed 18F-
SynVesT-1/NODDI (neurite orientation dispersion and density
imaging) PET/MRI on GF and gnotobiotic mice to acquire
both structural (neurite density and morphology) and synaptic
measures of the brain that are both quantitative, complementary,
and translationally relevant. Further, as a corollary, we sought to
determine the degree to which resident gut microbes contribute
to brain microstructure and synaptic density. Lastly, as both
18F-SynVesT-1 PET and NODDI MRI are techniques that can
be performed on clinical timescales, our findings additionally
highlight the clinical translational potential of 18F-SynVesT-
1/NODDI PET/MRI for imaging the structural and synaptic
correlates of the gut microbiome in human health and disease.

MATERIALS AND METHODS

Animals
All experimental work was performed in accordance with
animal protocols approved by the institutional animal care
and use committee at our institution (Protocol Nos. M005899,

M05599, and M05532). All GF C57BL/6 mice were maintained
in a controlled environment in plastic flexible film gnotobiotic
isolators under a strict 12 h light/dark cycle and received
sterilized water and standard chow (LabDiet 5021; LabDiet, St
Louis, MO) ad libitum. Sterility of GF animals was confirmed
by incubating freshly collected fecal samples under aerobic and
anaerobic conditions using standard microbiology methods and
PCR analysis of the bacterial 16S DNA region. Humanized
gnotobiotic (HG) mice were generated by oral gavage of GF
mice with well-characterized human gut bacterial isolates (16)
at 8 weeks of age, which contained a representative core
community of eight species that are commonly found in
the human microbiota (Anaerotruncus colihominis, Bacteroides
caccae, Bacteroides thetaiotaomicron, Clostridium symbiosum,
Collinsella aerofaciens, Coprococcus comes, Providencia stuartii
and Ruminococcus torques). All HG animals are bred and
maintained under specific pathogen free conditions and
maintained on an irradiated standard chow diet (TD.2918;
Envigo, Madison, WI). The successful transplantation of this
community was confirmed using community profiling by
sequencing (COPRO-Seq) (16). All animals were born and raised
at our institution. The age of experimental animals were P55
germ-free (n= 5); gnotobiotic (n= 5); and P90 germ-free (n= 4)
and gnotobiotic (n= 4). Only male animals were used to control
for estrous effects. Imaging sample size estimations are based
on a Markov Chain Monte Carlo approach (17) and informed
by our previously published work (18–21) with power analyses
indicating observed effect size values of d = 2.5 or greater
given low standard deviation between within-group replicates
(σ between 0.01 and 0.001), thus validating sample sizes of 4 or
greater replicates per group.

18F-SynVesT-1 Generation
18F-SynVesT-1 was generated as previously described (22).
Briefly, cyclotron produced 18F-fluoride ions were first trapped
onto a quaternary ammonium anion (QMA) exchange cartridge,
eluted, dried, and mixed with a fresh prepared solution of 2.5mg
SynVesT-1 precursor, 5mg copper triflate, and 8 µL of pyridine
in 0.5mL of dimethylacetamide; the reaction vial was then heated
at 110◦C for 20min, cooled to 50◦C and purified with a Luna
C18 (2) 10 × 250mm (5µm) column. The purified product was
collected into a dilution vial containing 40mL of water and with
a C18 cartridge, subsequently trapped, washed, and eluted with
1mL of ethanol injection into a product vial containing 5mL of
0.9% sodium chloride. The product purity was >99% and decay
uncorrected yield was 16%.

PET/CT Imaging and PET ROI Analysis
At post-natal days 55 and 90 (P55 and P90), age- and sex-
matched male GF mice and HG mice were imaged under
isoflurane gas anesthesia on a small animal PET/CT scanner
(Siemens Inveon Hybrid). CT was acquired for attenuation
correction and anatomic localization. Dynamic PET imaging
was carried out under anesthesia for 45min. 5.5 MBq
± 0.4 (range 4.7–6.0) of 18F-SynVesT-1 was administered
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intravenously through the lateral tail vein. The 45-min 18F-
SynVesT-1 PET acquisition was reconstructed into 1-min-
per-frame images, starting at t = 60 s using 3-dimensional
ordered-subset expectation maximization (OSEM, 2 iterations,
16 subsets) followed by a maximum a posteriori probability
(MAP) algorithm. The PET and CT images were reconstructed
at 128 × 128 × 159 (0.78 × 0.78 × 0.8mm) and 480 × 480
× 635 (0.21 × 0.21 × 0.21mm), respectively. PET images were
converted to standardized uptake values (SUV). 3D regions of
interest (ROIs) were manually placed over the whole brain and
SUVmean (herein referred to as SUV) at each frame was recorded
using MIM (MIM Software Inc., Cleveland OH). One GF mouse
was excluded from the 18F-SynVesT-1 analysis due to substantial
motion. SUVs at each time point were averaged within each
mouse cohort and 18F-SynVesT-1 time-activity curves were
generated for each cohort. The area under the curve (AUC) for
GF and HG cohorts were calculated at the peak stabilized interval
(4.5–10.5 min).

