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Objective: The Koos grading scale is a frequently used classification system for

vestibular schwannoma (VS) that accounts for extrameatal tumor dimension and

compression of the brain stem. We propose an artificial intelligence (AI) pipeline to fully

automate the segmentation and Koos classification of VS from MRI to improve clinical

workflow and facilitate patient management.

Methods: We propose a method for Koos classification that does not only rely

on available images but also on automatically generated segmentations. Artificial

neural networks were trained and tested based on manual tumor segmentations and

ground truth Koos grades of contrast-enhanced T1-weighted (ceT1) and high-resolution

T2-weighted (hrT2) MR images from subjects with a single sporadic VS, acquired on a

single scanner and with a standardized protocol. The first stage of the pipeline comprises

a convolutional neural network (CNN) which can segment the VS and 7 adjacent

structures. For the second stage, we propose two complementary approaches that are

combined in an ensemble. The first approach applies a second CNN to the segmentation

output to predict the Koos grade, the other approach extracts handcrafted features which

are passed to a Random Forest classifier. The pipeline results were compared to those

achieved by two neurosurgeons.

Results: Eligible patients (n= 308) were pseudo-randomly split into 5 groups to evaluate

the model performance with 5-fold cross-validation. The weighted macro-averaged

mean absolute error (MA-MAE), weighted macro-averaged F1 score (F1), and accuracy

score of the ensemble model were assessed on the testing sets as follows:

MA-MAE = 0.11 ± 0.05, F1 = 89.3 ± 3.0%, accuracy = 89.3 ±

2.9%, which was comparable to the average performance of two neurosurgeons:

MA-MAE = 0.11 ± 0.08, F1 = 89.1 ± 5.2, accuracy = 88.6 ± 5.8%. Inter-

rater reliability was assessed by calculating Fleiss’ generalized kappa (k = 0.68)

based on all 308 cases, and intra-rater reliabilities of annotator 1 (k = 0.95)

and annotator 2 (k = 0.82) were calculated according to the weighted kappa

metric with quadratic (Fleiss-Cohen) weights based on 15 randomly selected cases.
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Conclusions: We developed the first AI framework to automatically classify VS

according to the Koos scale. The excellent results show that the accuracy of the

framework is comparable to that of neurosurgeons and may therefore facilitate

management of patients with VS. The models, code, and ground truth Koos

grades for a subset of publicly available images (n = 188) will be released

upon publication.

Keywords: vestibular schwannoma, classification, segmentation, deep learning, artificial intelligence

INTRODUCTION

Vestibular Schwannoma (VS) is a benign, slow growing tumor
that develops in the internal auditory canal which passes from
the inner ear to the brain. The tumor results from an abnormal
multiplication of Schwann cells within the insulating myelin
sheath of the vestibulocochlear nerve. It can impair hearing
and balance but can become life-threatening if it compresses
the brain stem or other cranial nerves. It has been estimated
that approximately 1 in 1,000 people will be diagnosed with a
VS in their lifetime (1); however, the incidence of VS has been
noted to be rising as a result of improved magnetic resonance
imaging (MRI) image quality that facilitates the detection of
smaller VS (2).

The type of treatment is typically based on the tumor size and
its impact on adjacent brain structures. In a study from 2006,
it was observed that most patients had exhibited no significant
tumor growth over a mean observation time of 3.6 years (2). This
encouraged a shift toward conservative management, especially
for small intrameatal tumors (3). Extrameatal tumors are more
likely to exbibit growth and to impair the patient’s wellbeing. Such
tumors are more often treated with radiosurgery, radiotherapy,
or microsurgery. Surgery is favored for larger tumors exhibiting
mass effect.

The Koos grading scale is a classification system for VS that
captures many of the characteristics that treatment decisions
are typically based on (4). Figure 1 summarizes the criteria and
shows representative MR images for each grade. In a recent
study, it has been shown to be a significantly reliable means to
characterize VS by evaluating the inter-and intra-rater reliability
based on 40 and 10 subjects, respectively (5). Furthermore, in
clinical practice, it is regularly determined among other metrics
such as the maximal linear (extrameatal) dimension in order to
decide on a treatment plan (6, 7).

Artificial Intelligence (AI)-driven clinical support tools have
the potential to improve patient outcomes and experience by
the standardization and personalization of VS treatment (8). In
recent years, particularly with the advent of deep learning, AI
algorithms have been developed to automate time-consuming
and repetitive tasks to reduce the workload for clinical staff.
Previous work has been focused on performing automatic
segmentation of VS using deep learning frameworks (9, 10)
and achieved high segmentation accuracy on a large publicly
available dataset of MR images (11). However, the problem of VS
classification has not been addressed, yet.

Classification of other brain tumors has been performed in
different settings. A frequently addressed task is the classification

of tumor types, such as Meningioma, Glioma and Pituitary
(12–14), or Astrocytoma, Glioblastoma, Oligodendrogloma (15).
Other tasks that received much attention are the classification
of glioma grades (I-IV) (16, 17) and classification of benign
and malignant tumor stages (I-IV) (18, 19). These tasks have
in common that classification from MRI images can benefit
from characteristic textural features and modality dependent
characteristic appearance of tumor types and grades. In contrast,
Koos grades of VS are defined by tumor size, location, and
compression of adjacent brain structures while tumor texture
and modality dependent appearance are less relevant. Therefore,
we suggest that an accurate segmentation label mask of the
tumor and relevant adjacent brain structures provides sufficient
information for Koos classification.

