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Adversarial counterfactual
augmentation: application in
Alzheimer’s disease classification
Tian Xia1*, Pedro Sanchez1, Chen Qin1,3 and Sotirios A. Tsaftaris1,2

1School of Engineering, University of Edinburgh, Edinburgh, United Kingdom, 2The Alan Turing
Institute, London, United Kingdom, 3Department of Electrical and Electronic Engineering, Imperial
College London, London, United Kingdom

Due to the limited availability of medical data, deep learning approaches for
medical image analysis tend to generalise poorly to unseen data.
Augmenting data during training with random transformations has been
shown to help and became a ubiquitous technique for training neural
networks. Here, we propose a novel adversarial counterfactual augmentation
scheme that aims at finding the most effective synthesised images to
improve downstream tasks, given a pre-trained generative model.
Specifically, we construct an adversarial game where we update the input
conditional factor of the generator and the downstream classifier with
gradient backpropagation alternatively and iteratively. This can be viewed as
finding the ‘weakness’ of the classifier and purposely forcing it to overcome
its weakness via the generative model. To demonstrate the effectiveness of
the proposed approach, we validate the method with the classification of
Alzheimer’s Disease (AD) as a downstream task. The pre-trained generative
model synthesises brain images using age as conditional factor. Extensive
experiments and ablation studies have been performed to show that the
proposed approach improves classification performance and has potential to
alleviate spurious correlations and catastrophic forgetting. Code: https://
github.com/xiat0616/adversarial_counterfactual_augmentation
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1. Introduction

Deep learning has been playing an increasingly important role in medical image

analysis in the past decade, with great success in segmentation, diagnosis, detection,

etc (1). Although deep-learning based models can significantly outperform traditional

machine learning methods, they heavily rely on the large size and quality of training

data (2). In medical image analysis, the availability of large dataset is always an issue,

due to high expense of acquiring and labelling medical imaging data (3). When only

limited training data are available, deep neural networks tend to memorise the data

and cannot generalise well to unseen data (4, 5). This is known as over-fitting (4). To

mitigate this issue, data augmentation has become a popular approach. The aim of

data augmentation is to generate additional data that can help increase the variation

of the training data.
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Conventional data augmentation approaches mainly apply

random image transformations, such as cropping, flipping,

and rotation etc. to the data. Even though such conventional

data augmentation techniques are general, they may not

transfer well from one task to another (6). For instance, color

augmentation could prove useful for natural images but may

not be suitable for MRI images which are presented in

greyscale images (3). Furthermore, traditional data

augmentation methods may introduce distribution shift, i.e.,

the change of the joint distribution of inputs and outputs, and

consequently adversely impact the performance on non-

augmented data during inference1 (i.e., during the application

phase of the learned model) (7).

Some recently developed approaches learn parameters for

data augmentation that can better improve downstream task,

e.g. segmentation, detection, diagnosis, etc., performance (6, 8,

9) or select the hardest augmentation for the target model

from a small batch of random augmentations for each traning

sample (10). However, these approaches still use conventional

image transformations and do not consider semantic

augmentation (11), i.e., creating unseen samples by changing

semantic information of images such as changing the

background of an object or changing the age of a brain

image. Semantic augmentation can complement traditional

techniques and improve the diversity of augmented samples

(11).

One way to achieve semantic augmentation is to train a

deep generative model to create counterfactuals, i.e., synthetic

modifications of a sample such that some aspects of the

original data remain unchanged (12–16). However, these

approaches mostly focus on the training stage of generative

models and randomly generate samples for data

augmentation, without considering which counterfactuals are

more effective for downstream tasks, i.e. data-efficiency of the

generated samples. Ye et al. (17) use a policy based

reinforcement learning (RL) strategy to select synthetic data

for augmentation with reward as the validation accuracy. Xue

et al. (18) propose a cGAN based model to augment

classification of histopathology images with a selective strategy

based on assigned label confidence and feature similarity to

real data. By contrast, our approach focuses on finding the

weakness (i.e. the hard counterfactuals) of a downstream task

model (e.g. a classifier) and forces it to overcome its

weakness. Similarly, Ye et al. (17) use a policy based

reinforcement learning (RL) strategy to select synthetic data
1An example could be when training and testing brain MRI data are

already well-registered, traditional augmentations, e.g. rotation, shift,

etc., on the training data will hurt the performance of the trained

model on testing data. See Section 4.1.3 for more details.
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for augmentation, with reward as the validation accuracy, but

the instability of RL training could perhaps hinder the utility

of their approach. Wang et al. (11), Li et al. (19), Chen and

Su (20) proposed to augment the data in the latent space of

the target deep neural network, by estimating the covariance

matrix of latent features obtained from latent layers of the

target deep neural network for each class (e.g., car, horse, tree,

etc.) and sampling directions from the feature distributions.

These directions should be semantic meaningful such that

changing along one direction can manipulate one property of

the image, e.g. color of a car. However, there is no guarantee

that the found directions will be semantically meaningful, and

it is hard to know which direction controls a particular

property of interest.

In this work, we consider the scenario that we have a

classifier which we want to improve (e.g. an image-based

classifier of Alzheimer’s Disease (AD) given brain images).

We are also given some data and a pre-trained generative

model that is able to create new data given an image as input

and conditioning factors that can alter corresponding

attributes in the input. For example, the generative model can

alter the brain age of the input. We propose an approach to

guide a pre-trained generative model to generate the most

effective counterfactuals via an adversarial game between the

input conditioning factor of the generator and the downstream

classifier, where we use gradient backpropagation to update

the conditioning factor and the classifier alternatively and

iteratively. A schematic of the proposed approach is shown in

Figure 1.

