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Machine learning-optimized
Combinatorial MRI scale
(COMRISv2) correlates highly
with cognitive and physical
disability scales in Multiple
Sclerosis patients
Erin Kelly1†, Mihael Varosanec1†, Peter Kosa1, Vesna Prchkovska2,
David Moreno-Dominguez2 and Bibiana Bielekova1*
1Neuroimmunological Diseases Section, Laboratory of Clinical Immunology and Microbiology,
National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD,
United States, 2QMENTA, Boston, MA, United States

Composite MRI scales of central nervous system tissue destruction
correlate stronger with clinical outcomes than their individual
components in multiple sclerosis (MS) patients. Using machine learning
(ML), we previously developed Combinatorial MRI scale (COMRISv1) solely
from semi-quantitative (semi-qMRI) biomarkers. Here, we asked how
much better COMRISv2 might become with the inclusion of quantitative
(qMRI) volumetric features and employment of more powerful ML
algorithm. The prospectively acquired MS patients, divided into training
(n = 172) and validation (n = 83) cohorts underwent brain MRI imaging and
clinical evaluation. Neurological examination was transcribed to NeurEx™
App that automatically computes disability scales. qMRI features were
computed by lesion-TOADS algorithm. Modified random forest pipeline
selected biomarkers for optimal model(s) in the training cohort.
COMRISv2 models validated moderate correlation with cognitive disability
[Spearman Rho = 0.674; Lin’s concordance coefficient (CCC) = 0.458; p <
0.001] and strong correlations with physical disability (Spearman Rho =
0.830–0.852; CCC = 0.789–0.823; p < 0.001). The NeurEx led to the
strongest COMRISv2 model. Addition of qMRI features enhanced
performance only of cognitive disability model, likely because semi-qMRI
biomarkers measure infratentorial injury with greater accuracy. COMRISv2
models predict most granular clinical scales in MS with remarkable
criterion validity, expanding scientific utilization of cohorts with missing
clinical data.
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Introduction

Structural imaging of the central nervous system (CNS) by

magnetic resonance (MRI) plays central role in diagnosing

multiple sclerosis (MS) and evaluating efficacy of treatments.

Nevertheless, the correlations between any MRI biomarker

and clinical disability measures are only mild to moderate.

This is explainable by following shortcomings of both

clinical scales and MRI biomarkers: A. Reliability: this

includes technical aspects of the measurement such as test-

retest variability, variability between different raters, different

scanners or different analysis methods; and B. Criterion

validity: this refers to how each measurement reflects true

CNS tissue damage.

While original description of most expert-derived clinical

scales missed test-retest reliability (e.g., Expanded Disability

Status Scale [EDSS] (1)), the clinical trials identified “transient

worsening and improvements” in approximately 20% of

subjects (2), likely representing a measurement noise. We

developed NeurEx™ App that eliminates part of the noise by

algorithmically codified translation of a documented

neurological examination into four clinical scales. Although

the concordance correlation coefficient (CCC, reflects

concordance of two ratings) of neuroimmunology scales

between two clinicians transcribing the same documented

neurological examination was excellent (i.e., ranging 0.943–

0.968; p-value < 1 × 10−7), the difference for a single exam

represented up to 3 EDSS points. By replacing one clinician

with the NeurEx™ App that always provides only one rating

per scale for a given documented exam, we increased inter-

rater reliability to a maximum difference of 1.5 EDSS points

(CCC 0.968–0.987; p-value <1 × 10−7). Of course, NeurEx™

can’t eliminate noise stemming from variances in the

performance of neurological examination by different

clinicians and this likely represents the greater source of noise.

Even more pressing limitation of traditional clinical scales is

their sensitivity and construct/criterion validity. For example,

natural history cohorts show that on average an MS patient

progresses by 1 EDSS point every 10 years (3, 4). Clearly,

many axons demyelinate, and oligodendrocytes/neurons die

during that time and this ongoing CNS tissue destruction is

not captured by EDSS. Additionally, our ability to reliably

quantify complex cognitive functions is extremely limited.