After 24 h, the same mice were administered 10.7 MBq ± 0.2
(range 10.4–11.1) of 18F-flurodeoxyglucose (FDG) through the
lateral tail vein. Sixty minutes post injection, PET imaging was
performed acquiring approximately 50million counts permouse.
As with the 18F-SynVesT-1 PET data, 18F-FDG PET images were
reconstructed using 3-dimensional ordered-subset expectation
maximization (OSEM, 2 iterations, 16 subsets) followed by
a maximum a posteriori probability (MAP) algorithm. CT
attenuation, scatter and decay correction were applied to all
datasets. The PET and CT images were also reconstructed
at the spatial resolutions of 128 × 128 × 159 (0.78 ×

0.78 × 0.8mm) and 480 × 480 × 635 (0.21 × 0.21 ×

0.21mm), respectively.
The Waxholm MR atlas (23) was used to identify the

hippocampus, neocortex, amygdala, ventral thalamus, lateral
thalamus, globus pallidus, caudate putamen, hypothalamus,
and accumbens. After upsampling the PET images to match
the resolution of the CT images, brain masks were semi-
automatically generated by thresholding the CT image in
MATLAB to include brain tissue and were refined using
subsequent image dilation and filing steps as needed. All brain
masks were visually confirmed for each subject. The Waxholm
MR atlas was individually registered to the CT brain masks of
each subject using affine registration in MATLAB (imregtform).
Then, the registeredWaxholm atlases were used to compute SUV
values for each brain region.

MR Imaging Acquisition, Data
Preprocessing, and Analysis
Following PET imaging, animals were transcardially perfused
with 4% paraformaldehyde and brains were excised for ex
vivo MRI acquisition with a 4.7T Agilent MRI system and a
3.5 cm diameter quadrature volume RF coil. Ex vivo imaging
and analysis, including standard data preprocessing, and study
template generation, was performed as previously described
(24). Multi-slice, diffusion-weighted spin echo images were used
to acquire 10 non-diffusion-weighted images (b = 0 s/mm2)
and 75 diffusion-weighted images (25 images: b=800 s/mm2;

50 images: b = 2,000 s/mm2) using non-collinear, diffusion-
weighting directions. Diffusion imaging was performed with an
echo time of 24.17/2,000ms, field of view = 30 × 30 mm2, and
matrix = 192 × 192 reconstructed to 256 × 256 for an isotropic
voxel size of 0.25mm over 2 signal averages. Multi-shell diffusion
data were fit with the Microstructure Diffusion Toolbox (25)
to the NODDI ex vivo model. An additional compartment of
isotropic restriction was included to account for potential fixative
effects as recommended (26). Tract-based spatial statistics (TBSS)
was performed as previously described (21) with an FA threshold
of 0.2 applied for skeleton generation, a permutation test with
n = 252, multiple comparisons correction and threshold-free
cluster enhancement; p < 0.05 was utilized as a threshold for
significance. Regions of interest (ROIs), including the left and
right hippocampus, frontal association cortex, and amygdala,
were selected a priori and defined with a DTI-based mouse brain
atlas (27).

Statistical Analysis
Imaging sample size estimations are based on a Markov Chain
Monte Carlo approach (17) and informed by our previously
published work (18–21) with power analyses indicating observed
effect size values of d = 2.5 or greater given low standard
deviation between within-group replicates (σ between 0.01 and
0.001), thus validating sample sizes of 4 or greater replicates
per group [significance level of 5% and power of 90% (11)].
Statistical differences between groups were performed using a
two-tailed unpaired Student’s t-test; p < 0.05 was established
as the significance level. For MRI ROI analyses, a Student’s
t-test was used to determine the significance (p < 0.05) of
ROI values between GF and gnotobiotic mice; statistically
significant differences were determined after controlling for
multiple comparisons with the Benjamini–Hochberg procedure
(false discovery rate= 0.05).