Specifically, we choose the classification of AD as the

downstream task and utilise a pre-trained brain ageing

synthesis model to improve the AD classifier. The brain

ageing generative model used in this paper is adopted from a

recent work (21), which takes a brain image and a target age

as inputs and outputs an aged brain image.2 We show that

the proposed approach can improve the test accuracy of the

AD classifier. We also demonstrate that it can be used in a

continual learning3 context to alleviate catastrophic forgetting,

i.e. deep models forget what they have learnt from previous

data when training on new given data, and can be used to

alleviate spurious correlations, i.e. two variables appear to be

causally related to one another but in fact they are not. Our

contributions can be summarised as follows:

1. We propose an approach to utilise a pre-trained generative

model for a classifier via an adversarial game between
2Code is available at https://github.com/xiat0616/BrainAgeing
3Deep models continuously learn based on input of new data while

preserving previously learnt knowledge.
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FIGURE 1

A schematic of the adversarial classification training. The pre-trained generator G takes a brain image x and a target age a as input and outputs a
synthetically aged image x̂ that corresponds to the target age a. The classifier C aims to predict AD label for a given brain image. To utilise G to
improve C, we formulate an adversarial game between a (in red box) and C (in cyan box), where a and C are updated alternatively and iteratively
using L1 and L2, respectively (see Section 2.3). Note G is frozen.

Xia et al. 10.3389/fradi.2022.1039160
conditional input and the classifier. To the best of our

knowledge, this is the first approach that formulates such

an adversarial scheme to utilise pre-trained generators in

medical imaging.

2. We improve a recent brain ageing synthesis model by involving

Fourier encoding to enable gradient backpropagation to update

conditional factor and demonstrate the effectiveness of our

approach on the task of AD classification.

3. We consider the scenario of using generative models in a

continual learning context and show that our approach

can help alleviate catastrophic forgetting.

4. We apply the brain ageing synthesis model for brain

rejuvenation synthesis and demonstrate that the proposed

approach has the potential to alleviate spurious correlations.

2. Methodology

2.1. Notations and problem overview

We denote an image as x � X , and a conditional generative

model G that takes an image x and a conditional vector v as

input and generates a counterfactual x̂ that corresponds to v:

x̂ ¼ G(x, v). For each x, there is a label y � Y. We define a

classifier C that predicts the label ŷ for given x: ŷ ¼ C(x). In

this paper, x is a brain image, y is the AD diagnosis of x, and

v represents the target age a and AD diagnosis on which the

generator G is conditioned. We select age and AD status to be

conditioning factors as they are major contributors to brain

ageing. We use a 2D slice brain ageing generative model as G,

and a VGG4-based (22) AD classification model as C. In Xia
4A popular deep learning neural network that has widely been used for

classification.
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et al. (21), the brain ageing generative model is evaluated in

multiple ways, including several quantitative metrics:

Structural Similarity (SSIM), Peak Signal-to-Noise Ratio

(PSNR) and Mean Squared Error (MSE) between the

synthetically aged brain images and the ground-truth follow-

up images, and Predicted Age Difference (PAD), i.e.

difference between the predicted age by a pre-trained age

predictor and the desired target age. For more details of the

evaluation metrics, please refer to Xia et al. (21), Section 4.

Note that we only change the target age a in this paper, thus

we write the generative process as x̂ ¼ G(x, a) for simplicity.

Suppose a pre-trained G and a C are given, the question we

want to answer is: “How can we use G to improve C in a (data)

efficient manner”? To this end, we propose an approach to

utilise G to improve C via an adversarial game with gradient

backpropagation to update a and C alternatively and iteratively.
2.2. Fourier encoding for conditional
factors

The proposed approach requires backpropagation of

gradient to the conditional factor to find the hard

counterfactuals. However, the original brain ageing synthesis

model (21) used ordinal encoding to encode the conditional

age and AD diagnosis, where the encoded vectors are discrete

in nature and need to maintain a certain shape, which

hinders gradient backpropagation to update these vectors.

Imagine a 5-dimensional ordinal vector representing the

number 3 as [1, 1, 1, 0, 0]. If we compute gradients with

respect to the vector to update it, and the gradients multiplied

by alpha happen to be [−0.3,−0.1, 0.1, 0.2,− 0.3] (for

example), then the resulting vector would be

[0:7, 0:8, 1:1, 0:2, −0.3], which is not a ordinal vector

anymore. Converting this to obey ordinal rules will require
frontiersin.org
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TABLE 1 Quantitative results of brain ageing model using ordinal
encoding and Fourier encoding.

Encoding SSIM PSNR MSE PAD

Ordinal encoding 0:790:06 26:12:6 0:0420:006 4:23:9

Fourier encoding 0:790:08 25:92:7 0:0430:009 4:13:7

For detail of the evaluation metrics please refer to Xia et al. (21), Section 4.

Input: Training set Dtrain; hyperparameter k, N; a pre-trained G; C.
Pre-training:

1. Train the classifiers C on Dtrain (Eq. 2).
Hard sample selection:

2. Select N samples from Dtrain that result in the highest classification errors
for C, denoted as Dhard.

Adversarial classification training:
3. Randomly initialize target ages a, and obtain initial synthetic data.
For k do
4. Update a in the direction to maximize classification error (Eq 4).
5. Obtain synthetic images with Dhard and the updated a, denoted as

Dsyn.
6. Update C to optimize Eq. 5 on Dtrain ∪ Dsyn for one epoch.

