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Identifying white matter (WM) tracts to locate eloquent areas for preoperative surgical

planning is a challenging task. Manual WM tract annotations are often used but they are

time-consuming, suffer from inter- and intra-rater variability, and noise intrinsic to diffusion

MRI may make manual interpretation difficult. As a result, in clinical practice direct

electrical stimulation is necessary to precisely locateWM tracts during surgery. Ameasure

of WM tract segmentation unreliability could be important to guide surgical planning and

operations. In this study, we use deep learning to perform reliable tract segmentation in

combination with uncertainty quantification to measure segmentation unreliability. We

use a 3D U-Net to segment white matter tracts. We then estimate model and data

uncertainty using test time dropout and test time augmentation, respectively. We use

a volume-based calibration approach to compute representative predicted probabilities

from the estimated uncertainties. In our findings, we obtain a Dice of ≈ 0.82 which is

comparable to the state-of-the-art for multi-label segmentation and Hausdorff distance

< 10mm. We demonstrate a high positive correlation between volume variance and

segmentation errors, which indicates a good measure of reliability for tract segmentation

ad uncertainty estimation. Finally, we show that calibrated predicted volumes are more

likely to encompass the ground truth segmentation volume than uncalibrated predicted

volumes. This study is a step toward more informed and reliable WM tract segmentation

for clinical decision-making.

Keywords: diffusion MRI, tract segmentation, deep learning, uncertainty quantification, calibration, tractography

1. INTRODUCTION

Segmentation of white matter (WM) tracts is important in several tasks including understanding
brain organization, preoperative neurosurgical planning to identify eloquent areas, and
identification of surgical approaches to reducing post-operative damage (1, 2). Clinically, manual
tract annotations can help to plan a surgical approach but direct electrical stimulation is often
used in complex cases as the ground truth to determine the precise location of eloquent areas
during surgery (3). Manual tract annotations are time-consuming, often relying on fine-tuning
tractography which depends on diffusion MRI (dMRI) acquisition parameters (4, 5), and suffer
from inter- and intra-rater variability due to the complexity of the WM tracts (6–8). Automatic
segmentation approaches have emerged to produce faster andmore reproducible tract annotations.
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Nonetheless, to the best of our knowledge, none of the automatic
approaches has investigated model reliability, such as uncertainty
awareness, for tract segmentation.

Automatic tract segmentation methods can be divided into
(1) region-of-interest-based (ROI) (or connectivity-based), (2)
clustering-based, and (3) direct segmentation (8–10). ROI-
based approaches focus on filtering tract fibers based on
known anatomical regions before or after computing whole-
brain tractography (11, 12). ROI-based methods require either
brain parcellation or registration of subject-specific images
to an atlas. Clustering-based methods focus on computing
similarity metrics (i.e., distance) to classify WM fiber tracts (13–
15). These approaches are computationally expensive due to
the need to perform registration, whole-brain parcellation,
or other preprocessing steps. Additionally, these methods
demonstrate poor reproducibility in tracts that have high
anatomical variability across subjects (16) which may introduce
an unacceptable level of risk to the patient for preoperative
neurosurgical planning.

Direct methods output tract masks or fiber tracts directly
from input data without the intermediate steps of ROI-based or
clustering-based methods (10). Direct methods can be divided
into voxel-based or fiber-based classification approaches. Voxel-
based methods classify voxels as being inside or outside a specific
WM tract from volumetric input data while fiber-based methods
classify whether or not a particular fiber belongs to a specific tract.
Deep learning-based (DL)methods are currently the state-of-the-
art for directWM tract segmentation (8, 10, 17, 18). Once trained,
DL models can quickly perform inference (19).

TractSeg (10), a voxel-based approach, uses 2D U-Nets (20),
in a tri-planar approach, to segment 72 tracts. TractSeg uses
as input the 3 major peak directions obtained from fiber
orientation distributions (FODs) computed from constrained
spherical deconvolution (CSD) (21). Neuro4Neuro (17), another
voxel-based method, uses a 3D U-Net (22) to segment 25 tracts
from an in-house dataset. As input for the 3D convolutional
neural network (CNN), Neuro4Neuro uses diffusion tensor
imaging (DTI) (23). DeepWMA (18), a fiber-based approach,
uses a 2D CNN to classify fibers as belonging to one of 54 possible
WM tracts. As input, DeepWMA uses a 2D multi-channel fiber
feature descriptor computed for fibers obtained from whole-
brain tractography. Similarly to DeepWMA, Classifyber (8) uses
a set of features (i.e., spatial position, connectivity, etc) to describe
a fiber of a tract and classify fibers into specific WM tracts.
Classifyber uses a logistic regression (LR)model for classification.

Deep learning approaches tend to be overconfident in their
segmentations which can lead to mistaken conclusions. For
instance, underestimating the likelihood of a voxel being a false
positive, missing a pathologic finding, or false negative leads to
damaging an eloquent region (1, 24). Therefore, it is important
to ensure model uncertainty is reflective of the ground truth data.
Uncertainty estimation is also important as it enables DL results
to be more transparent to the end-user giving clinicians more
confidence in segmentation results.

Uncertainty quantification (UQ) can be used as a metric
of reliability for DL approaches. UQ in DL has been
investigated for a variety of medical imaging applications,

such as physics-informed uncertainty-aware Brain MRI
segmentation (25), modality synthesis (26), dMRI super
resolution (27), brain parcellation (28), electrode bending
prediction (29, 30), and tumor segmentation (24, 31, 32).