In this work, we introduce the first Machine
Learning framework for Koos classification in an
automated pipeline. This work introduces the following
contributions:

1. Instead of performing classification directly on the images, we
propose a 2-stage approach that achieves classification after an
initial segmentation stage.

2. After defining a procedure to identify adjacent brain
structures that are important for Koos grading, we develop
a fully automated segmentation model that segments not
only the VS but also these structures. Bronze standard
segmentations for these structures were obtained using an
accurate but time-consuming segmentation framework (20)
and then used to train a state-of-the-art deep learning
framework (21).

3. For the second stage, we propose two complementary
approaches to perform Koos classification. One approach is
based on data-driven features automatically extracted with
a convolutional neural network (CNN) (22). The other
approach relies on handcrafted features extracted from the
segmentation. These features were specifically designed for
our task and used as input for a Random Forest (23). Finally,
the approaches are combined in a model ensemble that can
leverage the strengths of each constituent model to enhance
classification accuracy.

4. Extensive experiments on a large dataset (n = 308)
demonstrate the performance of our 2-stage approach.
Our approach outperforms image-based classification
methods. Higher accuracy is obtained by using the automatic
segmentation of the identified adjacent structures. Our
approach achieves a statistically equivalent performance in
comparison to a neurosurgeon.
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FIGURE 1 | The Koos scale with representative ceT1 and hrT2 images. The images in each row are from the same subject and scan session. Red arrows in the MR

images indicate the tumor.

MATERIALS AND METHODS

Description of Study Data
Ethics Statement
This study was approved by the NHS Health Research Authority
and Research Ethics Committee (18/LO/0532). Because patients
were selected retrospectively and theMR images were completely

anonymised before analysis, no informed consent was required
for the study.

Study Population
Imaging data from consecutive patients with a single sporadic
VS treated with gamma knife (GK) stereotactic radiosurgery
(SRS) on the day of the image acquisition between October
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2012 and March 2021 were screened for the study. All adult
patients older than 18 years with a single unilateral VS were
eligible for inclusion in the study, except for patients who had
previously undergone operative surgical treatment. Out of 384
patients, 308 patients (males/females 137:171; median age 57
years, IQR 50–67 years) met these initial inclusion criteria. All
patients had MRI studies performed on a 1.5T scanner (Avanto
Siemens Healthineers), including ceT1 MRI acquired with in-
plane resolution/matrix size of 0.8 × 0.8 mm/256 × 256 or
0.4 × 0.4 mm/512 × 512, and slice thickness of 1.0–1.5mm
[TR (repetition time) 1,900 msec, TE (echo time) 2.97 msec, TI
(inversion time) 1,100 msec] and an hrT2 MRI with either a
Constructive Interference Steady State (CISS) sequence (in-plane
resolution/matrix size/TR/TE = 0.47 × 0.47 mm/448 × 448/9.4
msec/4.23 msec) or a Turbo Spin Echo (TSE) sequence (in-plane
resolution/matrix size/TR/TE = 0.55 × 0.55 mm/384 × 384/750
msec/121 msec) and slice thickness of 1.0–1.5mm.We randomly
assigned the final 308 patients into 5 non-overlapping groups for
5-fold cross-validation while ensuring that all cases of the same
Koos grade were evenly distributed across the groups (stratified
random sampling).

Out of the 308 patients, the imaging data of 188 patients
are part of a publicly available dataset (11). The other 120
patients’ imaging data are part of an extension of this dataset,
acquired with the same scanner and protocol. The extension is
currently not publicly accessible, because it forms the test set
of a new challenge for Cross-Modality Domain Adaptation for
Medical Image Segmentation (crossMoDA) (https://crossmoda-
challenge.ml).

Ground Truth Segmentations

Vestibular Schwannoma Segmentation
To enable automatic segmentation of the tumor at inference time,
a model was trained based on manual segmentations of VS in the
training set. The segmentations were performed in consensus by
the treating team, consisting of a consultant neurosurgeon (RB
or NK) and a physicist (IP or AD) based on both the ceT1 and
hrT2 images. The GK planning software (Leksell GammaPlan)
offers a semi-automated segmentation method which was used
to perform the manual segmentations in each axial image slice.

Brain Structure Segmentation
To supervise the training process of the segmentation network,
bronze standard segmentations of brain structures adjacent to the
VS were also provided. Rather than relying on time-consuming
manual segmentations, we employed the GIF algorithm which
automatically creates a high resolution parcellation of 160
distinct brain structures based on T1-weighted MR images (20).
A quality check on segmentations of 10 randomly selected images
was performed by JS. GIF itself relies on a database of 30 T1-
weighted MR images and corresponding manual parcellations.
In addition to the ceT1 image, a mask of the manual VS
segmentation was passed as an input to the GIF algorithm which
was done to exclude the voxels belonging to the VS from the
automated parcellation process. Processing a single image with
GIF takes ∼5 h on an Intel core i9 CPU which prohibits its
clinical deployment. Hence, in our pipeline, GIF is only applied

to produce the segmentation ground truth which is used to
supervise the training of the segmentation model.