Algorithm 1: Adversarial counterfactual augmentation with a pre-
trained G.

Xia et al. 10.3389/fradi.2022.1039160
that we first quantize to 0=1 and then check for ordinal order

preservation of the 1 digits. Both are not easily differentiable.

To enable gradient backpropagation to update the

conditional vectors, we propose to use Fourier encoding (23,

24) to encode the conditional attributes, i.e., age and heath

state (diagnosis of AD). The effectiveness of Fourier encoding

has been experimentally shown in Tancik et al. (23),

Mildenhall et al. (24). We also compared the generative model

using Fourier v.s. Ordinal encoding using the quantitative

metrics briefly introduced in Section 2.1, as presented in

Table 1. We observe that the generator using Fourier

encoding achieves very similar quantitative results as the

generator using ordinal encoding, demonstrating effectiveness

of Fourier encoding to encode age and health status.

The key idea of Fourier encoding is to map low-dimensional

vectors to a higher dimensional domain using a set of sinusoids.

For instance, if we have a d-dimensional vector which is

normalised into [0, 1), v [ [0, 1)d , then the encoded vector

can be represented as Tancik et al. (23):

g(v) ¼ [p1 cos (2pb
T
1 v), p1 sin (2pb

T
1 v), . . . ,

pm cos (2pbTmv), pm sin (2pbTmv)], (1)

where b j can be viewed as the Fourier basis frequencies, and p2j
the Fourier series coefficients.

In this work, the vector v represents the target age a and the

health status (AD diagnosis), and d ¼ 2. In our experiments, we

set p2j ¼ 1 for j ¼ 1, . . . , m, and b j are independently and

randomly sampled from a Gaussian distribution,

b j � N (mscale � I, 0), where mscale is set to 10. We set m ¼ 100

and the resulting g(v) is 200-dimensional. After encoding, the

generator G takes the encoded vector g(v) as input.

The use of Fourier encoding offers two advantages. First,

Xia et al. (21) encoded age and health state into two vectors

and had to use two MLPs to embed the encoded vectors into

the model. This may not be a big issue when the number of

factors is small. However, extending the generative model to

be conditioned on tens or hundreds of factors will increase

the memory and computation costs significantly. With Fourier

encoding, we can encode all possible factors into a single

vector, which offers more flexibility to scale the model to

multiple conditional factors. Second, Fourier encoding allows

us to compute the gradients with respect to the input vector v

or certain elements of v, since the encoding process is
Frontiers in Radiology 04
differentiable. As such, we replace the ordinal encoding with

Fourier encoding for all experiments. The generative model G

takes v as input: x̂ ¼ G(x, v), where v represents target age

and health state. Since we only change the target age a in this

paper, we write the generative process as x̂ ¼ G(x, a) for

simplicity.
2.3. Adversarial counterfactual
augmentation

Suppose we have a conditional generative model G and a

classification model C. The goal is to utilise G to improve the

performance of C. To this end, we propose an approach

consisting of three steps: pre-training, hard sample selection

and adversarial classification training. A schematic of the

adversarial classification training is presented in Figure 1.

Algorithm 1 summarises the steps of the method. Below we

describe each step in detail.
2.3.1. Pre-training
The generative model is pre-trained using the same losses as

in Xia et al. (21) except that we use Fourier encoding to encode

age and AD diagnosis. Consequently, we obtain a pre-trained G

that can generate counterfactuals conditioned on given target

ages a: x̂ ¼ G(x, a).

The classification model C is a VGG-based network (22)

trained to predict the AD diagnosis from brain images,

optimised by minimising:

L pre-train ¼ Ex�X train ,y�YtrainLs(C(x), y), (2)

where Ls(�) is a supervised loss (binary cross-entropy loss in this

paper), x is a brain image, and y is its ground-truth AD label. To

note that if the pre-trained G and C are available in practice, we

could avoid the pre-training step.
frontiersin.org
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2.3.2. Hard sample selection
Liu et al. (25), Feldman and Zhang (26) suggested that

training data samples have different influence on the training

of a supervised model, i.e., some training data are harder for

the task and are more effective to train the model than others.

Liu et al. (25) propose to up-sample, i.e. duplicate, the hard

samples as a way to improve the model performance. Based

on these observations, we propose a similar strategy to Liu

et al. (25) to select these hard samples: we record the

classification errors of all training samples for the pre-trained

C and then select N ¼ 100 samples with the highest errors.

The selected hard samples are denoted as Dhard : {Xhard , Yhard}.
2.3.3. Adversarial classification training
Bowles et al. (14), Frid-Adar et al. (27), Dar et al. (28)

augmented datasets by randomly generating a number of

synthetic data with pre-trained generators. Similar to training

samples, some synthetic data could be more effective for

downstream tasks than others. Here we assume that if a

synthetic data sample is hard, then it is more effective for

training. We propose an adversarial game to find the hard

synthetic data to boost C.

Specifically, let us first define the classification loss for

synthetic data as:

LC ¼ Ex�Xhard ,y�Yhard Ls(C(x̂), y), (3)

where x̂ is a generated sample conditioned on the target age a:

x̂ ¼ G(x, a), and y is the ground-truth AD label for x. Here we

assume that changing target age does not change the AD status,

thus x and x̂ have the same AD label.