Uncertainty quantification is often divided into two types:
epistemic, noise caused by variation in the model’s parameters,
or aleatoric, the noise inherent in the data (33). For tract
segmentation, we expect the uncertainty to be both data and
model-dependent. Thus, it is important to know where the
model’s parameters’ variability causes uncertainty and where
noise in the data causes uncertainty.

Epistemic uncertainty can be computed through Bayesian
inference networks (BNNs) (33). BNNs offer a mathematically
grounded method where they compute distribution functions
for the trained parameters instead of regular scalars as in
regular neural networks. However, they are hard to implement,
and their training stage is computationally expensive (33).
Bayesian approximation using dropout layers at the inference
stage has been proposed to overcome training limitations of
BNNs by doing multiple forward inferences (34) and has been
successfully applied to medical imaging tasks (24, 27, 29).
Following the Bayesian inference approximation, other methods
such as Markov chain Monte Carlo (MCMC) (35) and Monte
Carlo Batch Normalization (MCBN) (36) have been proposed
where batch normalization at the inference stage approximates
the outputs of a BNN.

Aleatoric uncertainty via learned loss attenuation, where a
network is designed to have two branches one for the final
prediction and one for uncertainty, has been proposed by Kendall
and Gal (33). While this has been successfully applied to medical
imaging tasks (27, 31, 37), the addition of a second branch
makes the network challenging to train and prone to instability.
Another method to compute aleatoric uncertainty is to augment
input data at the inference stage and compute uncertainty over
several rounds of inference. This approach is easy to implement
once a CNN is trained and does not require modifying network
architecture or retraining. Test time augmentation has been
shown robust in medical imaging (32, 38).

An accurate segmentation model is important to achieve the
best possible results and enable uncertainty to be generally low so
that it highlights regions that are difficult to segment (either due
to data or model limitations). However, the probability associated
with the predicted class label does not always reflect its ground
truth likelihood (39). Calibration makes predicted probabilities
more aligned to the ground truth accuracy, meaning that output
predictions reflect a measurable property in the annotations of
a validation dataset. Calibration has been widely used as a post-
processing step, e.g., in classification (40–42) and segmentation
tasks (24, 43).

In this study, we aim to provide uncertainty awareness
for tract segmentation with accurate and reliable predicted
probabilities so that clinicians can use it as a safety tool
in preoperative neurosurgical planning. We present a 3D
CNN that takes as input raw dMRI intensities transformed
into the spherical harmonics (SH) space to align data across
subjects. We design a system to output calibrated epistemic
and aleatoric uncertainties that are reflective of measured
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ground truth volumes. We demonstrate that our approach
has comparable performance to the state-of-the-art tract
segmentation approaches while providing an estimation ofmodel
and data uncertainty. The significance of this study is that it
provides a method to augment information so clinicians can
make more informed clinical choices.

2. MATERIALS AND METHODS

2.1. Pipeline Overview
Weproject dMRI signal intensities into the SH space (Section 2.3)
to align data across different acquisitions without fitting a
model. Next, we train a 3D CNN to segment WM tracts
from the SH coefficients (Section 2.3). Given a trained
model, we calculate epistemic uncertainty (Section 2.7.1)
and aleatoric uncertainty (Section 2.7.2). Finally, we perform
volume-based calibration to make predicted probabilities and
uncertainty measurements more representative of the ground
truth volume (Section 2.8).

2.2. Dataset
We use dMRI from 105 subjects provided by the Human
Connectome Project (HCP) (44). HCP dMRI were acquired on
a 3T scanner with the following parameters: the spatial size of
145 × 174 × 145 with 1.25 mm isotropic resolution, 90 gradient
directions for each b = ∈ {1,000, 2,000, 3,000 s/mm2} and 18
images at b = 0 s/mm2. Data is corrected following the protocols
described in Sotiropoulos et al. (44) prior to download. For each
one of the 105 HCP subjects, a set of 72 annotated tracts in the 3D
spatial coordinate space, corrected by a human rater is provided
by Wasserthal et al. (10) and available for download1. For each
tract, a binary mask was generated similar to the approach of
TractSeg (10). We set a voxel to the foreground if one or more
fibers are present within the voxel.

2.3. Data Preprocessing
A single-shell (b = 2,000 s/mm2) was selected, and its dMRI
signal intensities are transformed into SH coefficients without
any model fitting. SH coefficients are then normalized by the b-
zero shell using the algorithm provided in MRtrix (45). Then,
we clamped all SH voxels outside the 5th and 99th intervals to
remove outliers due to noise. In this study, we used lmax = 4 to
compute SH coefficients as it has previously been demonstrated
to provide comparable performance in CNN-based CSD model
coefficient regression as lmax = 8 (46).

2.4. CNN Architecture
The CNN architecture used is the 3DU-Net (22) implementation
provided with the nnU-Net framework presented in Isensee et
al. (47). The nnU-Net implementation has four downsampling
blocks in the encoder pathway and four upsampling blocks in
the decoder pathway. Each downsampling block is comprised
of 2 × (Convolution, Dropout, InstanceNorm, LeakyRelu) +
pooling layer. The upsampling block has a similar structure but
the pooling layer is replaced by an upsampling layer.

