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Objective: The disease COVID-19 has caused a widespread global pandemic with ∼3.

93 million deaths worldwide. In this work, we present three models—radiomics (MRM),

clinical (MCM), and combined clinical–radiomics (MRCM) nomogram to predict COVID-

19-positive patients who will end up needing invasive mechanical ventilation from the

baseline CT scans.

Methods: Weperformed a retrospectivemulticohort study of individuals with COVID-19-

positive findings for a total of 897 patients from two different institutions (Renmin Hospital

of Wuhan University, D1 = 787, and University Hospitals, US D2 = 110). The patients from

institution-1 were divided into 60% training, DT
1 (N= 473), and 40% test set DV

1 (N= 314).

The patients from institution-2 were used for an independent validation test set DV
2 (N =

110). A U-Net-based neural network (CNN) was trained to automatically segment out

the COVID consolidation regions on the CT scans. The segmented regions from the CT

scans were used for extracting first- and higher-order radiomic textural features. The

top radiomic and clinical features were selected using the least absolute shrinkage and

selection operator (LASSO) with an optimal binomial regression model within DT
1.

Results: The three out of the top five features identified using DT
1 were higher-order

textural features (GLCM, GLRLM, GLSZM), whereas the last two features included

the total absolute infection size on the CT scan and the total intensity of the COVID

consolidations. The radiomics model (MRM) was constructed using the radiomic score

built using the coefficients obtained from the LASSO logistic model used within the

linear regression (LR) classifier. The MRM yielded an area under the receiver operating

characteristic curve (AUC) of 0.754 (0.709–0.799) on DT
1, 0.836 on DV

1 , and 0.748 DV
2 .
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The top prognostic clinical factors identified in the analysis were dehydrogenase (LDH),

age, and albumin (ALB). The clinical model had an AUC of 0.784 (0.743–0.825) on DT
1,

0.813 on DV
1 , and 0.688 on DV

2 . Finally, the combined model, MRCM integrating radiomic

score, age, LDH and ALB, yielded an AUC of 0.814 (0.774–0.853) on DT
1, 0.847 on DV

1 ,

and 0.771 on DV
2 . The MRCM had an overall improvement in the performance of ∼5.85%

(DT
1: p = 0.0031; DV

1 p = 0.0165; DV
2 : p = 0.0369) over MCM.

Conclusion: The novel integrated imaging and clinical model (MRCM) outperformed both

models (MRM) and (MCM). Our results across multiple sites suggest that the integrated

nomogram could help identify COVID-19 patients with more severe disease phenotype

and potentially require mechanical ventilation.

Keywords: COVID-19, radiomics, nomogram, prognosis, severity, peritumoral radiomics

INTRODUCTION

The coronavirus disease 2019 (COVID-19), caused by severe
acute respiratory syndrome 2 (SARS-CoV-2), is an ongoing
global pandemic with over 3.93 million deaths and 181 million
total diagnosed cases worldwide so far (1–3). The newCOVID-19
delta variant, recently diagnosed and spreading across the world,
has the ability to cause very dense outbreaks (4, 5).

The majority of COVID-19 patients present with mild disease
to an outpatient clinic or via telehealth with minor clinical
symptoms. A lesser proportion of the patients develop moderate
to severe disease with significant pulmonary dysfunction or
damage as evidenced by signs of hypoxemia and moderate to
severe dyspnea (2). According to one study, ∼20% of diagnosed
COVID-19 cases have severe or critical diseases, and about 8%
of them require intensive care management with or without
mechanical ventilation (6). If we can diagnose this high-risk
population at the earliest stages, it will likely allow for optimal
resource management and individualized treatment planning
(7, 8).