Since the encoding of age a is differentiable (see Section

2.2), we can obtain the gradients of LC with respect to a as:

raLC ¼ ra[Ls(C(G(x, a)), y)], and update a in the direction

of maximising LC by: ~a ¼ aþ garaLC , where ga is the step

size (learning rate) for updating a. Formally, the optimization

function of a can be written as:

L1 ¼ max
a

Ex�Xhard ,y�Yhard Ls(C(x̂), y): (4)

Then we could obtain a set of synthetic data using the updated
~a: x̂syn ¼ G(x, ~a) where x � Xhard , denoted as Dsyn : {Xsyn, Ysyn}.

The classifier C is updated by optimising:

L2 ¼ min
C

Ex�Xcombined ,y�Ycombined Ls(C(x), y), (5)

where Dcombined : {Xcombined , Ycombined} is a combined dataset

consisting of the training dataset and synthetic dataset:

{Xcombined , Ycombined} ¼ {Xtrain < Xsyn, Ytrain < Ysyn}. Similar to

Liu et al. (25), we update C on Dcombined instead of Dsyn as we
Frontiers in Radiology 05
found updating C only on Dsyn can cause catastrophic

forgetting (29).

The adversarial game is formulated by alternatively and

iteratively updating a and classifier C via Eqs. 4 and 5,

respectively. In practice, to prevent a from going to unsuitable

ages, we clip it to be in [60, 90] after every update.

2.3.4. Updating a vs. updating G
Note here the adversarial game is formulated between a and

C, instead of G and C. This is because training G against C

allows G to change its latent space without considering image

quality, and the output of G could be unrealistic. Please refer

to Section 4.1.2 for more details and results.

2.3.5. Counterfactual augmentation vs.
conventional augmentation

Here we choose to augment data counterfactually instead of

applying conventional augmentation techniques. This is because

that the training and testing data are already pre-processed and

registered to MNI 152, and in this case conventional

augmentations do not introduce helpful variations. Please

refer to Section 4.1.3 for more details and results.
2.4. Adversarial classification training in a
continual learning context

Most previous works (14, 27, 28, 30–32) that used pre-

trained deep generative models for augmentation focused on

generating a large number of synthetic samples, and then

merged the synthetic data with the original dataset and

trained the downstream task model (e.g. a classifier) on this

augmented dataset. However, this requires training the task

model from scratch, which could be inconvenient. Imagine

that we are given a pre-trained classifier, and we have a

generator at hand which may or may not be pre-trained on

the same dataset. We would like to use the generator to

improve the classifier, or transfer the knowledge learnt by

the generator to the classifier. The strategy of previous

works is to use the generative model to produce a large

amount of synthetic data that cover the knowledge learnt

by the generator, and then train the classifier on both real

and synthetic data from scratch, which would be expensive.

However, in this work, we consider the task of transferring

knowledge from the generator to the classifier in the

continual learning context, by considering synthetic data as

new samples. We want the classifier to learn new

knowledge from these synthetic data without forgetting

what it has learnt from the original classification training

set. We will show how our approach can help in the

continual learning context.

In Section 2.3, after we obtain the synthetic set Dsyn, we

choose to update the classifier C on the augmented dataset
frontiersin.org
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Input: Training dataset Dtrain; hyperparameter M, N, k; a pre-trained generator
G; a pre-trained classifier model C.
Construct Dstore:

1. Randomly select M% data from Dtrain, denoted as Dstore.
Hard sample selection:

2. Select N samples from Dstore that result in the highest classification errors
for C, denoted as Dhard.

Adversarial training:
3. Randomly initialize target ages a, and obtain initial synthetic data.
For k do

4. Update a in the direction to maximize classification error (Equation 4).
5. Obtain synthetic images with Dhard and the updated a, denoted as Dsyn.
6. UpdateC tominimize the classification error onDstore∪Dsyn (Equation 5).

Algorithm 2: Adversarial classification learning with Dstore.
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Dsyn < Dtrain, instead of Dsyn (stage 6 in Algorithm 1). This is

because re-training the classifier only on the Dsyn would result

in catastrophic forgetting (29), i.e. a phenomenon where deep

neural networks tends to forget what it has learnt from

previous data when being trained on new data samples. To

alleviate catastrophic forgetting, efforts have been devoted to

developing approaches to allow artificial neural networks to

learn in a sequential manner (33, 34). These approaches are

known as continual learning (33, 35, 36), lifelong learning

(37, 38), sequential learning (39, 40), or incremental learning

(41, 42). Despite different names and focuses, the main

purpose of these approaches is to overcome catastrophic

forgetting and to learn in a sequential manner.

If we consider the generated data as new samples, then the

update of the pre-trained classifier C can be viewed as a

continual learning problem, i.e. how to learn new knowledge

from the synthetic set Dsyn without forgetting old knowledge

that is learnt from the original training data Dtrain. To

alleviate catastrophic forgetting, we re-train the classifier on

both the synthetic dataset Dsyn and the original training

dataset Dtrain. This strategy is known as memory replay in

continual learning (43, 44) and was also used in other

augmentation works (25). The key idea is to store previous

data in a memory buffer and replay the saved data to the

model when training on new data. However, it could be

expensive to store and revisit all the training data, especially

when the data size is large (44). In Section 4.2, we perform

experiments where we only provide a portion (M%) of

training data to the classifier when re-training with synthetic

data (to simulate the memory buffer). In this case, we only

create synthetic data from the memory bank. We want to see

whether catastrophic forgetting would happen or not when

only a portion (M%) of training data is provided, and if so,

how much it affects the test accuracies. Algorithm 2

summarises the steps of the method in the continual learning

context.
3. Experimental setup

3.1. Data

We use the ADNI dataset (45) for experiments. We select 380

AD and 380 CN (control normal) T1 volumes between 60 and 90

years old. We split the AD and CN data into training/validation/

testing sets with 260/40/260 volumes, respectively. All volumetric

data are skull-stripped using DeepBrain5, and linearly registered to

MNI 152 space using FSL-FLIRT (46). We normalise brain
5https://github.com/iitzco/deepbrain
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volumes by clipping the intensities to [0, V99:5], where V99:5 is

the 99:5% largest intensity value within each volume, and then

rescale the resulting intensities to the range [−1, +1]. We select

the middle 60 axial slices from each volume and crop each slice

to the size of [208, 160], resulting in 31,200 training, 4,800

validation and 9,600 testing slices.