Ground Truth Koos Grades
Two neurosurgeons with 5–10 years’ experience (MO and AO)
individually assigned Koos grades to all patients using both
available modalities. Each annotator was briefed and provided
with images and definitions of the Koos grading system as
provided by Erikson et al. (5). This data was acquired to assess
inter-rater agreement and to compare the performance of our
automated pipeline to that of human annotators. Furthermore,
to assess intra-rater reliability, the dataset presented to both
human annotators included randomly selected duplicates of 15
pairs of scans (ceT1 and hrT2) which were presented to the
human annotators after they had assigned a Koos grade to all
308 patients.

A second team of experts including a consultant
neuroradiologist (SC) and a consultant neurosurgeon (JS)
determined in consensus the Koos grade ground truth for cases
on which the two other human annotators disagreed. If the two
human annotators agreed, the Koos grade assigned by them was
assumed as the ground truth. The manual VS segmentations
and Koos grades were subsequently treated as the ground truth
for the supervised training of the neural networks and Random
Forest and for the evaluation of the predicted VS segmentations
and Koos grades.

AI Framework for Automated Koos
Classification
A schematic representation of the proposed pipeline is shown in
Figure 2. The first stage of the training pipeline comprises two
key steps: GIF to produce the segmentation ground truth and
nnU-Net (16, 21) to train the segmentation model. In the second
stage of the pipeline, one branch can be selected to train either the
DenseNet (22) classification model, or the Random Forest (23)
classification model for Koos classification, or both models if an
ensemble model is used. The Random Forest branch starts with a
handcrafted feature extraction step not found in the DenseNet
branch. During inference, the segmentation and classification
models are applied sequentially to predict the Koos grade.

The Segmentation Network
In the first stage of the pipeline, a Convolutional Neural Network
(CNN) was applied to automatically segment the VS and brain
structures. The process used to select the relevant brain structures
is explained in section Selection of Relevant Brain Structures.
For this step we employ nnU-Net, a framework for biomedical
image segmentation that has previously been shown to yield
state-of-the-art results for a wide range of public datasets used
in international biomedical segmentation competitions (21). The
network architecture is a 3D-U-Net, a CNN which is well
established in the field of medical image segmentation (24). In
the first half of the network, convolutional layers are employed
while downsampling the input images at each level, allowing the
network to learn features that are relevant at different image
resolutions. In the second half, transposed convolutional layers
are used to perform an upsampling operation at each level to
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FIGURE 2 | Proposed pipeline for (A) model training and (B) inference. The

background colors indicate pre-processed MR images (yellow),

algorithms/operations (red) applied to input data, ground truth data (blue) that

is used to supervise the model training process, intermediate output data

(gray) and trained models (green). Training of both Koos classification models

is only required for an ensemble model of DenseNet and Random Forest,

otherwise either model can be applied individually, and the other model’s

pipeline branches can be omitted for training and inference. The dashed arrow

lines in the inference pipeline indicate that the whole pipeline (including training)

must be run with each of the three different input types to obtain three Koos

grade predictions per branch.

obtain a volume of same matrix size as the input. The output
volume has N + 1 channels where each channel represents the
predicted probability for each voxel to belong to one of the
N segmented structures or the background. Finally, a discrete
segmentation mask of the image is created by assigning each
voxel to the structure with the highest predicted probability. The
nnU-Net framework is publicly available (https://github.com/
MIC-DKFZ/nnUNet). Settings were as described in the original
publication, except from the mirroring data augmentation
transform which was disabled to avoid confusion between the left
and right cerebellum labels.

The segmentation networks were trained for 1000 epochs
where one epoch is defined as an iteration over 250 mini-
batches. The mini-batch size was 2. The optimizer was stochastic
gradient descent with Nesterov momentum (µ = 0.99). The
initial learning rate of 0.01 was decayed during training according
to the “poly” learning rate policy (25). The loss function was
the sum of cross-entropy and Dice loss (26). In addition, deep
supervision was applied in the decoder to all but the two lowest
resolutions. Oversampling of foreground classes was applied,
guaranteeing that a third of all sampled patches contained one
of the foreground classes. The following data augmentation
techniques were applied: rotations, scaling, Gaussian noise,
Gaussian blur, brightness, contrast, simulation of low resolution
and gamma correction.

The Classification Network
The pipeline’s first classification branch contains a Dense
Convolutional Network with 121 trainable layers (DenseNet121)
(22). DenseNet’s central component is the Dense Block, in
which the output of each layer is concatenated to the output of
subsequent layers. Compared to preceding network architectures,
this improves the information flow and allows for a reduction of
network parameters.We usedMONAI (version 0.50), a PyTorch-
based, open-source framework for deep learning in healthcare
imaging for training of the DenseNet and inference (27, 28).

For hyperparameter optimization, the training set was further
split into two sets by assigning 12.5% of all cases to a separate
hyperparameter tuning set. The network requires as an input
a one-hot-encoded segmentation mask (background + VS +

adjacent structures). The output is a vector of 4 elements each
of which is interpreted as the probability of the VS to be of grade
I, II, III or IV.

Input segmentations were reoriented and resampled to a voxel
size of 0.8× 0.8 × 0.8mm3 using nearest neighbor interpolation.
Data augmentation was applied to artificially increase the size of
the training set, using random zooming with factors between 0.9
and 1.1 and a probability of 0.9, random rotations about the axial
direction with a probability of 0.8, and by sampling patches of size
256× 256× 128 at random positions of the image. An Adaptive
Moment Estimation (Adam) optimizer was used with an initial
learning rate of 6.1×10−5 and weight decay of 10−7 (29). The loss
function was a weighted cross-entropy loss, where the weights are
inversely proportional to the number of cases of each Koos grade
in the training set.