1https://zenodo.org/record/1285152#.YDeqj-qnxH4

2.5. Data Augmentation
Classical techniques for on-the-fly augmentation including axis
flipping, scaling, and rotation have been successfully applied to
training DL models for small 3D medical imaging datasets (10,
48, 49). However, traditional medical image processing tools
apply these augmentations to the 3D spatial domain which are
inappropriate to apply to the SH domain. Therefore, to account
for the SH coefficient properties, we apply the same random 3D
rotation to both 3D spatial location and SH coefficients in order
to ensure location and orientation are preserved during data
augmentation as in Nath et al. (50).

2.6. CNN Training
For a given training dataset, let X = [X1, . . . ,Xτ ] be the input
images mapped to SH coefficients of order lmax = 4 and Y =

[Y1, . . . ,Yτ ] is the corresponding ground truth tract masks,
where τ is the number of subjects. For a given pair of image
Xτ = [x1, . . . , xJ], and mask Yτ = [y1, . . . , yJ], J is the number
of voxels and xj = [xj1, . . . , xjM], where M is the number of
SH coefficients and yj = [yj1, . . . , yjN], where N is the number
of classes (tracts to be predicted). The training stage consists
of optimizing the CNN model fθ (·) to minimize a mapping
as follows:

argmin
θ

(fθ (X,Y)) (1)

where θ are the learned weights. At the inference stage, for
an image Xτ , we compute the predicted probabilities as Ŷτ =

fθ (Xτ ).

2.6.1. Loss Function
We used weighted binary cross-entropy (wBCE) loss during our
CNN training stage. We calculate the distribution of each class

over all subjects as C = [c1, . . . , cn] where cn =
∑J

j=1 yjn is the

number of positive labels for a given ground truth tract mask for

a class n in the training set. A class weight wn = max(C)
cn

is used to
preferentially optimize wBCE for classes with small numbers of
positive labels. For a given predicted probability Ŷτ and ground
truth tract masks Yτ , we compute wBCE as:

wBCE(Ŷτ ,Yτ ) = −
1

N

N
∑

n=1

wn

J
∑

j=1

(

yjnlog(ŷjn))

+ (1− yjn)log(1− ŷjn)
)

(2)

2.6.2. Training Setup
The 3D U-Net is initialized using the He uniform function (51)
and is trained for 400 epochs, with a weight decay of 1E −

6, and a dropout of r = 0.25 in the encoder branch, based
on experimentally chosen convergence. The learning rate is
initialized to 1E − 3 and is reduced by 1/2 every 50 epochs.
For each iteration in an epoch, a subject from the training set is
randomly selected and 3D rotations (Section 2.5) are applied to
augment the data in the range of [−20, 20]. From this image, 50
patches of size 64 × 64 × 64 × 15 are randomly sampled from
within a binary mask corresponding to the intracranial space,
where 15 is the number of SH coefficients. The number of patches
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was experimentally selected to achieve optimal convergence on
the validation set while having all patches loaded on the available
graphics processing units (GPUs). An epoch finishes when all
subjects from the training set have been selected once. For
every new subject, a new set of random rotations and patches
are computed.

2.7. Uncertainty Quantification
Uncertainty can be divided into two types: epistemic (model’s
parameters’ variability) or aleatoric (noise inherent in the
data) (33). A well-established method for estimating epistemic
uncertainty in deep learning is test time dropout (TTD) (34).
In TTD, dropout layers are enabled at the inference stage to
output multiple stochastic predictions. For aleatoric uncertainty,
test time augmentation (TTA) is implemented by performing
multiple data augmentations to the input data at the inference
stage to output multiple stochastic predictions (32).

2.7.1. Epistemic Uncertainty Modeling
We modeled epistemic uncertainty using TTD as described
in Gal et al. (34). TTD estimates a tractable parametrized
distribution q∗(θ) which minimizes the Kullback-Leibler
divergence of the true model posterior p(θ |X,Y) (33). However,
p(θ |X,Y) is often not directly computable. In practice, without
any further change in the model during the training, dropout
layers that switch off neurons activation at a rate of r, sampled
from a Bernoulli distribution, can be used at the inference
stage to approximate probability distribution for the model
weights θ . This approximation is done by computing T forward
passes where random model weights are set to 0 for each
iteration. The final prediction is calculated by averaging the
predicted probabilities from the T forward passes. The epistemic
uncertainty is computed as the SD of the predicted probabilities
from the T forward passes. In this study, we define a total of
T = 20 forward passes and a dropout rate r = 0.25.

2.7.2. Aleatoric Uncertainty Modeling
We modeled aleatoric uncertainty using TTA. This technique
combines the predicted probabilities of multiple augmentation
transforms at the inference stage to generate a final output
to take into account noise inherent to the input data. TTA
is common practice in classification problems in computer
vision (52) and has also been applied in medical imaging for
segmentation (32, 53). For TTA, the same data augmentation
techniques as presented in Section 2.5 were used to augment the
input data. Similarly to TTD, we define T = 20 forward passes,
each with a random data augmentation.

2.7.3. Aleatoric and Epistemic Uncertainty Modeling
Similarly to Wang et al. (32), we compute a Hybrid approach to
compute both epistemic and aleatoric uncertainty using TTD and
TTA, respectively. We keep T = 20 forward passes, where for
each pass, we have a random data augmentation and a dropout
rate r = 0.25. This gives a total of 20 predicted probabilities for
each subject.