Imaging plays an essential role in the management of COVID-
19 patients, with chest CT being the preferred modality for these
patients (9). However, despite the high sensitivity of chest CT,
the reported specificity is quite low at about 25–33%, which is
due to considerable overlap in CT imaging features of COVID-
19 and other viral types of pneumonia (10). This, coupled with
other challenges, such as transmission risk to uninfected health
care workers and other patients, consumption of PPE, and need
for cleaning and downtime of radiology equipment in resource-
constrained environments, has led to the recommendation by

Abbreviations: COVID-19, the coronavirus disease 2019; SARS-Cov-2,

respiratory syndrome coronavirus 2; ARDS, acute respiratory distress syndrome;

CT, computed tomography; RT-PCR, reverse transcription polymerase chain

reaction; AI, artificial intelligence; CNN, convolutional neural network; DL,

deep learning; GGO, ground glass opacities; DSC, Dice similarity coefficient;

ROC, receiver operating characteristic curve; PR, precision recall; AUC, area

under the receiver operating characteristic curve; LDH, lactate dehydrogenase;

ALB, albumin; LASSO, least absolute shrinkage and selection operator; GLCM,

gray-level co-occurrence matrix; GLSZM, gray-level size zone matrix; GLRLM,

gray-level run length matrix; NGTDM, neighboring gray tone difference matrix;

GLDM, gray-level dependence matrix; MRM, radiomic-based model; MCM,

clinical-based model; MRCM, radiomic–clinical-based nomogram.

multiple professional societies against usage of CT as a routine
screening test for COVID-19 but reserved for only selected
clinical scenarios (11).

Furthermore, a variety of prediction models have been
reported for diagnosing and prognosticating COVID-19,
including a combination of clinical and lab data as well as
imaging features (12–16). According to a systematic review,
flu-like symptoms and neutrophil count are more predictive
in diagnostic models, while comorbidities, sex, C reactive
protein, and serum creatinine levels are the frequently reported
prognostic factors (17). Most of the AI analysis has focused on
chest x-rays (CXRs) (1, 2), though more recently, more and more
works on AI for CT scans have also been published. In this work,
our focus has been solely on CT scans, and especially machine
learning-based models. However, many of the proposed models
are poorly reported and are at high risk of bias, and at present,
it is not recommended to use any of the reported prediction
models for use in clinical practice (17).

Therefore, there is an unmet need to develop non-invasive
tools, preferably based on existing imaging techniques and
available clinical parameters, that can help prospectively identify
patients at higher risk for developing severe disease phenotype.
The ability to identify these patients who will probably need
mechanical ventilation and develop severe symptoms will allow
us for optimal use of existing precious resources.

In the past few years, high-throughput computer extracted
features from the radiographic images (radiomics) has
been useful for a variety of diagnostic, prognostic, and
predictive applications across several cancers as well as
other diseases (18–20). These features are known to capture
the underlying tissue morphology and characteristics,
which are not visually apparent to the naked eyes (21, 22).
Within the COVID-19 space, radiomics has been used
for various applications. Radiomics has been successful in
differentiating COVID-19 patients from other pneumonia
cases (diagnostic), as well as has shown application for
predicting the severity of COVID-19 patients (prognostic).
Table 1 in the Appendix 1 shows the studies from December
2019 to December 2020 looking at various machine-learning
radiomic-based models for diagnostics as well as prognostic
applications (13–15, 23–28).
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TABLE 1 | Patient characteristics.

Renmin Hospital

(Wuhan, China)—D1

University Hospitals

(Cleveland, US)—D2

Train Test

Age median (IQR) 59 (46–67) 60 (48–69) 62 (20–94)

Ventilator

Yes (%) 267 (62.09%) 154 28

No (%) 163 137 85

Laboratory findings

Lactate

dehydrogenase

(U/L)

280.7 (126–936) 271.8 (108–1,039) 348.5 (127–919)

Albumin (g/L) 37.29 (22.7–49) 38.48 (24.6–50.6) 36 (25.0–44.0)

Radiomics

Radiomic score

median (IQR)

2.99 (2.57–3.47) 2.98 (2.46–3.52) 3.51 (3.184.02)

In this work, we aim to combine the clinical and laboratory
parameters with imaging data to build an accurate and easy-to-
use nomogram to predict the need for mechanical ventilation
for COVID-19 patients. The imaging data includes radiomic
features extracted from the regions corresponding to COVID
consolidation on CT scans; these regions of consolidation were
automatically segmented using the U-Net-based model, making
the whole end-to-end pipeline completely automated. Our model
has been validated on roughly∼1,000 patients from two different
institutions making this one of the largest radiomic-based
prognosis predictions for COVID-19 studies to date.