3.2. Implementation

The generator is trained the same way as in Xia et al. (21),

except we replace ordinal encoding with Fourier encoding. We

pre-train the classifier for 100 epochs. The experiments are

performed using Keras and Tensorflow. We train pre-trained

classifiers C with Adam with a learning rate of 0.00001 and

decay of 0.0001. During adversarial learning, the step size of

a is tuned to be 0.01, and the learning rate for C is 0.00001.

The experiments are performed using a NVIDIA Titan X GPU.

3.3. Comparison methods

We compare with the following baselines:

1. Naïve: We directly use the pre-trained C for comparison as

the lower bound.

2. RSRS: Random Selection + Random Synthesis. We

randomly select N ¼ 100 samples from the training set

Dtrain, denoted as Drand , and then use the generator G to

randomly generate Nsynthesis ¼ 5 synthetic samples for each

sample in Drand , denoted as Dsyn. Then we train the

classifier on the combined dataset Dtrain < Dsyn for k ¼ 5

steps. This is the typical strategy used by most previous

works (14, 27, 28).

3. HSRS: Hard Selection + Random Synthesis. We select

N ¼ 100 hard samples from Dtrain based on their

classification errors of C, denoted as Dhard , and then use

the generator G to randomly generate Nsynthesis ¼ 5

synthetic samples for each sample in Dhard , denoted as

Dsyn. Then we train the classifier on the combined dataset

Dtrain < Dsyn for k ¼ 5 steps.
frontiersin.org
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TABLE 2 Average test accuracies of models trained via our procedure
and baselines.

Acc % CN AD All

Age group 60–70
yrs

70–80
yrs

80–90
yrs

60–70
yrs

70–80
yrs

80–90
yrs

Overall

Test group
size

1,540 1,600 1,660 1,720 1,540 1,540 9,600

Naïve 85.2 91.5 70.7 92.5 94.2 97.1 88.4

RSRS 86.0 90.4 73.8 87.3 95.1 90.0 87.0

HSRS 85.6 91.1 80.4 89.8 93.8 96.9 89.5

RSAT 86.1 93.1 81.5 91.8 96.0 95.7 90.6

JTT 83.9 94.2 80.1 92.8 90.8 93.7 89.2

Proposed 86.4 93.7 83.4 91.5 96.5 95.7 91.1

We first present the average test accuracies for different age groups with AD

(column 2–4) or CN (column 5–7) and then present the average test

accuracies for the whole testing set (column 8). For each method, the

worst-group performance is shown in italic. For each age group, i.e. each

column, the best performance is shown in bold. We also report the number

of testing images for each age group.
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4. RSAT: Random Selection + Adversarial Training. We

randomly select N ¼ 100 samples from the training set

Dtrain, denoted as Drand , and then use the adversarial

training strategy to update the classifier C, as described in

Section 2.3. The difference between RSAT and our

approach is that we select hard samples for generating

counterfactuals, while RSAT uses random samples.

5. JTT: Just Train Twice (25) record samples that are

misclassified by the pre-trained classifier, obtaining an

error set. Then they construct an oversampled dataset Dup

that contain examples in the error set lup times and all

other examples once. Finally, they train the classifier on

the oversampled dataset Dup. In this paper, we set lup ¼ 2

as we found large lup results in bad performance. We also

found the original learning rate (0.01) used for the second

training stage results in very bad performance and set it to

be 0.00001.

4. Results and discussion

4.1. Improving the performance
of classifiers

4.1.1. Comparison with baselines
We first compare our method with baseline approaches by

evaluating the test accuracy of the classifiers. We set N ¼ 100

and k ¼ 5 in experiments. We pre-train C for 100 epochs and

G as described in Section 3. The weights of the pre-trained C

and the pre-trained G are the same for all methods. For a fair

comparison, the total number of synthetically generated

samples is fixed to 500 for RSRS, HSRS, RSAT and our

approach. For JTT, there are 2,184 samples mis-classified by C

and oversampled. We initialize a randomly between real ages

of original brain images x and maximal age (90 yrs old).

From Table 2 we can observe that our proposed procedure

achieves the best overall test accuracy, followed by baseline

RSAT. This demonstrates the advantage of adversarial training

between the conditional factor (target age) a and the classifier.

On top of that, it shows that selecting hard examples for

creating augmented synthetic results helps, which is also

demonstrated by the improvement of performance of HSRS

over Naïve. We also observe that JTT (25) improves the

classifier performance over Naïve, showing the benefit of up-

sampling hard samples. In contrast, baseline RSRS achieves

the lowest overall test accuracy, even lower than that of Naïve.

This shows that randomly synthesising counterfactuals from

randomly selected samples could result in synthetic images

that are harmful to the classifier.