Consequently, cognitive functions have been severely

underrepresented in traditional disability scales. A creative

attempt to remedy these limitations was MS functional

composite (MSFC), an expert-derived composite scale of three

functional tests reflecting ambulation, fine finger movements

and memory/processing speed (5). While the concept of

MSFC was outstanding, one of the selected components,

Paced Auditory Serial Addition Test (PASAT3) proved

suboptimal, suffering from high test-retest variability and a
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learning effect. This limitation was confirmed by developing

Combinatorial, weight-adjusted Disability Score (CombiWISE;

continuous scale from 0 to 100) (6) using data-driven

approach to select contributing features and their optimal

“weights”; and neither PASAT3 nor alternative cognitive test

Symbol Digit Modalities Test [SDMT (7)] were selected by

this model. Even though CombiWISE correlated strongly with

EDSS in an independent cohort and measured significant

disability progression over 6–12 months, this granular clinical

scale still lacks sensitivity to measure destruction of individual

axons/neurons and oligodendrocytes, likely happening in MS

daily.

As the insensitivity of clinical scales to underlying cellular

events is unsurmountable, MRI-based structural imaging and

quantification of cellular substructures using advanced

imaging methods such as magnetization transfer imaging

(MTR) or diffusion tensor imaging (DTI) raised hopes for

objective measurements of CNS tissue destruction.

Unfortunately, MRI biomarkers proved to have their own

limitations. MRI infers CNS structure from the signal decay of

energized hydrogen protons, which is dependent on the

technical aspects of specific MRI machine and acquisition

protocols, on complex post-processing algorithms but also on

transient biological processes such as subjects’ hydration, use

of alcohol or pharmaceutical agents (8). Consequently, test-

retest variability of MRI biomarkers is high in comparison to

measured change, leading to poor signal-to-noise ratio (SNR).

The notable exception are semi-quantitative MRI features

(semi-qMRI) such as number of contrast-enhancing lesions or

number of (new) T2 lesions formed in different CNS

compartments (6, 9, 10), which have excellent SNR.

Additionally, the criterion validity of any single MRI

biomarker is problematic as all capture only some aspects of

MS-related CNS tissue destruction and do so with restricted

specificity. To surpass this limitation, several groups explored

combinations of MRI features, akin to composite clinical

scales (11–17). All published combinatorial MRI models

outperformed each contributing MRI biomarker in correlation

with clinical outcomes, validating this concept. Like in

combinatorial clinical scales, most groups selected

contributing MRI features based on expert opinions (18–21).

We took data driven approach to develop COMRISv1

(Combinatorial MRI scale, version 1), where both selection of

contributing features and their weights in the final model

were derived from unbiased machine learning (ML) approach

(22). COMRISv1 was derived from semi-qMRI features only.

This led to high SNR, while, inevitably, sacrificing sensitivity.

Despite this, when tested in the independent validation

cohort, COMRISv1 models achieved the highest correlations

with physical (i.e., EDSS; Rho = 0.7, p-value < 0.001, n = 114)

and cognitive (i.e., SDMT; Rho = 0.5, p-value < 0.0001, n = 92)

disability among all published combinatorial MRI scales for

MS. Nevertheless, we wondered, and this paper answers,
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whether incorporating volumetric qMRI features and using

more powerful ML models would strengthen performance of

COMRISv2.
Materials and methods

Subjects and regulatory approvals

All subjects were prospectively recruited to the National

Institute of Allergy and Infectious Diseases (NIAID) of the

National Institutes of Health (NIH) natural history protocol

“Comprehensive Multimodal Analysis of patients with

Neuroimmunological Diseases of the CNS”; Clinicaltrials.gov

identifier NCT00794352. The study was approved by NIAID

scientific review and by the NIH Institutional Review

Board. All subjects provided written informed consent.

Supplementary Table S1 contains demographic and clinical

data on all subjects.
Collection and computation of clinical
scales

All participants underwent a comprehensive diagnostic

process, including neurological examination transcribed to

iPad-based App NeurEx™, which automatically calculates four

clinical scales, including Expanded Disability Status Scale

(EDSS; ordinal scale from 0 to 10) and Scripps Neurological

Rating Scale (SNRS, continuous scale from 100 to 0) and

streams data to Neuroimmunological Diseases Section (NDS)

research database hosted on secured server. Another set of

investigators, blinded to NeurEx data collected timed 25-foot

walk (25FW), 9-hole peg test (9HPT) and SDMT and

inputted these to the NDS database. The database

automatically integrates data to calculate CombiWISE. NDS

database has also user-defined privileges that blind the

clinicians and investigators collecting clinical and functional

data to qMRI and semi-qMRI data. MS diagnosis was based

on 2010 McDonald diagnostic criteria (23) and, after 2017,

based on its 2017 modifications (24).
Collection and computation of MRI
biomarkers