2.8. Calibration
We perform post-processing volumetric calibration as presented
in Eaton-Rosen et al. (24). For a given subject xj, after running
T stochastic forward passes (TTD, TTA, or Hybrid), we have
T predicted probabilities per voxel and per class ỹjn =

[ỹjn1, . . . , ỹjnT] for n ∈ [1, . . . ,N] classes. We compute predicted
probabilities quantiles ωkj for each voxel given the T output

predicted probabilities ỹjn for k ∈ [0, 1T , . . . ,
T
T ]. Then, we

compute the volume Vk =
∑J

j=1 ωkj for each quantile kth. Next,

the cumulative distribution function (CDF) F(v) = P(Vk < v) is
computed where Vk is the kth quantile volume.

The calibration step is performed by fitting F(v) to a
cumulative uniform distribution using a 1D linear interpolation.
The scaling parameters for the linear interpolation are computed
using a one-shot approach. This interpolation realigns F(v) so
that the correct proportion of ground truth volumes appears in
a given confidence interval (24). This calibration is performed
per tract since each tract varies in shape, size, and uncertainty.
We calculate all scaling parameters on the validation set, to
prevent contamination with the test set, and subsequently use
these trained parameters to calibrate predicted probabilities on
the test set.

2.9. Evaluation Metrics
We evaluate the quality of predicted tract segmentation using
the following metrics: sensitivity, specificity, Dice, Hausdorff
distance, and average surface-to-surface distance (ASSD).
Sensitivity is true positives over all predicted positive voxels,
specificity is true negatives over all predictive negative voxels
and Dice is the intersection of the predicted and ground truth
masks over two times the union. The sensitivity, specificity,
and Dice metrics are overlap metrics (larger numbers are best,
the maximum value is 1.0). The Hausdorff distance measures
the maximum of the directed distances between the boundaries
of the predicted and ground truth segmentations, while ASSD
is the average of all distances from points on the boundary
of the predicted segmentation to the boundary of the ground
truth segmentation and the boundary of the ground truth
segmentation to boundary of the predicted segmentation (54).
ASSD and Hausdorff distance measures often indicate if outliers
are present in the predicted segmentation (55). The Hausdorff
distance and ASSD are distance-based metrics (smaller numbers
are best, the minimum value is 0.0).

2.10. Experiments
We assess the following tract segmentation approaches,
deterministic (U-Net) and stochastic (TTD, TTA, and Hybrid),
in the following scenarios: (1) how well the deterministic and
stochastic approaches perform tract segmentation (Segmentation
performance and comparison to state-of-the-art), (2) how well the
deterministic and Hybrid approaches perform on clinical quality
data (Segmentation performance on clinical quality data), (3) how
well uncertainty maps computed by the stochastic approaches
correlate with tract segmentation error (Correlation between
uncertainty and segmentation error), and (4) how well volume-
based calibration adjusts predicted probabilities from TTD, TTA,
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and Hybrid approaches (Calibration impact on predicted tract
volume). The details of each experiment are described below.

2.10.1. Segmentation Performance and Comparison

to State-of-the-Art
We assess how well deterministic and stochastic tract
segmentation approaches perform in terms of the evaluation
metrics described in Section 2.9. In this experiment, 5-fold
cross-validation is conducted where 4 folds are used for training
(10% of training data was used for validation) and 1 fold for
testing. We also compare the results of our approaches against
state-of-the-art approaches, including TractSeg (10) (CNN-based
method), Classifyber (8) (machine learning-based method), and
RecoBundles (56) (a clustering-based method for segmentation)
in terms of average Dice.

2.10.2. Segmentation Performance on Clinical

Quality Data
We assess the robustness of the deterministic and hybrid
approaches perform on a clinical quality dataset. From the
original HCP data, we first select the b = 1,000 s/mm2 shell to
mimic a shell commonly acquired in a clinical protocol. Then,
similarly to Lucena et al. (46), for each dataset, we first reorder
the set of gradient directions such that if a scan is truncated
the acquired gradient directions will still be close to optimally
distributed on the half-sphere (45), and we then synthetically
generate a clinical quality dMRI scan by truncating the number
of gradient directions for b = 0 and b = 1,000 s/mm2 to 45
gradient directions. Finally, we apply the method described in
this article (Section 2).

2.10.3. Correlation Between Uncertainty and

Segmentation Error
We assess how well uncertainty quantification correlates with
tract segmentation errors. We use structure-wise uncertainty
measured by the volume variation coefficient (VVC) and
correlation this to segmentation errors as measured by 1 - average
Dice as presented by Wang et al. (32). We compute Dice for
each of T forward passes and then compute the average of the T
Dice scores (output predict probabilities images are thresholded
at ≥ 0.5 to obtain a binary segmentation). We compute tract
volume for each forward pass, V = [v1, ...vT] where vt is the total
sum over all voxels on the binary image and t ∈ [0, . . . ,T]. VVC
is then computed as VVC = σV/µV where µV and σV are the
mean and SD for all volumes in V , respectively. We compute the
strength of the VVC and 1 - Dice correlation using Spearman’s
rank correlation coefficient (57). Spearmans’ correlation assesses
monotonic relationships (whether linear or not). If there are no
repeated data values, a perfect Spearmans’ correlation of 1 or −1
occurs when each of the variables is a perfect monotone function
of the other (57).