Furthermore, we observe that for all methods, the worst-

group performances are achieved on the 80–90 CN group. A

potential reason could be: as age increases, the brains shrink,

and it is harder to tell if the ageing pattern is due to AD or

caused by normal ageing. Nevertheless, we observe that for
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this worst group, our proposed method still achieves the best

performance, followed by RSAT. This shows that adversarial

training can be helpful to improve the performance of the

classifier, especially for hard groups. The next best results are

achieved by HSRS and JTT, which shows that finding hard

samples and up-sampling or augmenting them was helpful to

improve the worst-group performance. We also observe the

improvement of worst-group performance for RSRS over

Naïve, but the improvement is small compared to other

baselines. Figure 2 presents histograms of original ages for

training subjects and the target ages after adversarial training,

where we can see how the adversarial training aims to balance

the data.

We also report the precision and recall for all methods, as

presented in Table 3. We can observe that our approach

achieves the highest overall precision and recall results.

In summary, the quantitative results show that it is helpful

to find and utilise hard counterfactuals for improving the

classifier.
4.1.2. Train G against C
We choose to formulate an adversarial game between

the conditional generative factor a (the target age) and the

classifier C, instead of between the generator G and the

classifier C. This is because we are concerned that an

adversarial game between G and C could result in unrealistic

outputs of G. In this section, we perform an experiment to

investigate this.

Specifically, we define an optimization function:

LG ¼ max
G

Ex�Xtrain ,y�YtrainLs(C(G(x, a)), y), (6)
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FIGURE 2

Histograms of ages of subjects before and after adversarial learning. We can observe that adversarial training aims to balance the data.
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where we aim to train G in the direction of maximising the loss

of the classifier C on the synthetic data G(x, a).

After every update of G, we construct a synthetic set Dsyn by

generating 100 synthetic images from Dtrain, and update C on

Dtrain < Dsyn via Equation 5. The adversarial game G vs. C is

formulated by alternatively optimising Equations 6 and 5 for

10 epochs.

In Figure 3, we present the synthetic brain ageing

progression of a CN subject before and after the adversarial

training of G vs. C. We can observe that after the adversarial

training, the generator G produces unrealistic results. This

could be because there is no loss or constraint to prevent the

generator G from producing low-quality results. The

adversarial game only requires the generator G to produce

images that are hard for the classifier C, and naturally, images

of low quality would be hard for C. A potential solution

could be to involve a GAN loss with a discriminator to

improve the output quality, but this would make the training

much more complex and require more memory and

computations. We also measure the test accuracy of the
TABLE 3 The test precision and recall values for all methods.

Age range 60–70 70–80 80–90 Over

Metrics Precision

Naive 0.875 0.914 0.761 0.84

RSRS 0.874 0.905 0.768 0.84

HSRS 0.874 0.910 0.826 0.86

RSAT 0.881 0.930 0.832 0.87

JTT 0.865 0.938 0.822 0.86

Proposed 0.883 0.936 0.848 0.88

We first present the precision for different age groups (column 2-4) and all testing dat

and all testing data (column 9). For each group, the best results are shown in bold.

Frontiers in Radiology 08
classifier C after training G against C to be 81:6%, which is

much lower than the Naïve method (88:4%) and our

approach (91:1%) in Table 2. The potential reason is that C is

misled by the unrealistic samples generated by G.

4.1.3. Effect of conventional augmentations
for registered brain MRI data

In this section, we test the effect of applying several

commonly used conventional augmentations, e.g. rotation,

shift, scale and flip, to the training of the AD classifier. These

are typical conventional augmentation techniques applied to

computer vision classification task. Specifically, we train the

classifier the same way as Naïve, except we augment training

data with conventional augmentations.

Interestingly, we find that after applying rotation (range 10

degrees), shift (range 0.2), scale (range 0.2), and flip to augment

the training data, the accuracy of the trained classifier drops

from 88:4% to 71:6%. We then measure accuracies when

trained with each augmentation to be 74:1% (rotation), 87:1%

(shift), 82:9% (scale), and 87:8% (flip). We also trained the
all 60–70 70–80 80–90 Overall

Recall

2 0.925 0.942 0.971 0.945

4 0.873 0.951 0.900 0.906

6 0.898 0.938 0.969 0.933

7 0.918 0.960 0.957 0.943

8 0.928 0.908 0.960 0.924

5 0.915 0.965 0.965 0.945

a (column 5), and then present the recall for different age groups (column 6–8)
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FIGURE 3

The synthetic results for a healthy (CN) subject x at age 70: (A) the results of the pre-trained G, i.e. before we train G against C; (B) the results of G after
we train G against C. We synthesise aged images x̂ at different target ages a. We also visualise the difference between x and x̂, jx̂ � xj. For more details
see text.
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classifier with random gamma correction (gamma ranges from

0.2 to 1.8), and the resulting test accuracy is 84:4%. This could

be because both training and testing data are already pre-

processed, including registered to MNI 152 and contrast

normalisation, and these conventional augmentations do not

introduce helpful variations to the training data but distract

the classifier from focusing on subtle differences between AD

and CN brains.

We also tried to train the classifier with MaxUp (10) with

conventional augmentations. The idea of MaxUp is to

generate a small batch of augmented samples for each

training sample and train the classifier on the worst-

performance augmented sample. The overall test accuracy is

57:7%. This could be because that MaxUp tends to select the

augmentations that distract the classifier from focusing on

subtle AD features the most.