RESULTS

The Presence of a Functional Gut
Microbiome Is Associated With Increased
Neurite Density and Orientation Dispersion
Compared to Germ-Free Mice
To determine whether commonly employed diffusion weighted
imaging techniques are sensitive to alterations in brain
microstructure due to the presence of a gut microbiome, we first
performed DTI and NODDI on male GF and HG mice. Whole-
brain voxelwise tract-based spatial statistics (TBSS) analysis
comparing the HG mice to age and sex-matched GF mice
was performed at P55 and P90. No significant differences in
fractional anisotropy (FA) were identified; however, TBSS studies
uncovered significant voxelwise changes in mean diffusivity
(MD) and a reduction in neurite density (NDI) and orientation
dispersion (ODI) in GF mice when compared to HG mice
at the P55 time point (Figure 1). By P90, TBSS showed
similar global increases in MD, but no significant difference
in NDI or ODI between humanized gnotobiotic (HG) and
GF animals.
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FIGURE 1 | Coronal (left), axial (middle), and sagittal (right) TBSS plots of

voxelwise changes in FA, NDI, and ODI between GF and HG P55 male

animals. No significant voxelwise differences in fractional anisotropy (FA) were

identified; however, TBSS analyses uncovered significant voxelwise reductions

in both neurite density (NDI) and orientation dispersion (ODI) in GF mice when

compared to HG mice. At P90, no significant voxelwise differences in NDI or

ODI were detected between HG and GF animals.

We next performed a region of interest (ROI) analysis to test
the contribution of the gut microbiome to brain microstructure
in ROIs salient to neuropsychiatric and neurocognitive illness.
Three regions were selected a priori for further analysis: the
hippocampus, frontal association cortex, and amygdala. Mean
values of DTI and neurite indices were computed within each
ROI (left and right) for each individual subject for a total of 6
calculated ROIs per subject. Our results match the TBSS findings
with statistically significant increases in MD, reduced NDI, and
reduced ODI found in most regions of GF mice when compared
to HG animals (unpaired t-test; p < 0.05) (Table 1). Differences
were again more evident in animals at P55 than at P90.

The Presence of a Functional Gut
Microbiome Is Associated With Decreased
Synaptic Density Compared to Germ-Free
Mice
The effect of gut microbiota on synaptic density was next
analyzed via in vivo PET/CT imaging with 18F-SynVesT-1 at
P90 (Figures 2A,B). 18F-FDG PET imaging was also performed
to examine potential metabolic differences between GF and
HG animals. Static 18F-FDG imaging was obtained 60min after
injection of the radiotracer; dynamic 18F-SynVesT-1 imaging
was obtained over 45min. The time-activity curve of 18F-
SynVesT-1 shows a rapid increase, peaking at ∼ 2min, followed
by clearance of the radiotracer by 20min (Figure 2C). Area
under the curve (AUC) analysis indicates significantly reduced
SUV(mean) in HG mice compared to the GF mice (Figure 2D).

There was no significant difference in the uptake of 18F-
FDG (Figure 2E). In parallel to our diffusion-weighted imaging
ROI analysis, the hippocampus, neocortex, and amygdala were
selected a priori for 18F-SynVesT-1 binding ROI analysis,
while the ventral thalamus, lateral thalamus, globus pallidus,
caudate putamen, hypothalamus and accumbens were further
selected for exploratory analysis. HGmice demonstrated reduced
SV2A binding with significantly reduced SUV(mean) in all
regions except for the caudate putamen (unpaired t-test; p <

0.05) (Table 2).