Brain MRIs were performed on Signa – (1.5 T and 3 T,

General Electric, Milwaukee, WI) and Skyra – (3 T, Siemens,

Malvern, PA) units using 16 – and 32 – channel imaging

coils with previously-described scanning protocols (22). Our

brain MRI sagittal and axial cuts extend distally to C5 level,

allowing determination of semi-qMRI biomarkers of medulla/

upper spinal cord (SC) atrophy and lesion load.
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The semi-qMRI data were acquired by consensus of MS-

trained clinicians during weekly clinical care meetings. The

rating of semi-qMRI features was previously extensively

described (22) and its codification was integrated to NDS

research database.

To acquire qMRI data, T1-magnetization-prepared rapid

gradient-echo (MPRAGE) or fast spoiled gradient echo

(FSPGR) and T2-weighted three-dimensional fluid attenuation

inversion recovery (3D FLAIR) sequences, ideally with 1 mm3

isotropic resolution, underwent a five-step pre-processing:

(1) de-identification through the elimination of PHI-

containing DICOM headers, (2) DICOM to NIFTI

transformation, (3) 6-dof alignment to MNI template

orientation, using ANTS package (25) to first register the T1

image to the 152 MNI template (26) and then co-register the

T2 image to the aligned T1 image, (4) SkullStripping the T1

image using ROBEX (27) and using the same stripping mask

to SkullStrip the co-registered T2 image, and (5) correct bias

fields in the T1 image using the N4 algorithm from ANTS (28).

The volumetric data of different CNS structures were then

computed by the LesionTOADS algorithm (29) implemented

in a cloud based medical image-processing platform,

QMENTA as part of collaborative project (https://catalog.

qmenta.com/tool/lesion-toads-workflow). LesionTOADS uses

an atlas-based technique combining a topological and

statistical likelihood atlas for computation of following 12

segmented CNS tissues: Cerebral white matter, Cerebellar

white matter, Brainstem, Putamen, Thalamus, Caudate,

Cortical gray matter, Cerebellar gray matter, Lesion Volume,

Ventricular CSF and Sulcal CSF.

LesionTOADS results were downloaded from QMENTA

server and manually quality checked by an investigator

blinded to clinical and functional data (MV). 17.2% of scans

where LesionTOADS segmentation algorithm masks were

incorrectly aligned with targeted anatomical structures were

excluded from analyses.
Development and optimization of
COMRISv2 models

COMRISv2 models were constructed using random forest

(RF) (30), a decision-tree-based supervised learning algorithm.

A decision tree is a modeling approach that uses multiple

features (i.e., different MRI-based CNS volumes) to predict an

outcome (i.e., disability) by finding the optimal split (e.g., a

specific volume) at each branchpoint in the tree. Tree-based

models are prone to “overfit” the data. RF aggregates

thousands decision trees and uses a random subset of

variables for decision-making at each branchpoint to limit

(but not eliminate) the overfit problem. Thus, to further

optimize our models, we used the iterative process where the

least important variable ranked by variable importance
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https://catalog.qmenta.com/tool/lesion-toads-workflow
https://catalog.qmenta.com/tool/lesion-toads-workflow
https://doi.org/10.3389/fradi.2022.1026442
https://www.frontiersin.org/journals/radiology
https://www.frontiersin.org/


Kelly et al. 10.3389/fradi.2022.1026442
function was removed and the RF was rebuilt repeatedly until

the root mean square error of the model reached its lowest

point. For a visual depiction of this process, see Jackson et al.

(31) and Supplementary Figure S1. Default tuning

parameters (ntree = 500 and mtry = number of variables/3)

were used for all models to ensure fair inter-model comparisons.
Statistical analyses and implemented
safeguards to prevent bias

The correlation between observed and predicted outcomes

was assessed by Spearman correlation coefficient Rho. The

coefficient of determination (R2) measuring the proportion of

variance of observed outcomes that is explained by the model

prediction, as well as the p-value, were calculated from linear

regression models. The reproducibility of predicted vs.

observed outcomes was evaluated by Lin’s concordance

correlation coefficient (CCC). The univariate correlations

between age, clinical, and MRI outcomes was evaluated using

Spearman correlation, the p-value cut-off for significant

observations was set to 0.001 to account for 31 pairwise

comparisons. All statistical analyses were performed in

RStudio Version 1.1.463.