MATERIALS AND METHODS

Patients
The Institutional Review Board Committee approved the
retrospective chart review study of record at the University
Hospitals, Cleveland (STUDY20200463), and the Renmin
Hospital of Wuhan University (ethics number: V1.0; IRB
number 2020KS02010). The need for written consent was
waived. Following the inclusion and exclusion criteria, the study
included D1 (N = 787) patients from the hospital of Wuhan
University, Hubei General Hospital, and D2 (N = 110) patients
from University Hospitals, Cleveland. The details regarding the
inclusion–exclusion criteria and patient flowchart are mentioned
in Figure 1.

Stratified random sampling was performed to split the data
from institution-1 into 60% training DT

1 (N = 473) and 40%
testing DV

1 (N = 314). While randomly dividing the data, the
COVID patients being on the ventilator were kept approximately
similar within training and testing cohorts (The training cohort
had ∼64% of the COVID patients being on ventilator, whereas
∼55% of the COVID patients did not use the ventilator. Similarly,
the testing set had ∼36% of the COVID patients who used
the ventilator, and ∼45% of the COVID patients did not use
the ventilator).

FIGURE 1 | Patient selection criteria and dataset distribution.

The patients from institution-2 were used for independent
external validation DV

2 (N = 110). The patients were acquired by
following the chart review for patients who were seen between
January and September 2020.

Radiomic Feature Analysis
Detection and Segmentation of Lung Lesions
An expert radiologist with 14 years of experience delineated
ground-glass (GGO) and consolidation regions on a subset of DT

1
[DT

UNET N = 88 (training cohort) and DV
UNET N = 96 (validation

cohort)]. The UNET-based model to segment the COVID
consolidations on CT scans was trained within a threefold
cross-validation setting using DT

UNET, and the performance was
validated on DV

UNET. A CNN with U-Net architecture was
employed to segment out ground-glass opacities (GGOs) and
consolidations in the lung region on the baseline chest CT
scans (29). An automatic lung segmentation method utilizing a
watershed transform was used to segment out and crop the CT
volume around the regions of the lung (30). Each 2D slice of the
cropped volume was resized to a size of 256 by 320. Furthermore,
the 2D slice was vertically divided into two parts dividing the
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FIGURE 2 | Workflow of the experiment. The first step involves segmentation of coronavirus disease (COVID) consolidations, which were further used for radiomic

feature extractions. Next, the top clinical and radiomic features were selected using (LASSO) analysis and further used for constructing radiomic model (MRM), clinical

model (MCM), and combined combined clinical–radiomic (MRCM) nomogram.

right and left lung regions (input size: 256 by160), and parts of the
lung region (right, left) were given as separate inputs (input size:
256 by160). The two vertical slices from each 2D input were used
as inputs to the UNETmodel to segment COVID consolidations.

Appendix 1 explains the architectural diagram of the 2D
U-Net used for segmentation of GGOs and consolidations.

Radiomic Feature Extraction
After automatic segmentation of lung volume, all the scans
were resampled to 0.75mm in the x- and y-directions and
simultaneously added a uniform slice thickness of 5mm
to reduce the impact of different equipment and scanning
parameters. The total infection size was calculated by calculating
the volume of the COVID consolidations annotated using the
U-Net model. These consolidations were termed as COVID
regions. Next, a total of 187 radiomic features were extracted
from annotated CT scans. These features included 37 first-
order features and 150 higher-order textural features. The
textural features included the gray-level co-occurrence matrix
(GLCM), gray-level size zone matrix (GLSZM), gray-level run
length matrix (GLRLM), neighboring gray tone difference matrix
(NGTDM), and gray level dependence matrix (GLDM).