2.10.4. Calibration Impact on Predicted Tract Volume
We assess how well volume-calibrated stochastic methods (TTA,
TTD, and Hybrid) correspond to ground truth volumes. In this
experiment, we evaluate the correlation of predicted volumes
at different quantiles obtained over T forward passes, with and

without calibration, to the ground truth volumes for individual
tract structures.

2.11. Implementation
All experiments were performed on a workstation equipped with
an Intel CPU (Xeon R© W-2123, 8 × 3.60 GHz; Intel), 32 GB
of memory, and an NVIDIA GPU (GeForce Titan V) with 12
GB of on-board memory. All code was implemented in Python
3.6. PyTorch 1.6.0 (58) and PyTorch lightning (59) were used
for network training. MONAI 0.5.2 and TorchIO 0.18.15 (60)
were used for data loading and sampling. Data augmentation was
performed using SHtools 4.6.2 (61). All code used for training the
models is available online as an open-source project2.

3. RESULTS

Overall quantitative analyses are reported for all 72
tracts (Tables 1, 4) while other detailed results for specific
qualitative and quantitative are presented for a small number
of select tracts (Table 2 and Figures 1–7). A complete list of all
tracts can be found online1. For these cases, we chose to report
the representative tracts: corticospinal tract (CST), inferior
longitudinal fascicle (ILF), and uncinate fascicle tract (UF) for
the left side of the brain. CST is a large, well-represented tract
with a straight shape that fans out close to the cortex. ILF is
a complex longitudinal tract that starts from the anterior side
and goes to the posterior side of the brain. Finally, the UF is a
complex tract that has a large “C” shaped curvature.

3.1. Segmentation Performance and
Comparison to State-of-the-Art
Table 1 reports the mean (standard deviation) for the metrics
described in Section 2.9 for both deterministic (U-Net) and
stochastic (TTA, TTD, Hybrid) approaches. Similar performance
in terms of Dice is found between U-Net and TTD, TTA,
and Hybrid (average Dice ≈ 0.82). Stochastic approaches
are more sensitive than the deterministic approach but less
specific, which can be explained due to the presence of fewer
false negative predictions (segmenting a voxel that belongs
to a specific tract as background) by the TTD, TTA, and
Hybrid approaches.

Pronounced improvements in Hausdorff distance are found
for stochastic approaches compared to the deterministic
approach (for TTA, it is a≈ 50% improvement, 9mmdifference).
This demonstrates that stochastic approaches are less likely
to make large mistakes when segmenting a tract. TTD and
TTA are comparable in terms of Dice performance to TractSeg
which currently has the best achieving results for multi-label
tract segmentation.

Table 2 compares the Dice performance between our
approaches and four state-of-the-art tract segmentation
methods. Both deterministic and stochastic approaches have
comparable performance to TractSeg as expected from the
results in Table 1. RecoBundles, an ROI-based method, has the
lowest Dice performance while Classifyber, an LR fiber-based

2https://github.com/OeslleLucena/TractSegmentation
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TABLE 1 | Dice, sensitivity, specificity, ASSD, and Hausdorff distance evaluation for deterministic (U-Net) and stochastic (TTD, TTA, and Hybrid) approaches.

Networka Dice Sensitivity Specificity ASSD (mm) Hausdorff distance (mm)

TractSega 0.84 - - - -

U-Net 0.83 (0.06) 0.81 (0.09) 0.85 (0.07) 0.69 (0.63) 17.32 (21.66)

TTD 0.82 (0.06) 0.85 (0.08) 0.80 (0.08) 0.65(0.28) 10.57 (9.47)

TTA 0.82 (0.07) 0.85 (0.08) 0.80 (0.09) 0.63 (0.30) 9.24 (3.73)

Hybrid 0.82 (0.07) 0.86 (0.08) 0.78 (0.09) 0.66 (0.33) 9.46 (3.74)

aTractSeg results are taken from Wasserthal et al. (10). The best value, the minimum value for ASSD and Hausdorff distance, and the maximum value for Dice, sensitivity, and specificity,

are indicated by bold text.

TABLE 2 | Comparison with state-of-the-art approaches for the following 5 tracts from both left and right sides of the brain: arcuate fascicle (AF), corticospinal tract

(CST), inferior fronto-occipital fascicle (IFO), inferior longitudinal fascicle (ILF), and uncinate fascicle (UF).

Tract RecoBundlesa TractSegb Classifyberc U-Net TTD TTA Hybrid

Right CST 0.62 0.85 0.87 0.84 (0.03) 0.84 (0.03) 0.84 (0.03) 0.84 (0.03)

Left CST 0.62 0.85 0.86 0.85 (0.03) 0.85 (0.02) 0.85 (0.02) 0.84 (0.02)

Right UF 0.57 0.79 0.86 0.77 (0.04) 0.78 (0.03) 0.78 (0.03) 0.78 (0.03)

Left UF 0.55 0.77 0.84 0.75 (0.07) 0.75 (0.06) 0.76 (0.06) 0.75 (0.06)

Right AF 0.53 0.83 0.86 0.83 (0.03) 0.83 (0.02) 0.84 (0.02) 0.83 (0.02)

Left AF 0.71 0.84 0.83 0.84 (0.03) 0.84 (0.02) 0.85 (0.02) 0.84 (0.02)

Right ILF 0.42 0.75 0.82 0.80 (0.03) 0.79 (0.02) 0.81 (0.02) 0.80 (0.02)

Left ILF 0.57 0.77 0.84 0.80 (0.03) 0.79 (0.02) 0.80 (0.03) 0.79 (0.02)

Right IFO 0.76 0.80 0.84 0.80 (0.04) 0.80 (0.03) 0.80 (0.04) 0.79 (0.03)

Left IFO 0.67 0.80 0.84 0.78 (0.04) 0.78 (0.03) 0.78 (0.03) 0.78 (0.03)

aGaryfallidis et al. (56). bWasserthal et al. (10). cBertò et al. (8).