DISCUSSION

Gut bacteria significantly influence numerous molecular and
cellular processes (7–9, 28–35) and are also associated with
a broad spectrum of neuropsychiatric illnesses (36–40). With
growing recognition of the salience of the gut microbiota in
neurologic and neuropsychiatric health, there is not only an
intense interest to more fully understand the gut microbiota-
brain axis and its relationship to psychiatric illness but also to
uncover the biological mechanisms that lead to the psychiatric
disease state. However, significant barriers currently limit
our ability to translate emerging scientific insights about gut
microbiota effects on psychiatric health into clinical populations.
These include a limited understanding of the contribution of
gut microbiota to baseline measures of neural microstructure
or brain function and the absence of a clinically accessible
method to quantitatively evaluate the changes that occur in
the brain due to alterations in the gut microbiota. To address
these shortcomings, we have demonstrated the potential utility
of 18F-SynVesT-1/NODDI PET/MRI as a novel multimodal
neuroimaging method that can be utilized to acquire quantitative
measures of structural (neurite density and morphology) and
synaptic density changes attributable to the presence of an
intact functional gut microbiome. We further show that GF
mice harbor reduced neurite density and reduced orientation
dispersion when compared tomice with a humanized gnotobiotic
gut microbiome and additionally demonstrate GF mice possess
increased synaptic density that is potentially attributable to
poor synaptic pruning in the absence of a functional gut
microbiome (9).

Although there are no directly comparable studies in the
literature, our results confirm findings from previous animal
studies that indicate that the gut microbiome is crucial for
normal morphological development of neurons and synaptic
pruning. Luczynski et al. (12) showed that the neurons of the
hippocampus in germ-free mice had shorter neurites with less
branching and thinner spines at a P63-70 time point, which is
compatible with our findings of reduced neurite density and
orientation dispersion in germ-free mice. Our PET findings
are also compatible with recent work finding that germ-free
mice over-express synapse-related genes, which leads to an
abnormal increase in synapse formation (41). As previous
neuroanatomical and cellular studies of the developing central
nervous system are consistent with our neuroimaging findings,
multiparametric PET/MR studies with 18F-SynVesT-1/NODDI
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TABLE 1 | Humanized gut microbiota contribute to significant changes in quantitative neural microstructure in salient regions implicated in neurologic and psychiatric

illness.