Appendix 1 summarizes all the extracted features. These
features capture textural patterns of COVID consolidations that

are not apparent with the naked eye and could potentially help
describe the heterogeneity of these regions.

The top predictive radiomic features from the training
cohort DT

1 were selected using the least absolute shrinkage and
selection operator (LASSO) feature selection algorithm (31).
These features were further used for constructing a continuous
radiomic risk score using the weighted sum of their LASSO
coefficients. The radiomics model (MRM) was constructed using
this developed radiomic risk score.

Clinical Feature Analysis
A total of 20 clinical variables and laboratory parameters were
included in the analysis, as explained inAppendix 1. Specifically,
these features included patients’ age and laboratory parameters,
such as albumin (ALB), lymphocytes, WBCs, etc. Previous
studies show a high correlation of these clinical variables with
the patient being on the ventilator when admitted to a hospital
(32, 33).

A total of 545 cases out of 897 had all the clinical variables
available. The total missing rate of the clinical variables was
39.34%. To make use of all the available data, the missing clinical
values were imputed by the mean values of available clinical
entities from DT

1 . For an external validation set, the missing
values were replaced by the mean obtained from the complete
cases of the same cohort.
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Similar to radiomics analysis, the most prognostic clinical
variables were selected from the training cohort DT

1 using LASSO
analysis (31) and used within the logistic regression model for
predicting the need for ventilators in COVID-19 patients (clinical
model: MCM).

Statistical Analysis
The primary endpoint of the study was predicting the severity
of the COVID-19 disease, specifically, predicting patients who
would require an invasive mechanical ventilator vs. those who
would not. Figure 2 explains the entire experimental design
pipeline.

First, to validate the automatic CNN-based segmentation
model’s performance, the Dice similarity coefficient (DSC) was
used. The DSC was evaluated on the voxel-wise segmentation
performance and compared against an expert radiologist reader.

For building the prediction models, the top features were
selected from the entire feature pool using the LASSO algorithm
on DT

1 to constrict MRM and MCM. LASSO provides a principled
way to reduce the number of features in a model. LASSO
penalizes the L1 norm of the weights, which induces sparsity
in the solution (many weights are forced to zero). This
performs variable selection (the “relevant” variables are allowed
to have non-zero weights). The degree of sparsity is controlled
by the penality term, which was selected within a 10-fold
cross-validation setting. The MRM model had top Radiomic
features in the form of “radiomic score” constructed using the
weighted sum of these features with their corresponding LASSO
coefficients. The MCM model consisted of top clinical features,
and the final model, MRCM, was constructed using the top
clinical features integrated with “radiomic score” in the form of
nomogram analysis.

All three models were constructed with logistic regression
(LR) classifiers. The receiver operating characteristic (ROC) and
precision-recall (PR) analysis, along with sensitivity, specificity,
and area under the curve (AUC), were used as performance
metrics to evaluate the accuracy of the MRM, MCM, and MRCM.
DeLong test was used to compare the statistical significance
of differences between the models (34). Odds ratio (OR) and
95% confidence intervals (CI) were calculated to estimate the
effect size of important clinical factors and image features.
For DT

1 , cross-validation results were reported as mean ±

standard deviation.
The final MRCM model was represented as a clinico-

radiomic nomogram (35). The patients were divided into high-
risk (ventilator) groups and low-risk (non-ventilator) groups
using the optimal cutoff point obtained from the LR model.
The decision curve was plotted and evaluated to see the
added improvement of the nomogram over the individual
models. The net benefit was calculated by summing the
benefits (true-positive results) and subtracting the harms (false-
positive results), weighting the latter by a factor related to
the relative harm of undetected disease severity with the harm
of unnecessary ventilator treatment (36). In this analysis, the
added improvement of the MRCM model was shown over MCM

and MRM.