The results with conventional augmentations (+MaxUp)

suggest that for the task of AD classification, when training

and testing data are pre-processed well, conventional data

augmentation techniques seem to not help improve the

classification performance. Instead, these augmentations

distract the classifier from identifying subtle changes between

CN and AD brains. By contrast, the proposed procedure

augment data in terms of semantic information, which could

alleviate data imbalance and improve classification performance.
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4.2. Adversarial counterfactual
augmentation in a continual learning
context

4.2.1. Results when re-training with a portion
(M%) of training data

Suppose we have a pre-trained classifier C and a pre-trained

generator G, and we want to improve C by using G for data

augmentation. However, after pre-training, we only store M%

(M [ (0, 100]) of the training dataset, denoted as Dstore.

During the adversarial training, we synthesise N samples

using the generator G, denoted as Dsyn. Then we update the

classifier C on Dstore < Dsyn, using Equation 5 where

Dcombined ¼ Dstore < Dsyn. The target ages are initialised and

updated the same way as in Section 4.1. Algorithm 2

illustrates the procedure in this section.

Table 4 presents the test accuracies of our approach and

baselines when M changes. For Naïve-100, the results are then

same as in Table 2. For JTT, the original paper Liu et al. (25)

retrained the classifier using the whole training set. Here we

first randomly select M% training samples as Dstore and find

misclassified data Dmis within Dstore to up-sample, then we

retrain the classifier on the augmented set. We can observe

that when M decreases, catastrophic forgetting happens for all
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TABLE 5 Test accuracies when N changes (M ¼ 1) of our approach and
baselines.

Acc % N

Methods 1 (0:64%) 10 (6:4%) 50 (32:1%) 100 (64:1%)

HSRS 65.4 71.0 73.4 75.6

RSAT 81.3 82.1 83.2 84.2

Proposed 82.1 82.9 84.1 84.6

We also show the percentage of N vs. the total number of Dstore .

TABLE 4 Test accuracies of our approach and baselines when the ratio
of the size Dstore vs. the size of Dtrain changes.

Acc % M%

Methods 1 10 20 50 100

Naïve N/A N/A N/A N/A 88.4

HSRS 75.6 81.4 84.5 87.4 89.5

RSAT 84.2 85.8 87.2 88.6 90.6

JTT 77.3 82.3 85.1 88.1 89.2

Proposed 84.8 86.8 88.5 89.4 91.1

We can observe the decreases of test accuracies whenM decreases, which was

due to the effect of catastrophic forgetting.
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approaches. However, our method suffers the least from

catastrophic forgetting, especially when M is small. With

M ¼ 20% of training data for retraining, our approach

achieves better results than Naïve. This might be because the

adversarial training between a and C tries to detect what is

missing in Dstore and tries to recover the missing data by

updating a towards those directions. We observe that RSAT

achieves the second best results, only slightly worse than the

proposed approach. Moreover, HSRS and JTT are more

affected by catastrophic forgetting and achieve worse results.

This might be because the importance of selecting hard

samples declines as M decreases, since the Dstore becomes

smaller.

These results demonstrate that our approach could alleviate

catastrophic forgetting. This could be helpful in cases where we

want to utilise generative models to improve pre-trained

classifiers (or other task models) without revisiting all the

training data (a continual learning context).
4.2.2. Results when number of samples used
for synthesis (N) changes

We also performed experiments where we changed N , i.e.

the number of samples used for generating counterfactuals.

Specifically, we set M ¼ 1, i.e. only 1% of original training

data are used for re-training C, to see how many synthetic

samples are needed to maintain good accuracy, especially

when there are only a few training data stored in Dstore. This

is to see how efficient the synthetic samples are in terms of
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training C and alleviating catastrophic forgetting. The results

are presented in Table 5.

From Table 5, we can observe that the best results are

achieved by our method, followed by RSAT. Even with only

one sample for synthesis, our method could still achieve a test

accuracy of 80%. This is probably because the adversarial

training of a vs. C guides G to generate hard counterfactuals,

which are efficient to train the classifier. The results

demonstrate that our approach could help alleviate

catastrophic forgetting even with a small number of synthetic

samples used for augmentation. This experiment could also be

viewed as a measurement of the sample efficiency, i.e. how

efficient a synthetic sample is in terms of re-training a classifier.
4.3. Can the proposed procedure alleviate
spurious correlations?

Spurious correlation occurs when two factors appear to be

correlated to each other but in fact they are not (47).

Spurious correlation could affect the performance of deep

neural networks and has been actively studied in computer

vision field (25, 48–51) and in medical imaging analysis field

(52, 53). For instance, suppose we have an dataset of bird and

bat photos. For bird photos, most backgrounds are sky. For

bat photos, most backgrounds are cave. If a classifier learns

this spurious correlation, e.g. it classifies a photo as bird as

long as the background is sky, then it will perform poorly on

images where bats are flying in the sky. In this section, we

investigate if our approach could correct such spurious

correlations by changing a to generate hard counterfactuals.

Here we create a dataset where 7860 images between 60

and 75 yrs old are AD, and 7,680 images between 75 and

90 yrs old are healthy, denoted as Dspurious. This is to

construct a spurious correlation: young ! AD and old ! CN

(in reality older people have higher chances of getting AD

(54)). Then we pre-train C on Dspurious. The brain ageing

model proposed in Xia et al. (21) only considered simulating

ageing process, but did not consider brain rejuvenation, i.e.,

the reverse of ageing. To utilise old CN data, we pre-train

another generator in the rejuvenation direction, i.e.,

generating younger brain images from old ones. As a result,

we obtain two generators that are pre-trained on Dtrain,

denoted as Gageing and Grejuve, where Grejuve is trained to

simulate the rejuvenation process. Figure 4 shows visual

results of Grejuve. After that, we select 50 CN and 50 AD

hard images from Dspurious, denoted as Dhard and perform the

adversarial classification training using Grejuve for old CN

samples and Gageing for young AD samples. The target ages a

are initialized as real ages of x.