The user-defined privileges in the NDS database assured

blinding, while software codification of the algorithms for

calculating different scales prevented bias in these calculations.

Finally, all models were validated in an independent cohort

that did not participate in the model development.
Results

COMRISv2 model of cognitive disability:
SDMT

The COMRISv2 model optimized to predict SDMT score

validated in an independent cohort (Rho = 0.674, p-value

<0.001, R2 = 0.458, CCC = 0.562) (Figure 1A). COMRISv2

SDMT model outperformed the COMRISv1 predictions (Rho

= 0.497, p-value <0.001, R2 = 0.247, CCC = 0.404) of SDMT

score in the same cohort. Age and qMRI features ranked most

important in the model, although several semi-qMRI features

were also included (Figure 1B).
COMRISv2 models of physical disability:
EDSS, SNRS, CombiWISE and NeurEx

COMRISv2 models were also constructed to predict

physical disability as measured by four different scales: EDSS,

SNRS, CombiWISE, and NeurEx. All models of physical

disability performed stronger than the COMRISv2 model for
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cognitive disability (Figure 1C). The NeurEx scale performed

the strongest (Rho = 0.852, p value <0.001, R2 = 0.707, CCC =

0.823). Models of physical disability favor semi-qMRI

biomarkers reflecting disease burden in the infratentorial

compartment (Figure 1B).
Comparing added value of quantitative
volumetric features to COMRISv2 models

While semi-qMRI features can be easily collected by any

trained clinician or even non-clinical investigator with

knowledge of brain/spinal cord anatomy, collection of qMRI

features require more specialized skillset and much more

resources. To facilitate decisions about resource allocation, we

formally assessed value of semi-qMRI and qMRI features for

predicting different disability outcomes.

Thus, COMRISv2 models for SDMT were constructed

considering only qMRI measures or only semi-qMRI

measures, both in presence and absence of age. Cognitive

disability models considering only qMRI measures (Rho =

0.568, p-value <0.001, R2 = 0.363, CCC = 0.497) performed

slightly better than those considering only semi-qMRI

measures (Rho = 0.544, p-value <0.001, R2 = 0.282, CCC =

0.474), but none outperformed the original model that

integrates qMRI, semi-qMRI, and age (Rho = 0.674, p-value

<0.001, R2 = 0.458, CCC = 0.562).

When we performed the same comparison in physical

disability models (NeurEx and EDSS), addition of qMRI

features did not improve model performance. NeurEx and

EDSS models that considered only age and semi-qMRI

features outperformed models that included qMRI features

(Figure 2, Supplementary Figure S2).
Comparing feature selection between
different COMRISv2 models with
univariate correlations between MRI
biomarkers and clinical outcomes

To facilitate interpretability of COMRIS models, we

examined univariate correlations between all MRI features

selected by at least one COMRIS model and all clinical

outcomes plus age (Figure 3).

As would be expected, all clinical outcomes correlated

moderately with age. qMRI outcomes related to CSF and

Brain parenchymal fraction also correlated with age. From

infratentorial structures, only cerebellar gray matter (GM) and

semi-qMRI biomarker of brainstem and medulla/upper spinal

cord (SC) atrophy correlated with age.

Most qMRI measures correlated with each other, except

cerebellar GM, the only infratentorial qMRI biomarker

selected by four out of five COMRIS models, which showed
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FIGURE 1

Random forest (RF)-based COMRISv2 models of clinical outcomes. (A) RF model of Symbol Digit Modalities Test (SDMT); (B) Age, 18 semi-
quantitative, and 15 quantitative MRI features were used for RF modelling of the Expanded Disability Status Scale (EDSS), Scripps Neurological
Rating scale (SNRS), Combinatorial Weight-adjusted Disability Score (CombiWISE), and digitalized neurological exam score (NeurEx). Variables
selected by each model and their respective importance are highlighted here. Variables not selected by any model are depicted in gray. (C) RF
models of physical disability measured by EDSS, SNRS, CombiWISE, and NeurEx. (A,C) The performance of each model was evaluated separately
in the training cohort (left plot) and an independent validation cohort (right plot) by plotting observed values on the x-axis and model-predicted
values on the y-axis. Spearman Rho, coefficient of determination (Rsqr), p-value (p), Lin’s concordance correlation coefficient (CCC), and
number of observations (N) are depicted. Black line represents a fitted linear model with the gray-shaded area corresponding to 95% confidence
interval. The blue line represents 1:1 fit corresponding to 100% CCC.