Results for TractSeg, ReconBundles, and Classifyber are reported in Bertò et al. (8).

classification approach has the highest Dice performance.
However, differences in Dice are relatively small (1–7%)
between methods. ReconBundles is known to demonstrate poor
reproducibility in tracts with high anatomical variability across
subjects (16) while Classifyber relies on LR where each tract is
treated as a separated classification task and does not face the
challenges of multi-label classification.

Figure 1 shows qualitative segmentations for CST, ILF, andUF
on the left side of the brain. Both deterministic and stochastic
approaches provide tract segmentation that has similar shapes
and sizes compared to the ground truth tract masks. For the UF,
there is larger anatomical variability and fewer “spurious” regions
in the inner part of the tract resulting in a cleaner “C” shape,
when compared to the ground truth. This can be explained due
to CNN’s learning an average pattern across different subjects
during the training stage leading to smoother results.

3.2. Segmentation Performance on Clinical
Quality Data
Table 3 reports the mean (SD) for the metrics described in
Section 2.9 for both U-Net and Hybrid approaches evaluated
on the clinical data. As expected, due to the lower quality
of the clinical data and different acquisition parameters, we
observe a drop in performance on clinical data (45 gradient
directions, b = 1,000 s/mm2) for both U-Net and Hybrid
approaches when compared to the original data (90 gradient

directions, b = 2,000 s/mm2). For the Hybrid approach, we
observe greater uncertainty in the boundary regions resulting in
under segmentation of the tract (Figure 2). This trend is observed
across all tracts, with a drop in performance of 4%. These results
highlight the importance of computing uncertainty for lower
quality data in preoperative planning.

3.3. Correlation Between Uncertainty and
Segmentation Error
Figure 3 plots VVC (tract uncertainty) vs. 1-Dice (segmentation
error). A high correlation between VCC and 1-Dice is an
indication of segmentation reliability, whereas uncertainty
is indicative of poor segmentation performance (i.e.,
higher error). Therefore, a positive correlation should be
expected if the uncertainty computed is a good measure of
segmentation reliability.

For the tracts segmented by the TTD approach, the correlation
between structure-wise uncertainty and segmentation error is
absent (ILF) or weak (CST, UF). This indicates that model
uncertainty is an inadequate measure of segmentation reliability.
The TTA approach had stronger correlations between structure-
wise uncertainty and segmented error. This demonstrates that
aleatoric uncertainty provides a good measure of segmentation
reliability in this task. For the tracts segmented by the Hybrid
approach, the strongest correlations between structure-wise
uncertainty and segmentation error are observed, suggesting that
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FIGURE 1 | Tract segmentation comparisons between deterministic and stochastic approaches for the left CST, ILF, and UF tracts. Red contours show ground truth

segmentations.

including both model and data uncertainty is more beneficial
to estimating the reliability of the segmentation than either
measure individually. For these specific tracts, for all stochastic
approaches, UF and ILF exhibit higher slopes compared to CST
which can be explained due to these structures having more
complex tract anatomy.

Figures 4–6 show 2D reconstructions of the residuals (y − ŷ)
for U-Net, TTD, TTA, and Hybrid approaches and uncertainty
maps output by the stochastic approaches. For all tracts, residuals

tend to be at boundary voxels (regions more likely to be mistaken
for other tracts) and these regions are also associated with higher
uncertainty (TTD, TTA, and Hybrid only).

For the CST (Figure 4), stochastic approaches have larger
residuals in areas that may not be part of the tract (small
protuberance on the right side of the CST with high uncertainty).
TTD demonstrates high uncertainty for areas with high residuals
values whereas TTA and Hybrid approaches identify uncertainty
in more dispersed regions, although these approaches still have

Frontiers in Radiology | www.frontiersin.org 7 May 2022 | Volume 2 | Article 866974

https://www.frontiersin.org/journals/radiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/radiology#articles


Lucena et al. Informative and Reliable Tract Segmentation

FIGURE 2 | Difference between Hybrid the SDs of the predicted probabilities (Uncertainties) computed on original and clinical data (top). A selection of Dice

distribution for 13 select tracts is computed across all 105 subjects (bottom).

high uncertainty near boundary regions. This may occur due to
variability in the tract shape caused by multiple augmentations.

Similar to CST (Figure 5), for the ILF, TTD uncertainty is
highest at boundary voxels while TTA and Hybrid also output
high uncertainty for regions inside the tract. For this case, the
Hybrid approach outputs high uncertainty in many areas inside
the tract which may be due to the complex tract structure. For the
UF, a tract with a very high curvature that varies between subjects,
TTA residuals output high values inside the tract similarly to the
Hybrid approach (Figure 6).