RESULTS

Study Population and Characteristics
Table 1 lists the study population characteristics for the two
institutions D1 and D2. The median age of the patients was 59
in D1 and 60 in D2. In D1 and D2, 41.9, 55.3% had a mild
disease, whereas 58.1, 44.7% had a severe disease having ended
up requiring invasive mechanical ventilation.

Segmentation Model
The U-Net network detected 1,017 of 1,260 COVID regions
(3D connected components) annotated by the radiologist with
449 false positives on DT

UNET. The corresponding sensitivity and
positive predictive value (PPV) were found to be 80.71 and
69.3%, respectively. The output segmentation (Figure 3) by the
network had an overlap of DSC= 0.60± 0.02 with ground-truth
delineations for the detected regions. On the validation set of N
= 96 (DV

UNET), 1,071 of 1,353 annotated regions were detected
with 470 false positives, which resulted in a sensitivity of 79.15%
and PPV of 69.5%. The corresponding DSC of the segmentation
on DV

UNET was 0.59. The corresponding DSC of the segmentation
on DVUNET was 0.59 (Table 2).

Individual Radiomic- and Clinical-Based
Machine Learning Models for Predicting
Patients Being on the Ventilator for
COVID-19 Patients
The top five features selected within the radiomic model using
the LASSO analysis are listed in Table 3. Figure 4 shows the
difference between featuremaps for ventilator and non-ventilator
cases. These features were statistically significant between the
ventilator and non-ventilator groups, with higher feature values
potentially representing patients at higher risk of disease. The
violin plots of the top features are represented in Appendix 1.

The constructed logistic regression model with radiomic score
(MRM) had an AUC of 0.754, 95% CI (0.709–0.799) on DT

1 .
The same model gave an AUC of 0.836, 0.758, and 0.719 on
DV
1 , D

V
2 , and combined test set (DV

1 + DV
2 ). For the clinical

model, MCM, the LASSO method selected albumin (ALB),
lactate dehydrogenase (LDH), and age as the most predictive
parameters. Using the most discriminating clinical factors, the
model trained yielded an AUC of 0.784, 95% CI: (0.743–0.825)
on DT

1 and 0.813, 0.688, and 0.703 on DV
1 , D

V
2 , and combined test

set (DV
1 + DV

2 ), respectively.
Appendix 1 shows the violin plots for the top clinical features

and scores for training and validation datasets.

An Integrated Clinical and Imaging
Nomogram to Predict the Need for
Mechanical Ventilation in COVID-19
Patients
The integrated radiomic–clinical nomogram, MRCM, included
the radiomic score and three clinical parameters—age, albumin,
and lactate dehydrogenase. Table 4 shows the effect size and odds
ratio for these variables.
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FIGURE 3 | Segmentation results of a 2D U-Net in segmenting ground-glass opacities and COVID consolidation regions. Green contours represent ground-truth

delineations of the ground-glass opacities (GGOs) and consolidations, and their corresponding network segmentation contours are represented in red. The 2D U-Net

network was trained on the subset of the training set.

TABLE 2 | U-Net-based model analysis.

Detected False positives Sensitivity (%) PPV (%) DSC

DT
UNET 1,017/1,260 449 80.71% 69.3% 0.60 ± 0.02

DV
UNET 1,071/1,353 470 79.15% 69.5% 0.59

The MRCM model outperformed both MCM and MRM,
resulting in an AUC of 0.847 and 0.771, and 0.735 on DV

1 , D
V
2 ,

and combined DV
1 + DV

2 test set, respectively.
The multivariate logistic regression analysis of the MRCM

nomogram showed that the radiomic score was found to add
independent prognostic value to the MRCM model. The predicted
score of 0.54 or greater [an optimal cutoff point on the receiver
operating characteristic (ROC) curve] suggested the need for
mechanical ventilation, while scores ≤0.54 could be managed
conservatively (Figure 5). Additionally, the AUC comparison
within the three models showed that the increase in AUC in
MRCM was statistically significant when compared against the
clinical model MCM.