After we obtain Gageing and Grejuvenation, we select 50 CN and

50 AD images from Dspurious that result in highest training

errors, denoted as Dhard . Note that the selected CN images are
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TABLE 6 Test accuracies for our procedure and baselines when C pre-
trained on Dspurious .

Acc % CN AD

Methods 60–75 yrs 75–90 yrs 60–75 yrs 75–90 yrs Overall

Naïve 40.9 81.6 95.1 45.7 67.0

HSRS 60.7 85.3 81.1 67.2 75.0

JTT 50.5 88.4 85.5 40.7 67.9

Proposed 73.1 83.4 81.5 75.8 79.0

We first present the average test accuracies for different age groups with CN

diagnosis (column 2–3) or AD (column 4–5), and then present the average

test accuracies for the whole testing set (column 6). For each method, the

worst-group performance is shown in italic. For each age group, i.e. each

column, the best performance was shown in bold. For more details see text.

Xia et al. 10.3389/fradi.2022.1039160
between 75 and 90 yrs old, and the AD images are between 60

and 75 yrs old. Then we generate synthetic images from Dhard

using Grejuvenation for old CN samples and Gageing for young

AD samples. The target ages a are initialized as their ground-

truth ages. Finally, we perform the adversarial training

between a and the classifier C. Here we want to see if the

adversarial training can detect the spurious correlations

purposely created by us, and more importantly, we want to

see if the adversarial training between a and C can break the

spurious correlations.

Table 6 presents the test accuracies of our approach and

baselines. For Naïve, we directly use the classifier C pre-

trained on Dspurious. For HSRS, we randomly generate

synthetic samples from Dhard for augmentation. For JTT, we

simply select mis-classified samples from Dspurious and up-

sample these samples.
FIGURE 4

Example results of brain rejuvenation for an image (x) of a 85 year old CN sub
also show the differences between x̂ and x, x̂ � x. For more details see text.
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We can observe from Table 6 that the pre-trained C on

Dspurious (Naïve) achieves much worse performance (67:0%

accuracy) compared to that of Table 2 (88:4% accuracy).

Specifically, it tends to misclassify young CN images as AD

and misclassify old AD images as CN. This is likely due to the

spurious correlations that we purposely create in Dspurious:

young ! AD and old ! CN . We notice that for Naïve, the

test accuracies of AD groups are higher than that of CN

groups. This is likely due to the fact we have more AD

training data, and the classifier is biased to classify a subject

to AD. This can be viewed as another spurious correlation.

Overall, we observe that our method achieves the best results,

followed by HSRS. This shows that the synthetic results

generated by the generators are helpful to alleviate the effect

of spurious correlations and improve downstream tasks. The

improvement of our approach over HSRS is due to

the adversarial training between a and C, which guides the

generator to produce hard counterfactuals. We observe JTT

does not improve the test accuracies significantly. A potential

reason is that JTT tries to find “hard” samples in the training

dataset. However, in this experiment, the “hard” samples

should be young CN and old AD samples which do not exist

in the training dataset Dspurious. By contrast, our procedure

could guide G to generate these samples, and HSRS could

create these samples by random chance.

Figure 5 plots the histograms of the target ages a before and

after the adversarial training. From Figure 5 we can observe that

the adversarial training pushes a towards the hard direction,

which could alleviate the spurious correlations. For instance,

in Dspurious and Dhard the AD subjects are all in the young

group, i.e. 60–75 yrs old, and the classifier learns the spurious

correlation: young ! AD, but in Figure 5A we can observe
ject. We synthesise rejuvenated images x̂ at different target ages a. We
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FIGURE 5

Histograms of target ages a before and after adversarial training: (A) the histogram of a for the 50 AD subjects in Dhard; (B) the histogram of a for the
50 CN subjects in Dhard . Here we show histograms of a before (in orange) and after (in blue) the adversarial training.
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that the adversarial training learns to generate AD synthetic

images in the range of 75–90 yrs old. These old AD synthetic

images can help alleviate the spurious correlation and

improve the performance of C. Similarly, we can observe a

are pushed towards young for CN subjects in Figure 5B.
5. Conclusion

We presented a novel adversarial counterfactual scheme to

utilise conditional generative models for downstream tasks,

e.g. classification. The proposed procedure formulates an

adversarial game between the conditional factor of a pre-

trained generative model and the downstream classifier. The

synthesis model used in this work uses two generators for

ageing and rejuvenation. Others have shown that one model

can handle both tasks albeit in another dataset and with less

conditioning factors (55). We do highlight though that our

approach is agnostic to the generator used and since could

benefit from advances in (conditional) generative modelling.

In this paper, we demonstrate that several conventional

augmentation techniques are not helpful for registered MRI.

However, there might be other heuristic-based augmentation

techniques that will improve performance, and it is worth

trying to combine our semantic augmentation strategy with

such conventional augmentation techniques to further boost

performance. The proposed adversarial counterfactual scheme

could be applied to generative models that produced other

types of counterfactuals rather than the ageing brain, e.g. the

ageing heart (55, 56), future disease outcomes (57), existence
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of pathology (58, 59), etc. The way we updated the

conditional factor (target age) could be improved. Instead of a

continuous scalar (target age), we can consider extending the

proposed adversarial counterfactual augmentation to update

other types of conditional factors, e.g., discrete factor or

image. The strategy that we used to select hard samples may

not be the most effective and could be improved.
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