3.4. Calibration Impact on Predicted Tract
Volume
We evaluated how well volume-based calibration for the
stochastic approaches impacts the reliability of the predicted
probabilities. Table 4 reports the mean (SD) for all metrics
described in Section 2.9 for uncalibrated and calibrated
approaches. As expected, no pronounced difference is found
within the segmentation metrics between the uncalibrated and
calibrated approaches.
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FIGURE 3 | Structure-wise uncertainty as measured by volume variation coefficient (VVC) vs. 1 - Dice for TTD, TTA, and Hybrid approaches in the left CST, ILF, and

UF tracts. Spearman’s correlation coefficient indicates the strength of the correlation between VVC and 1 - Dice.

Volume-based calibration makes the distribution of predicted
volumes more uniform to consequently make predicted
probabilities more representative of the ground truth volume.
Calibrated predicted volumes (orange dots) tend to encompass
the ground truth segmentation volume (black bars) compared to
uncalibrated predicted volumes (blue dots) (Figure 7).

For all 105 subjects, we compute the minimum volume
difference between the ground truth volume and the
predicted volume for the Hybrid approach before and after
calibration (Table 5). The average minimum volume difference
between ground truth volume and calibrated predicted volumes
is lower than the average minimum volume difference between
ground truth volumes and uncalibrated predicted volumes.
These results indicate that calibration makes the distribution
of predicted volumes more representative of the ground truth
volumes for the dataset.

4. DISCUSSION

We evaluated techniques for uncertainty quantification to
provide more accurate and reliable predicted probabilities
segmentation outputs applied to DL-based tract segmentation.

We show quantitatively (Tables 1, 2 and Figure 1) that stochastic
approaches with uncertainty awareness have comparable
performance to state-of-the-art methods. Additionally, these
uncertainty measures have a positive correlation with tract
segmentation errors, which indicates uncertainty is a good
measure of reliability for tract segmentation (Figures 4–6).
Finally, we demonstrate that calibrated predicted probabilities
are more representative of the ground truth volume compared to
uncalibrated predicted probabilities (Figure 7).

Similar studies have proposed DL-based tract segmentation.
TractSeg (10) is a voxel-based approach introduced for multi-
label segmentation using 2D U-Nets to segment 72 tracts.
As input to the network, TractSeg uses the 3 major peak
directions computed from FODs based on CSD (21). TractSeg
has an average Dice of 0.84 on 105 subjects from the
HCP dataset which is currently the best multi-label tract
segmentation performance achieved. Although the authors use
a tri-planar approach, the use of 2D CNNs cannot leverage
spatial context between slices (62). Additionally, selecting
only the 3 major peaks of the FODs computed using CSD
may discard important information contained within the
dMRI data.
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FIGURE 4 | Uncertainty and residuals maps for the left CST tract. Red arrows point to one area of high uncertainty within the ground truth. This region may not

represent real CST anatomy. Uncertainty maps are not applicable (N/A) for the deterministic U-Net approach.

FIGURE 5 | Uncertainty and residual maps for the left ILF tract. Uncertainty maps are not applicable (N/A) for the deterministic U-Net approach.

Neuro4Neuro is another voxel-based approach (17). A 3D
U-Net is used to segment 25 tracts with an average Dice
of 0.75. As input for the 3D CNN, this approach uses
DTI. Although the authors used a large cohort to train
their models (>1,000 scans), they segment a small number
of tracts. This approach obtained lower Dice for the task
compared to TractSeg. One explanation is that DTI only
models single fiber populations and cannot resolve complex
fiber configurations such as fiber crossings (63), resulting
in “poor” segmentation for complex structures (i.e., inferior
longitudinal fasciculus) (17). Direct comparisons between

Neuro4Neuro and our work were not possible since the code
was not publicly available, and their test data was an in-
house dataset.

DeepWMA (18) is a fiber-based approach that uses a 2D
multi-channel fiber feature descriptor to describe fibers obtained
from whole-brain tractography. DeepWMA uses a 2D CNN to
classify individual fibers into one of 54 possible WM tracts. This
approach generalizes well for scans of independently acquired
populations. This method reports a performance comparable
to TractSeg, average Dice 0.83, for 34 tracts on the HCP
dataset (18). However, for a new given patient, DeepWMA
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FIGURE 6 | Uncertainty and residual maps for the left UF tract. Uncertainty maps are not applicable (N/A) for the deterministic U-Net approach.

requires preprocessing whole-brain tractography which is a time-
consuming and computationally expensive step.

Classifyber is another fiber-based approach (8). Classifyber
uses an LR classification model to predict whether individual
streamlines belong to a tract of interest. Similar to DeepWMA,
Classifyber also has a descriptor to represent a streamline
based on a set of features (i.e., spatial position, connectivity,
etc). Although the method provides high Dice (≥ 0.80 per
tract), Classifyber relies on LR where each tract is treated
as a separated classification task and does not address the
challenges of multi-label classification. As with DeepWMA,
tractography is a preprocessing step that is time-consuming and
computationally expensive.

In this study, we used TTD and TTA to model epistemic and
aleatoric uncertainty, respectively.We evaluated the combination
of both in a Hybrid approach. The aim of this approach
is to provide additional information about model and data
reliability to help inform clinicians’ decision making. The TTA
approach has the best performance in terms of Dice for all
stochastic approaches, however, the Hybrid approach provides a
stronger correlation between structure-wise uncertainty (VVC)
and segmentation error (1-Dice), indicating it is a good measure
of segmentation reliability (Figure 3). These results are observed
more strongly in tracts with complex anatomy that are difficult to
segment such as ILF (Figures 5, 6).