The training schedule consisted of 100 iterations over all cases
in the training set. A batch size of 8 was used. The final model was
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selected as the one that achieved the highest weighted F1 score on
the hyperparameter tuning set.

The Koos Random Forest Classifier
Alternatively, we propose another classification branch based on
a Random Forest classifier. Random Forests are a popular ML
technique for classification and have been shown to be a robust
and data-efficient tool. They are collections of decision trees
in which each decision tree is based on a random subset of a
complete set of features.

Feature Extraction
The features fed to Random Forests needs to be carefully
designed. Motivated by prior clinical knowledge, three
handcrafted features were extracted for each foreground
structure of the segmentation mask: volume, shortest distance
to the VS and contact area with the VS. The volume Vc of a
structure c was calculated as Vc = Nc × Vv where Nc represents
the number of voxels in the segmentation mask assigned to
structure c, and Vv is the volume per voxel.

The shortest distance Dc of a structure c to the VS was
determined by calculating minD (iVS, ic), i.e., the smallest
distance D between any pair of voxels (iVS, ic) where iVS and
ic represent the voxel indices of voxels of the VS and voxels of
structure c, respectively.

The contact area Sc of a structure c with the VS was calculated
in three steps. First, all VS voxels with a neighboring voxel of
structure c were identified. Secondly, the identified voxels were
passed to a marching cubes algorithm [python library Scikit-
image (30), version 18.2] which constructs a polygonal surface
mesh that represents the part of the VS surface that is in contact
with structure c (31). Thirdly, the sum of the surface mesh
polygon areas was calculated to obtain the total area Sc.

All features selected as input for the Random Forest are shown
in Table 1.

Implementation Details
Based on these features a Random Forest is trained and
subsequently used to predict the Koos grade of patients whose

TABLE 1 | Handcrafted features selected as input for the Random Forest

classifier.

Feature type

Structure Volume Shortest

distance to

VS

Contact

surface with

VS

Vestibular schwannoma (VS) X

Pons X

Brain stem X

Cerebellar vermal lobules I-V X

Cerebellar vermal lobules VI-VII X

Cerebellar vermal lobules VIII-X X

Ipsilateral cerebellum X X

Contralateral cerebellum X

data was not used in the training process. In this work, we used
the Random Forest implementation of the Python library Scikit-
learn (32) (version 0.24). Default settings were applied, except for
the number of trees of 100,000, maximum tree depth of 5, and
minimum samples per leaf of 2.

The Ensemble Model
Combining different models in a majority voting ensemble can
leverage the strengths of the individual models and boost the
overall performance. The proposed ensemble model combines
the six classificationmodels obtained from training the DenseNet
and the Random Forest three times with the different inputs
ceT1, hrT2 and the combination of both modalities. Each of the
six models’ predictions is counted as a vote for a Koos grade.
The ensemble model simply predicts the Koos grade which has
the most votes. In case of a possible stalemate between multiple
grades, the Random Forest votes were given a casting vote to
break the tie.

Selection of Relevant Brain Structures
Most of the 160 structures identified by GIF are generally
unaffected by the presence of VS so that their features carry little
or no relevant information for Koos classification. To identify
the most relevant brain structures that need to be segmented for
Koos classification, we performed an importance analysis using
Random Forest. Specifically, a Random Forest model was trained
with the features from all 160 structures. Then, an importance
analysis of each feature for classification on a validation set was
performed. Unimportant features were removed iteratively until
the accuracy reached a maximum. This allowed for identification
of the subset of relevant structures to be segmented and used in
the subsequent classifications.

The remaining most important features were: volume of
the VS, the shortest distances between VS and pons, VS and
brainstem, VS and cerebellar vermal lobules I-V, VI-VII andVIII-
X, VS and left/right cerebellum white matter, VS and left/right
cerebellum exterior, and the contact surfaces between VS and
left/right cerebellum exterior. Moreover, the segmentations of the
left cerebellum exterior and the left cerebellum white matter were
combined into a single segmentation (left cerebellum) without
loss of classification accuracy. The corresponding structures on
the right side of the brain were combined in the same way. Hence,
the final 8 structures are those listed in Table 1. Consequently,
the number of input channels of the classification network is 9
(including background).

Furthermore, for the Random Forest, classification
performance was found to be improved by converting left
and right labels to ipsilateral and contralateral labels with respect
to the VS location. To automatically determine whether a tumor
was on the left or right side, the MR image and segmentation
were reoriented in right-anterior-superior (RAS) orientation.
Then, the mean of the projection of the VS segmentation onto
the sagittal axis was computed and compared to the mean of the
projection of the input MR image. Depending on whether the
mean of the projection of the VS was larger or smaller the VS was
assumed to be on the right or left side. This approach was found
to be robust for all cases in the dataset.
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EXPERIMENTAL VALIDATION

Metrics
To assess the performances of the different classifiers with
respect to the ground truth, three common metrics for multiclass
classification were employed: accuracy score, weighted macro-
averaged mean absolute error (MA-MAE) and weighted macro-
averaged F1 score. In contrast to the accuracy score, the MA-
MAE and F1 score take class imbalance into account. Moreover,
MA-MAE depends on the difference between true and predicted
label, whereas accuracy and F1 scores only consider whether a
prediction is correct or not.