The decision curve analysis indicated an added net benefit
using the integrated model MRCM over MCM and MRM

(Figure 6). The combined MRCM model had the highest net
benefit compared with MCM, MRM, and simple strategies, such
as treating all patients (light vertical curve line) or treating
no patients (horizontal black line) across the full range of
threshold probabilities.

DISCUSSION

In this study, we presented an integrated radiomic and clinical
nomogram (MRCM) to predict at baseline patients with a severe

TABLE 3 | Selected top features.

Feature family Feature name LASSO coefficient

Texture features GLCM Inverse variance 1.65 e(0)

GLRLM High gray level

run emphasis

1.96 e(−2)

GLSZM Small area low

gray-level

emphasis

8.95 e(−5)

First order 90th percentile

pixel value

−3.48 e(−2)

Absolute infection size 2.38 e(−6)

phenotype of COVID-19 and who would end up needing
mechanical ventilation and intubation. We explicitly used
patients with baseline CT scans and laboratory parameters
observed within the milder stage of the disease to reduce the
bias. MRCM comprised a radiomic score constructed using the
annotated GGO and consolidation regions on lung CT scans
along with age, albumin (ALB), and lactate dehydrogenase
(LDH). Meanwhile, the radiomic model (MRM) incorporated the
radiomic score constructed using five radiomic features. The
clinical model (MCM) was built using age, albumin, and lactate
dehydrogenase out of routine clinical laboratory parameters.
We constructed a U-NET-based segmentation algorithm to
segment COVID-19 regions from the baseline CT scans to
completely automate the whole process. The three models
were trained and independently validated on a large multi-
institutional dataset making this the most extensive study
to date involving AI and radiomics for the prognosis of
COVID-19 patients.
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Our radiomic model, MRM, incorporated radiomic score
constructed using top features observed from within the gray-
level matrix-based feature families explaining textural patterns
of COVID regions. These features had higher expression in
potentially high-risk cases, suggesting a more chaotic and
disturbed microarchitecture in patients at a higher risk of disease
(Figure 4). Our results are in line with results presented byWu et
al. (14), where four features out of five were observed from gray-
level matrix-based feature family. The higher textural value from
the gray-level co-occurrence matrix indicates the more abnormal
lung tissues, which further seemed to be associated with the

FIGURE 4 | Feature maps of top selected features for ventilated (lower row)

and non-ventilated (upper row) cases.

worse outcome. This is consistent with previous findings that
show that peripheral, diffuse distributions and paving patterns
are associated with poor survival in COVID-19 cases (37).
Compared with the usual imaging CT model features, radiomics
offer superior performance in the COVID-19 space. Simply
looking at radiomicmodels for predicting the severity of COVID-
19 patients, the signatures constructed using SVM by Fu et
al. (24) achieved an AUC of 0.83 on N = 64, and Wei (25)
achieved an AUC of 0.93 on N = 81. Our results show a
better performance considering that we had larger datasets with
completely independent multi-institutional validation sets.

The most prognostic clinical variables observed within the
clinical model were age, ALB, and LDH selected using the

FIGURE 6 | Decision curve analysis of MRCM (clinical and imaging integrated

nomogram) constructed using developed radiomic score, age, and three

laboratory parameters (LDH and ALB). The other (bottom) were clinical (MCM)

and radiomic model (MRM).