Age DWI Measure Hemi. ROI Mean ± SEM p-value

Germ-free Gnotobiotic

P55 FA Left HC 0.18315 ± 0.00530 0.18546 ± 0.00235 0.363

FAC 0.15794 ± 0.00305 0.15979 ± 0.00271 0.345

Amg 0.18017 ± 0.00344 0.17920 ± 0.00725 0.458

Right HC 0.18743 ± 0.00328 0.18871 ± 0.00258 0.393

FAC 0.16682 ± 0.00501 0.15997 ± 0.00215 0.142

Amg 0.19596 ± 0.00331 0.19550 ± 0.00253 0.461

MD Left HC 0.38320 ± 0.00389 0.34560 ± 0.00545 <0.01*

FAC 0.36760 ± 0.00570 0.32140 ± 0.00906 <0.01*

Amg 0.36620 ± 0.00532 0.32980 ± 0.01027 <0.05*

Right HC 0.39140 ± 0.00430 0.34760 ± 0.00569 <0.01*

FAC 0.36600 ± 0.00789 0.33640 ± 0.00658 <0.05*

Amg 0.37100 ± 0.01221 0.32700 ± 0.00509 <0.01*

NDI Left HC 0.27929 ± 0.00401 0.33678 ± 0.00871 <0.01*

FAC 0.33005 ± 0.01774 0.40784 ± 0.02171 <0.05*

Amg 0.31323 ± 0.00812 0.36850 ± 0.01866 <0.05*

Right HC 0.26832 ± 0.00641 0.33041 ± 0.00768 <0.01*

FAC 0.33399 ± 0.03864 0.39707 ± 0.02270 0.117

Amg 0.31268 ± 0.00634 0.36305 ± 0.00693 <0.01*

ODI Left HC 0.28833 ± 0.01104 0.33706 ± 0.00446 <0.01*

FAC 0.35944 ± 0.00625 0.43192 ± 0.01841 <0.01*

Amg 0.34415 ± 0.01085 0.38631 ± 0.02160 0.075

Right HC 0.26686 ± 0.00623 0.32940 ± 0.00633 <0.01*

FAC 0.32640 ± 0.01327 0.41286 ± 0.01424 <0.01*

Amg 0.30175 ± 0.01577 0.36514 ± 0.00894 <0.01*

P90 FA Left HC 0.17947 ± 0.00321 0.17692 ± 0.00664 0.277

FAC 0.14894 ± 0.00259 0.15253 ± 0.00441 0.172

Amg 0.16868 ± 0.00484 0.16050 ± 0.00688 0.357

Right HC 0.18248 ± 0.00461 0.17599 ± 0.00305 0.178

FAC 0.15173 ± 0.00193 0.14860 ± 0.00127 0.373

Amg 0.18298 ± 0.00834 0.17442 ± 0.00324 0.218

MD Left HC 0.45550 ± 0.00669 0.42325 ± 0.00239 <0.01*

FAC 0.40650 ± 0.00462 0.37500 ± 0.00628 <0.01*

Amg 0.48417 ± 0.01220 0.47075 ± 0.02176 0.175

Right HC 0.46800 ± 0.00870 0.43800 ± 0.01968 0.117

FAC 0.39873 ± 0.01026 0.36650 ± 0.01538 <0.05

Amg 0.49067 ± 0.01766 0.46625 ± 0.00872 0.085

NDI Left HC 0.37533 ± 0.00123 0.38404 ± 0.00123 <0.01*

FAC 0.39376 ± 0.00464 0.40728 ± 0.00653 0.067

Amg 0.37361 ± 0.00338 0.38199 ± 0.00777 0.144

Right HC 0.37332 ± 0.00051 0.38896 ± 0.00543 <0.05*

FAC 0.39929 ± 0.01250 0.44848 ± 0.02088 <0.05*

Amg 0.37223 ± 0.00378 0.38086 ± 0.00313 <0.05

ODI Left HC 0.24198 ± 0.00439 0.26345 ± 0.00832 <0.05

FAC 0.30100 ± 0.00383 0.35007 ± 0.00969 <0.01*

Amg 0.25615 ± 0.00555 0.27611 ± 0.01576 0.196

Right HC 0.23252 ± 0.00841 0.25692 ± 0.00831 0.089

FAC 0.30288 ± 0.01264 0.36021 ± 0.01150 <0.05*

Amg 0.22202 ± 0.00796 0.25563 ± 0.00597 <0.05

All values are mean ± standard error of the mean (SEM). Units of measure for FA, MD, NDI, and ODI are [10−3 mm2/s]. Bolded and italicized p-values are statistically significant. Starred

p-values are statistically significant after controlling the false discovery rate with the Benjamini-Hochberg procedure (false discovery rate = 0.05). Regions of interest (ROIs) correspond

to ROIs defined from the Center for in vivo Microscopy (CIVM) mouse brain atlas. Ages of P55 and P90 animals are 45 and 90 days post-natal, respectively. P55 germ-free (n = 5) and

gnotobiotic (n = 5) and P90 germ-free (n = 4) and gnotobiotic (n = 4) animals are all male. Hemi, hemisphere; FA, fractional anisotropy; NDI, neurite density index; ODI, orientation

dispersion index; HC, hippocampus; FAC, frontal associations cortex; Amg, amygdala.
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FIGURE 2 | (A) Fused axial PET/CT images of male P90 HG (top row) and GF (bottom row) mice following the injection of 18F-SynVesT-1 demonstrating the

qualitative higher uptake of the SynVesT-1 radiotracer in GF mice. (B) Static 18F-FDG images of HG (top row) and GF (bottom row). (C) Time-activity curves (mean ±

SD) of male GF and HG P90 mice. The area under the curve was calculated for the peak stabilized interval (4.5–10.5min) for 18F-SynVesT-1 (D) and 18F-FDG (E). HG,

humanized gnotobiotic mice; GF, germ-free; *p < 0.05.

TABLE 2 | Gut microbiota are associated with significant alterations in synaptic density.