The accuracy score is defined as the ratio of the number
of correctly classified samples nmatch and the total number of
samples ntotal:

accuracy =
nmatch

ntotal

The weighted macro-averaged mean absolute error is defined
as (33):

MA-MAE =
1

n

n
∑

j = 1

1

nj

∑

xi∈Tj

|D (xi)|

where n represents the number of classes, nj is the support of class
j with label yj, i.e., the number of samples belonging to that class,
Tj is the set of images in the test set whose true class label is yj, and
D (xi) is the difference between the true class label and predicted
class label for image xi.

The F1 score for binary classification is defined as the
harmonic mean of precision and recall:

F1 =
2 × precision × recall

precision + recall

In multiclass classification, the weighted macro-averaged F1
score is the average F1 score of all classes with weights
proportional to the class support.

Ablation Study and Classifier Comparison
To evaluate the importance of each component of our proposed
framework, we perform an ablation study. Firstly, we implement
a naïve approach that aims at performing Koos grading using
only images (ceT1, hrT2 or ceT1 + hrT2). Secondly, we
investigate the benefits of using VS segmentations instead
of images for the classification task. Thirdly, we explore the
advantages of segmenting the adjacent structures in addition to
the VS structure. Finally, we investigate whether adding extra
information from the images results in improved performance.

Furthermore, we compare the level of performance reached
by different types of classifiers. Specifically, we implement two
state-of-the-art network architectures [3D DenseNet (22) and
3D EfficientNet (34)] and build the handcrafted features-based
Random Forest. Note that we use the DenseNet described
in section The classification network and a 3D EfficientNet
with a similar number of model parameters (EfficientNet-B3).
In addition, we implement a simple baseline algorithm which

FIGURE 3 | Violin plot of all tumor volumes in the dataset over the ground

truth Koos grade. The width of the colored shapes approximately represents

the distribution tumor volumes of the Koos grade’s samples. The three

horizonal lines represent the tumor volume thresholds that optimally separate

all samples in terms of weighted F1 score.

determines the Koos grade based on learned volume thresholds
that optimally separate Koos grades in terms of the weighted F1
score (see Figure 3).

These experiments were evaluated on a test set of 62 cases
obtained by stratified random sampling.

Statistical Tests
Five-fold cross-validation was applied to evaluate and compare
the baseline, DenseNet, and Random Forest approach, and the
model ensemble to the human annotators. To evaluate the
statistical significance of observed differences in the weighted F1
score, a corrected resampled paired t-test was applied (35). The
correction takes into account that the training sets overlap in a
cross-validation approach and are therefore not independent as
is assumed in the uncorrected t-test. The modified t-statistic is
given by: (36)

t =
d

√

(

1
k
+

n2
n1

)

σ 2
d

where d is the mean difference between paired observations, σ 2
d
is

its variance, k is the number of pairs and n2
n1

is the ratio of samples
in the test set and training set, e.g., for 5-fold cross-validation
n2
n1

= 0.8
0.2 .

Frontiers in Radiology | www.frontiersin.org 7 March 2022 | Volume 2 | Article 837191

https://www.frontiersin.org/journals/radiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/radiology#articles


Kujawa et al. Automated Koos Classification

TABLE 2 | Comparison of F1-score obtained with different classifiers and with

different types of input data and modalities assessed on a single fold of the

dataset.

F1-score

Input Modality Random

forest

DenseNet121 EfficientNet-

B3

Image ceT1 – 0.52 0.47

hrT2 – 0.41 0.37

ceT1+hrT2 – 0.51 0.31

VS segmentation ceT1 – 0.86 0.64

hrT2 – 0.88 0.66

ceT1+hrT2 – 0.89 0.64

Image + ceT1 – 0.89 0.76

segmentation of hrT2 – 0.87 0.65

VS and adjacent ceT1+hrT2 – 0.75 0.67

structures

Segmentation of ceT1 0.94 0.83 0.89

VS and adjacent hrT2 0.93 0.88 0.88

structures ceT1+hrT2 0.93 0.90 0.83

RESULTS

Ablation Study and Classifier Comparison
The results of the ablation study are presented in Table 2.
It is apparent that providing only an MRI image as input
to DenseNet and EfficientNet is insufficient for accurate
classification. Both models show improved performance when
the VS segmentation mask with or without adjacent structures
is provided instead of the image. The most robust F1-scores for
both classifiers are obtained based on the segmentation mask
with adjacent structures. Notably, in this case the Random Forest
classifier results in the highest scores. Moreover, the DenseNet
outperformed the EfficientNet in most experiments. Based on
these results, the further experiments were based on the VS
segmentation mask with its adjacent structures and classification
with Random Forest and DenseNet.

Koos Classification Results
Table 3 shows the 5-fold cross-validation performance of the
classification with baseline, DenseNet, and Random Forest
approach as well as the human annotators’ classification results.
The ensemble of DenseNet and Random Forest models achieves
the highest scores of all automated methods. When comparing
the Random Forest and DenseNet approach, the Random Forest
achieves better MA-MAE, weighted F1 score, and accuracy,
independent of whether the input modality is ceT1, hrT2 or the
combination of both. A large difference can be observed between
the two human annotators’ scores, with annotator 2 scoring
higher than annotator 1. The average score of both annotators
is comparable to the score achieved by the ensemble model.