FIGURE 5 | Constructed nomogram, MRCM, which included radiomic score, age, albumin (ALB), and lactate dehydrogenase (LDH). The nomogram calculates the

probability of the patient being on the ventilator.
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LASSO. A low level of ALB was associated with poorer outcomes,
i.e., the patient being on the ventilator (32). In contrast, low
levels of LDH were associated with better outcomes (32, 33).
The boxplots of these features are depicted in Appendix 1.
ALB and LDH are considered biomarkers for predicting the
COVID-19 severity in the previously published findings (32). We
observed the third important clinical feature to be the patient’s
age, where an advanced age was associated with a worse outcome
for COVID19 patients (38).

The integrated MRCM model outperformed MRM and
MCM models in predicting which COVID-19 patients would
ultimately need invasive mechanical ventilation on both internal
and external validation sets DV

1 and DV
2 . MRCM improved

performance by over ∼2.5% over MRM and ∼3.77% over MCM

in terms of AUC, with the performance increase statistically
significant by DeLong’s test. The MRCM model was used to
individualize risk assessments. The predicted score of 0.54 or
greater [an optimal cutoff point on the receiver operating
characteristic (ROC) curve that had an optimal balance between
sensitivity and specificity] suggested the need for mechanical
ventilation, while scores≤0.54 could be managed conservatively.
We only noticed one nomogram approach developed by Yu et
al. (39), which used age, density, perfusion signs, and severity
score of lungs constructed by assessing each lobe of the lung for
predicting the severity of COVID-19. The nomogram achieved
an AUC of 0.929 (95% CI, 0.889–0.969) on training (N = 152)
and 0.936 (95% CI, 0.867–1.000) on the validation set (N =

65), but their analysis did not involve radiomics. Our developed
nomogramwas completely automated, hadminimal involvement
of a radiologist, and achieved almost comparable results within
larger datasets.

The previous work on combining radiomics with clinical
variables shows promising results for predicting disease severity.
For the combined clinical and radiomic model, in the work
by Chao et al. (13), the authors integrated the L/W ratio,
lymphocyte count, WBC, and age into whole lung radiomics
to achieve the highest AUC of 0.88 in predicting the need
for ICU admission. The advantage in our approach compared
with previous ones includes a higher number of cases and a
nomogram representation.

In the recent study by Roberts et al. (40), the authors
point out that many recent AI/machine learning studies on
diagnosis and prognosis of COVID-19 from radiographic scans
are not reproducible and would not be clinically deployable.
Furthermore, they point out that many studies within this
space have not been stress tested or validated on independent
external test sets. Many of these models have not assessed model
sensitivity or robustness and have methodological flaws and/or
underlying biases. In our work, we have attempted to deliberately
and purposefully develop, validate, and analyze our approach in
a more rigorous manner, including validating this model on one
of the largest external test sets reported to date.

Despite the favorable prognostic efficacy of the clinico-
radiomic nomogram, we acknowledge that our approach does
have its limitations. First, our study was retrospective, and the
two cohorts were not homogeneously defined. To ensure the
clinical usefulness of MRCM, we need to validate the tool in a

prospective setting by following up with patients until discharge.
Second, the study’s retrospective nature also precluded us from
standardizing the time between RT-PCR and CT scans across
the cohort. Finally, we did not explicitly compare segmentation
and prediction performances between the AI model and expert
radiologist interpretations. We will attempt to address these
limitations in future work.

CONCLUSION

We presented an integrated radiomic and clinical parameter-
based prognostic model using routinely available blood
parameters and standard-of-care CT scans at baseline in
SARS-CoV2-positive patients at the milder stage of the disease.
We showed in a multi-institutional cohort that our integrated
model had a good performance in identifying which of these
patients would decline in severe respiratory distress with need
for intubation and mechanical ventilation. Further multisite
prospective validation would allow for the clinical deployment
of MRCM, especially to triage patients for ventilator usage, in
the face of worldwide shortages in the availability of mechanical
ventilators. The developed tool, once prospectively validated,
could provide an objective way to risk stratifying patients
immediately following diagnosis with COVID-19.
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