We used single-rater ground truth annotations for this study.
However, multi-rater annotations could improve the quality of
segmentation results (less bias toward a single rater) but would
introduce inter-rater variance. In this context, we would expect
an increase in uncertainty for areas with high variability among
the raters and high certainty in areas with high concordance
among the raters.

Calibration was performed per tract using a volume-
based approach. Calibrated volume estimates are more
likely to encompass the ground truth volume than the
uncalibrated volume estimates (Figure 7). Calibration can
help to reduce false negatives by allowing the user to select a
volume from a larger quantile to err on the side of caution,
e.g., during surgery/planning, stochastic approaches can
include the segmentation regions with a low likelihood
of belonging to the tract to ensure no potential damage
will occur even if it is a low probability event. However,
calibration is sensitive to the size of the training set (24) and
the quality of the ground truth, meaning that tracts with
complex anatomy and inter-subject variability, such as the
UF tract, may be difficult to calibrate. Additionally, volume
as a metric for calibration may not be sufficient for tract
segmentation, and other metrics such as a topology-based
assessment to describe tract segmentation coverage should
be investigated.

There are two key limitations in this study. First, we
validated our methods on research data acquired using a
single protocol. For clinical data with different acquisition
protocols, DL-based methods can output “poor” segmentation
and high epistemic uncertainty due to domain shift (64). While
domain adaption (65) can overcome low model performance
and high uncertainty, we have not investigated this in the
current study. Second, we did not validate subjects with
pathologies that would distort WM tissue connectivity, which
can result in unusual tract shape and location that might
lower the Dice of our proposed method. One future avenue of
research is to evaluate our approach to subjects with pathologies
that distort normal anatomy, such as brain tumors, in a
clinical setting.
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FIGURE 7 | Uncalibrated and calibrated predicted volumes for TTD, TTA, and Hybrid approaches. Volume deviation is computed as the predicted volume subtracted

by the ground truth volume. For each subject, the ground truth (black horizontal line) is at zero, and the predicted volume deviation is more visually apparent.

TABLE 3 | Dice, sensitivity, specificity, ASSD, and Hausdorff distance evaluation for deterministic (U-Net) and stochastic Hybrid approaches for clinical quality data.

Network Dice Sensitivity Specificity ASSD (mm) Hausdorff distance (mm)

U-Net 0.82 (0.06) 0.83 (0.09) 0.81 (0.07) 0.68 (0.55) 16.18 (20.84)

Hybrid 0.78 (0.08) 0.89 (0.08) 0.72 (0.11) 0.81 (0.44) 10.20 (3.90)

TABLE 4 | Segmentation metrics for 21 random subjects in the test set.

Network Dice Sensitivity Specificity ASSD (mm) Hausdorff distance (mm) Calibration

TTD 0.81 (0.07) 0.84 (0.08) 0.81 (0.09) 0.67 (0.31) 10.75 (9.82) NO

TTD 0.81 (0.07) 0.84 (0.08) 0.81 (0.09) 0.67 (0.32) 10.78 (10.04) YES

TTA 0.82 (0.08) 0.84 (0.09) 0.80 (0.10) 0.67 (0.38) 9.49(4.01) NO

TTA 0.83 (0.05) 0.84 (0.08) 0.81 (0.10) 0.67 (0.22) 9.48 (4.04) YES

Hybrid 0.81 (0.08) 0.86 (0.08) 0.79 (0.11) 0.69 (0.4) 9.65 (3.86) NO

Hybrid 0.81 (0.08) 0.86 (0.08) 0.78 (0.11) 0.70 (0.42) 9.70 (3.90) YES

In this table, TTD, TTD, and Hybrid results are computed from uncalibrated and calibrated predicted probabilities. The best value, minimum value for ASSD and Hausdorff distance, and

maximum value for Dice, sensitivity, and specificity, are indicated by bold text.
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TABLE 5 | The minimum volume difference between ground truth volume and the

predicted volume for the Hybrid method before and after calibration.

Tracts
Minimum volume difference

Calibrated Uncalibrated

Left CST 347.83 (444.96) 90.82 (50.87)

Left ILF 755.93 (570.75) 137.33 (162.31)

Left UF 579.18 (607.17) 100.22 (84.91)

5. CONCLUSION

In this study, we presented uncertainty awareness for tract
segmentation with accurate and reliable predicted probabilities
so that clinicians can use it as a safety tool in preoperative
neurosurgical planning. Our stochastic approaches, TTD, TTA,
and Hybrid, achieved performance comparable to the state-
of-the-art methods while outputting measures of uncertainty.
We demonstrated a strong positive correlation between
segmentation error and structure-wise uncertainty for our
stochastic approaches indicating that our output uncertainties
are a good measure of reliability for tract segmentation. We
confirmed the importance of volume-based calibration in
tract segmentation showing an improved ability to measure
tract volumes in complex structures compared to uncalibrated
approaches. However, other metrics that describe tracts
topology could improve calibration results but require further
investigation. We focused our analysis on healthy subjects from
the HCP dataset. Future validation is required to demonstrate
our approach generalizes to datasets acquired at clinical sites and
on patients with brain pathologies that distort normal anatomies,
such as edemas or tumors.
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