Statistical Significance Tests
The p-values of the corrected paired t-test based on the weighted
F1 scores show that both DenseNet and Random Forest are

TABLE 3 | Koos classification results obtained from automatic methods and

human annotators using 5-fold cross-validation.

MA-MAE F1 score (%) Accuracy (%)

ceT1

Baseline 0.23 ± 0.11 76.1 ± 6.3 76.6 ± 5.6

DenseNet 0.17 ± 0.04 81.5 ± 5.1 81.5 ± 5.1

Random forest 0.12 ± 0.05 87.6 ± 3.0 87.6 ± 3.0

hrT2

Baseline 0.22 ± 0.05 79.4 ± 2.1 79.5 ± 2.0

DenseNet 0.15 ± 0.06 83.8 ± 5.8 83.8 ± 5.8

Random forest 0.14 ± 0.06 85.2 ± 4.8 85.2 ± 4.8

ceT1 + hrT2

Baseline 0.22 ± 0.05 77.1 ± 3.7 77.2 ± 3.8

DenseNet 0.18 ± 0.05 82.1 ± 5.0 82.1 ± 5.0

Random forest 0.12 ± 0.06 87.2 ± 2.8 87.2 ± 2.8

Ensemble

DenseNet + 0.11 ± 0.05 89.3 ± 3.0 89.3 ± 2.9

Random forest

Human annotators

Annotator 1 0.17 ± 0.07 85.4 ± 4.0 84.4 ± 4.7

Annotator 2 0.06 ± 0.02 92.9 ± 3.2 92.9 ± 3.1

Average human annotator 0.11 ± 0.08 89.1 ± 5.2 88.6 ± 5.8

The columns correspond to the weighted macro-averaged mean absolute error (MA-

MAE), the weighted macro-averaged F1 score, and the accuracy score. Inputs are

contrast-enhanced T1-weighted (ceT1) images, high-resolution T2-weighted (hrT2)

images, or a combination of both (ceT1 + hrT2). The error ranges correspond to the

standard deviation of the mean of values obtained from 5-fold cross-validation. Bold

scores indicate the best automatic method.

significantly better classifiers than the baseline approach (p =

0.042 and p = 0.0002, respectively). Moreover, the results of the
Random Forest are significantly better compared to DenseNet (p
= 0.049).

The corrected paired t-tests between the ensemble model
results and the human annotators across the 5-folds imply that
the ensemble model performed significantly better than human
annotator 1 (p = 0.037), but not significantly different from
human annotator 2 (p = 0.40). Furthermore, the performance
compared to an average human annotator is not statistically
significant either (p= 0.94).

Inter- and Intra-rater Reliability
Inter-rater reliability between the two human annotators was
assessed by calculating Fleiss’ generalized kappa based on 308
cases. The result (k = 0.68), is considered a “substantial
agreement” (37). This is in agreement with the inter-rater
reliability measured in a recent study (k = 0.71) which was
conducted on a much smaller sample size of 40 but with
annotations from four human annotators (5).

Intra-rater reliability of human annotator 1 (k = 0.95) and
human annotator 2 (k = 0.82) was classified as “almost perfect”
according to the weighted kappa metric with quadratic (Fleiss-
Cohen) weights. Intra-rater reliability in the aforementioned
study was slightly higher with 3 out of 4 annotators achieving
“perfect” scores (k = 1.00). One explanation for the lower
scores in our study may lie in the increased sample size which
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FIGURE 4 | Confusion matrices between the ground truth Koos grades on the horizonal axis and automatic or human Koos grade predictions on the vertical axis.

made it more difficult for human annotators to recognize the
duplicate images and memorize Koos grades assigned to the
original images.

Confusion Matrices
The confusionmatrices shown in Figure 4 give a detailed account
of how many cases were correctly classified and how many were
misclassified for each Koos grade. They also reveal by how many
grades misclassified cases were separated from the ground truth.

Notably, none of the classifiers misclassified a case by more
than one grade, except for human annotator 1 who classified a
grade IV tumor as grade II.

Moreover, it is apparent that the majority of misclassifications
by human annotators are between Koos grades III and
IV whereas for the automated approaches the number of
misclassifications is more evenly spread over all grades. For
example, human annotator 1 classified 40 cases as III instead
of IV. In contrast, both human annotators outperform the
automated pipelines when only Koos grades I-III are considered.

Segmentation Results
To assess the quality of the intermediate segmentations predicted
by nnU-Net in the first stage of the pipeline, Dice scores were
calculated for all structures (Table 4). Excellent results with
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TABLE 4 | Results of the automatic segmentation of selected brain structures.