18F-SynVesT-1 ROI Mean (±SEM) p-value

Germ-free Humanized gnotobiotic

SUV (mean) HC 0.97565 (±0.04420) 0.76368 (±0.04091) <0.05

NC 0.82295 (±0.03747) 0.67343 (±0.03653) <0.05

AM 0.90888 (±0.02732) 0.73379 (±0.04848) <0.05

VT 1.04453 (±0.06381) 0.79085 (±0.03936) <0.05

LT 1.08326 (±0.06756) 0.80882 (±0.04963) <0.05

GP 1.03449 (±0.06282) 0.80712 (±0.04187) <0.05

CP 1.01670 (±0.07021) 0.79078 (±0.04224) 0.051

HT 0.98326 (±0.05794) 0.76001 (±0.03679) <0.05

AC 1.08539 (±0.07685) 0.81797 (±0.04625) <0.05

SUVR (cerebellum) HC 1.44382 (±0.06410) 1.24986 (±0.02023) <0.05

NC 1.21725 (±0.04783) 1.10206 (±0.01726) 0.086

AM 1.34478 (±0.03501) 1.19967 (±0.03569) <0.05

VT 1.54504 (±0.08755) 1.29514 (±0.02959) 0.054

LT 1.60232 (±0.09286) 1.32233 (±0.01354) <0.05

GP 1.53034 (±0.08726) 1.32165 (±0.03408) 0.090

CP 1.50353 (±0.09553) 1.29435 (±0.02525) 0.102

HT 1.45480 (±0.08210) 1.24527 (±0.03796) 0.081

AC 1.60566 (±0.10849) 1.33834 (±0.02545) 0.074

All values are mean ± standard error of the mean. Unit of measure is g/mL. Bolded and italicized p values are statistically significant. HC, hippocampus; NC, neocortex; AM, amygdala;

VT, ventral thalamus; LT, lateral thalamus; GP, globus pallidus; CP, caudate putamen; HT, hypothalamus; AC, accumbens. HC, NC, and A were examined a priori, whereas the other

ROIs were chosen for exploratory analysis.
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are thus well-positioned to explore gut microbial influences on
brain microstructure and synaptic density.

Our findings also raise important considerations for the
neuroimaging of psychiatric illness and rigor and reproducibility
of such research. A second but no less important conclusion
of our results is the finding that gut colonization significantly
influences quantitative neuroimaging measures of brain
structure and function. Diffusion tensor imaging and emerging
multicompartment diffusion imaging methods such as NODDI
are widely used to study neural microstructure in neurologic
and psychiatric illness; likewise, new SV2A synaptic PET
radiotracers such as 11C-UCB-J and 18F-SynVesT-1 are
rapidly emerging as important imaging tools to examine
important biological correlates underlying the pathogenesis of
schizophrenia and other psychiatric illnesses (42). Although
we present and demonstrate 18F-SynVesT-1/NODDI PET/MRI
as a multiparametric technique to capture salient structural
and functional changes attributable to the presence of a
functional gut microbiome, conversely and critically, it is also
conceivable that psychiatric neuroimaging studies and imaging
endophenotypes of psychiatric illness may be unknowingly
affected by metagenomic effects that can further challenge
efforts to identify and refine candidate neuroimaging biomarkers
across a wide variety of diseases, especially those with a known
connection to gut microbial dysbiosis.

Our study has limitations. One limitation is our abridged
PET analysis. Ideally, binding potential of the SynVesT-1 tracer
would be quantified in regions of interest through tracer kinetic
modeling with metabolite correction following arterial blood
sampling, which would be beyond the scope of a pilot study. In its
place, we compared integrated time-activity curves at early time
points due to fast tracer kinetics and expected high metabolite
fractions at later time points as has been reported in other similar
SV2A tracers (43). Likewise, reference region analysis using
the centrum semiovale (white matter, as previously reported
in human studies) is precluded in this murine study due to
limited scanner resolution. Kinetic modeling with arterial blood
sampling will be pursued in follow-up studies. An additional
limitation is that our results do not provide insight into how
future studies might discriminate the degree and extent observed
structural and synaptic changes might be attributable to either
the underlying disease process or unaccounted metagenomic
contributions. Careful study design incorporating metagenomic
data as potential study confounds will be needed to control
and account for these important contributors to measured
brain microstructure.

CONCLUSION

In conclusion, we present initial pilot data for 18F-SynVesT-
1/NODDI PET/MRI as a clinically accessible multiparametric
neuroimaging approach to acquire both structural and synaptic

brain measures that are quantitative, complementary, and
reflective of brain changes attributable to the presence of a gut
microbiome. Our work, for the first time, importantly highlights
the sensitivity of commonly employed neuroimaging techniques
(e.g., diffusion MRI) to non-genetic and environmental factors
like the gut microbiome, which can potentially have a crucial
and outsized effect in neuroimaging studies of the brain. This
raises the potential need to incorporate such factors into future
study designs if we are to achieve precision imaging in diseases
of the CNS and to build greater rigor and reproducibility into
quantitative neuroimaging research. With growing evidence of
the role of the gut microbiome in early neurodevelopment and
neuropsychiatric illness, 18F-SynVesT-1/NODDI PET/MRI can
be employed to not only to further examine the biological
underpinnings of the microbiome-gut-brain axis, but also to
improve clinical diagnostic accuracy, patient risk stratification,
and therapeutic monitoring for neuropsychiatric disorders.
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