Dice score (%)

Structure ceT1 hrT2 ceT1 + hrT2

VS 93.9 ± 4.0 90.7 ± 5.4 94.1 ± 4.1

Pons 97.6 ± 0.8 96.7 ± 0.9 97.6 ± 0.8

Brainstem 96.3 ± 1.3 94.4 ± 1.3 96.3 ± 1.2

Cerebellar vermal lobules I-V 93.2 ± 2.3 89.3 ± 2.3 93.2 ± 2.3

Cerebellar vermal lobules VI-VII 87.8 ± 5.1 84.0 ± 5.1 87.8 ± 5.1

Cerebellar vermal lobules VIII-X 93.1 ± 2.3 89.3 ± 2.3 93.1 ± 2.3

Right cerebellum 95.8 ± 1.4 93.9 ± 1.5 95.8 ± 1.4

Left cerebellum 95.8 ± 1.5 93.8 ± 1.6 95.8 ± 1.5

The segmentation model trained with nnU-Net was compared to the ground truth

segmentations. Inputs are contrast-enhanced T1-weighted (ceT1) images, high-resolution

T2-weighted (hrT2) images, or a combination of both (ceT1 + hrT2). The error ranges

correspond to the standard deviation of the mean Dice score of all test cases.

average Dice scores across all segmented brain structures of
94.8 ± 1.4%, 92.4 ± 1.5%, and 94.8 ± 1.4% were obtained
for ceT1, hrT2, and ceT1 + hrT2 inputs. Dice scores are
generally higher for ceT1 and ceT1 + hrT2 inputs than for hrT2
only inputs, respectively. For pons and brainstem, the highest
Dice scores are achieved, whereas cerebellar vermal lobules are
more difficult to segment and achieve lower Dice scores for all
input modalities.

Note that our segmentation model (Dice scores based on
ceT1/hrT2/ceT1 + hrT2 = 93.9 ± 4.0/90.7 ± 5.4/94.1 ± 4.1)
compares favorably with the state-of-the-art model (9) for VS
segmentation trained on the same dataset (Dice scores based
on ceT1/hrT2/ceT1 + hrT2 = 93.43 ± 3.97/88.25 ± 3.90/93.68
± 2.80).

DISCUSSION

In this work, we present the first automated methods for
classifying VS tumors according to their Koos grade. The best
classification performance was obtained with themodel ensemble
which leverages the strengths of the two proposed pipelines and
modalities, and achieves results that are comparable to those of a
human annotator.

Learned Features vs. Handcrafted Features
We observe that deep learning-based models are outperformed
by a standard ML approach designed with handcrafted features.
This could be explained by the lack of sufficient training
data since neural networks require more data for optimal
performance. While the number of training cases in the
dataset is relatively large for the segmentation task, it can
be considered small for the classification step of the pipeline.
This is due to the larger amount of information contained
in a segmentation label compared to the single scalar label
provided for each image in the case of classification. On the
one hand, by extracting handcrafted features and discarding all
other information from the segmentation, a simpler classification
task is constructed which requires fewer training samples and

a less complex classifier (Random Forest). On the other hand,
although the handcrafted features were carefully selected some
possibly relevant information, for example the shape of the
tumor, is lost in the feature selection process. Manual feature
selection therefore represents a trade-off between focus on
relevant features and consideration of less relevant features.

In settings in which only one modality is available, the
Random Forest method is recommended as this classifier yields
better results than DenseNet and is more robust to different
random initializations of model parameters. In addition, the time
required for training the Random Forest model (<2min) is short
compared to that of the DenseNet model (∼4 h).

On the other hand, the DenseNet has a much shorter
inference time (<1 s) than the Random Forest branch of the
inference pipeline where the bottleneck is the extraction of
handcrafted features (∼5min), although the latter estimate
is expected to drop drastically if parallelized versions of the
feature extraction algorithms are employed. Furthermore, we
expect the DenseNet approach to benefit from a larger number
of images in the training set, since neural networks tend to
require larger amounts of data than traditional machine learning
algorithms. Koos grade I, in particular, is underrepresented
in this dataset (12 training cases), but even the sample
sizes of the other grades (75–85 training cases per grade)
are considered relatively small for classification tasks with
deep learning.

Classification Using an Ensemble
It can be observed that the use of a model ensemble leads to a
boost in performance. This could be explained by the fact that the
ensemble favours the model that is more certain in its prediction
across the three types of input modality. For example, the shape
of a small tumor might clearly indicate a protrusion of the tumor
outside the meatus and be correctly classified across all input
types only by the DenseNet. On the other hand, due to the small
number of training data DenseNet might not learn that contact
between tumor and brain stem is a decisive feature between Koos
grade II and III. This, however, is easier to learn for the Random
Forest based on the provided distance features between tumor
and adjacent structures. The ensemble model can predict the
correct grade in both examples.

A disadvantage of the model ensemble is that it requires the
availability of co-registered images of both modalities that are
resampled in the same voxel space.Moreover, both pipelines need
to be set up and three models trained for each of them (ceT1,
hrT2, and ceT1+ hrT2).

Impact of Input Modalities
The notably worse classification results observed for hrT2 only
inputs can be attributed to the lower segmentation quality
of the first neural network for all segmented brain structures
(Table 4). Due to the reduced image contrast between VS and
adjacent brain structures the identification of tumor boundaries
is often more challenging which explains the reduction in Dice
score. Nevertheless, interest in non-contrast images has increased
in recent years in an effort to reduce patient risk and scan
cost (38). Gadolinium-based contrast agents have indeed been
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associated with risks such as accumulation in the brain and
nephrogenic systemic fibrosis in patients with impaired renal
function (39, 40). Hence, research into exploiting hrT2 images for
assessment of VS is ongoing and has led to T2-weighted imaging
becoming a standard approach for initial detection and follow-up
of untreated VS (41).

Analysis of Misclassifications
Figure 5 highlights cases that were correctly classified by at least
one human annotator and misclassified by the ensemble model.

The first and second row show a grade I and grade II
tumor, respectively. The tumor is particularly large for a grade
I tumor, but it does not protrude beyond the porus of the petrous
bone into the cerebellopontine angle (most evident on the hrT2
image). In contrast, the grade II tumor has a smaller volume,
however, there is clear protrusion of the medial extrameatal
component into the cerebellopontine angle.

A similar situation is presented in row 3 and 4, which show a
large grade II and a relatively small grade III tumor, respectively.
While the human annotators agree with the ground truth, all
automatic models except for one confuse the Koos grades. The
decisive feature for the classification of the grade II tumor is the
increased intensity in the hrT2 image of voxels at the border
between VS and cerebellum, indicating a CSF filled cleft between
both structures. This feature is not present in the hrT2 image of
the grade III tumor. However, based on only the ceT1 image or
the segmentations this distinction is hardly possibly.

Finally, rows 5 and 6 present cases for which the models,
and one human annotator confuse Koos grade III and IV. Both
cases exhibit a degree of brain stem compression, however the
compression is more pronounced in the grade IV case.

For human annotators, the distinction between these two
grades was difficult across much of the dataset as can be
seen in the confusion matrices of Figure 4. Annotator 1
misclassified many grade IV cases as grade III whereas annotator
2 misclassified grade III cases as grade IV. This suggests that both
annotators interpreted the meaning of “brain stem compression”
in the Koos scale description differently with annotator 2
frequently labeling cases where there was only cerebellar
peduncle compression (and no brainstem compression) as
Koos grade IV. This discrepancy highlights a shortcoming
of the Koos scale itself. A clearer definition of which brain
structures are considered part of the brain stem and which
degree of compression determines the transition from grade
III to grade IV would likely increase inter-rater reliability. The
presented examples highlight borderline cases that depend on
nuances in the MR images and on the interpretation of the
Koos scale which ultimately limit the accuracy that a classifier
can achieve.

Limitations
This study was limited by its rather homogeneous dataset which
was acquired for GK therapy guidance with a standardized scan
protocol on a single MRI scanner. Therefore, the question of
howwell the suggested pipeline generalizes on diagnostic datasets
typically acquired on different scanners and with a wide range of

values for scan parameters such as image resolution, field of view
and sequence type remains open.

However, we believe that the 2-stage design of our pipeline
makes it possible for it to generalize well to heterogeneous
datasets. This is because the framework applied in the first stage,
nnU-Net, was specifically developed to adapt and automatically
configure itself for any new dataset. Our preliminary results
(not shown here) on a clinical dataset of MR images of patients
with VS acquired on different scanners and with different scan
protocols show that nnU-Net is capable of producing highly
accurate segmentations of VS and adjacent structures for such
heterogeneous datasets.

The second stage of our pipeline depends exclusively on
the output segmentations produced by nnU-Net. Barring
segmentation errors, these segmentations are independent
of the scan protocol or modality since they represent the
morphology of brain structures; thus, the second stage models
(DenseNet and Random Forest) are not expected to require
image-specific adaptation. On the other hand, the exclusive
dependence of the classifier on the segmentation output also
means that an inaccurate segmentation output is likely to result
in misclassification.

The pipeline’s second limitation is that the GIF algorithm
is not optimized for T2-weighted images or for images with
a restricted field of view (FOV), e.g., a FOV focused only on
Internal Auditory Meatus. Currently, T2-weighted images in
the training set need to be accompanied by co-registered T1-
weighted images which are used as input for GIF.

Finally, the dataset includes a relatively small number of Koos
grade I cases since such tumors are rarely treated with GK SRS.
Diagnostic datasets are usually more evenly distributed across all
Koos grades. In addition, such datasets typically include tumors
that are too large for radiosurgery which are not present in the
current curated GK dataset.

Future Work
In future work, we aim to address these limitations by
evaluating the complete pipeline on non-curated datasets
obtained on a variety of clinical scanners with varying
sequence protocols. Furthermore, while this study focuses on
sporadic VS, adaptations of the pipeline for MR images of
bilateral tumors from patients with the hereditary condition
Neurofibromatosis type 2 (NF2) will be developed. Finally,
we aim to combine the automatically predicted Koos grades
with other frequently reported tumor measures to investigate
how their availability might facilitate, on the one hand, the
preparations for a multidisciplinary team meeting, and on
the other hand, the treatment decision process during the
meeting itself.

CONCLUSIONS

We developed the first framework for fully automated
Koos classification. The excellent results on ceT1 and
hrT2 images show that the classification accuracy is
comparable to that of neurosurgeons. Further validation
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FIGURE 5 | Examples of misclassified cases. The 4 columns contain ceT1 images, hrT2 images, ground truth segmentations resulting from GIF, and predicted

segmentations by the nnU-Net model. The colors indicate the segmentation labels of VS (red), pons (green), brain stem (purple), left cerebellum (brown), right

cerebellum (gray), cerebellar vermal lobules I-V (yellow) and VI-VII (light blue).

on clinical datasets can enable the framework to be
applied as a support tool for treatment planning in
clinical practice.

In combination with other tumor characteristics, such as
the largest extrameatal diameter and the tumor volume, the
Koos scale is routinely employed in clinical practice to facilitate
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treatment planning and patient counseling. In clinical practice, it
has the potential to increase the efficiency of treatment planning
by reducing preparation time and workload. In the future,
further developments of the pipeline could aim at the automated
calculation of other tumor characteristics such as the extrameatal
diameter to provide a complete set of relevant metrics to the
treatment team.
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