Kelly et al. 10.3389/fradi.2022.1026442
only weak correlations with few outcomes. All semi-qMRI

biomarkers correlated with each other, but the correlations

were generally weak to moderate. Semi-qMRI features also

correlated with qMRI features, except medulla/upper SC

lesion load that correlated marginally with sulcal CSF.
Frontiers in Radiology 05
Although medulla/upper SC atrophy correlated with most

of qMRI outcomes, these correlations were marginal with

qMRI volumetric measures of telencephalon and strongest

for brainstem and cerebellum GM volume. Thus, we

conclude that qMRI and semi-qMRI measures provide
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FIGURE 2

Evaluation of added value of quantitative MRI features. The original random forest (RF) models used age, semi-quantitative, and quantitative MRI
features as an input. We tested how the RF models of Symbol Digit Modalities Test (SDMT), Expanded Disability Status Scale (EDSS), and
digitalized neurological exam score (NeurEx) would perform if only semi-quantitative or only quantitative MRI features (with or without age)
would perform. The performance of each model was evaluated separately in the training and an independent validation cohort by calculating
Spearman Rho, Lin’s concordance correlation coefficient (CCC), coefficient of determination (R2), adjusted coefficient of determination (adjusted
R2), and p-value. The best performing models are highlighted by red rectangles. Variables selected by each model and their respective
importance is also depicted.

Kelly et al. 10.3389/fradi.2022.1026442
mostly complimentary information, with qMRI outcomes

better reflecting telencephalon tissue damage and semi-

qMRI outcomes better capturing infratentorial tissue

damage.

All clinical outcomes correlated with each other, with

SDMT exhibiting only moderate correlations, while other

clinical scales correlated strongly. The difference between

SDMT and all remaining clinical outcomes was also evident

from correlations with MRI outcomes: qMRI biomarkers

correlated stronger with SDMT (cognitive disability) in
Frontiers in Radiology 06
comparison to clinical outcomes that capture predominantly

physical disability. In contrast, semi-qMRI biomarkers,

especially medulla/upper SC atrophy and lesion load, followed

by brainstem atrophy, correlated with non-SDMT clinical

outcomes and these correlations were overall stronger than

correlations of qMRI measures with SDMT. All qMRI

biomarkers correlated with physical disability outcomes (i.e.,

EDSS, SNRS, CombiWISE and NeurEx) weaker than age,

whereas many qMRI outcomes outperformed age in

correlation with SDMT.
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FIGURE 3

Univariate correlations between age, clinical outcomes, semiquantitative, and quantitative MRI features. Correlations were evaluated using Spearman
Rho, with positive correlation in shades of red and negative correlations in shades of blue. The size of the circles above the diagonal and the size of
the yellow squares below the diagonal corresponds to the absolute value of Rho. Only correlations with p-value below 0.001 were considered
significant (accounting for 31 comparisons performed). The number of stars corresponds to the level of statistical significance.

Kelly et al. 10.3389/fradi.2022.1026442
Discussion

With the technological advances that allow reliable

measurements of genetic, transcriptomic and proteomic

biomarkers in hundreds of patients, the data scientists are

realizing that the most limiting obstacle in translating these

“omics” data into clinically translatable insights are,

surprisingly, poor quality clinical and imaging data. This

sentiment is epitomized in the recent review: “It is amazing

how bad the standard data sets in the medical domain are
Frontiers in Radiology 07
(noisy, sparse, wrong, biased, etc).” (32) Employing unbiased,

data-driven approaches to develop more accurate tools for

measuring neurological disability and CNS tissue damage and

validating both their criterion validity and reproducibility is

the way to transcend this conundrum.

This paper demonstrates the power of ML approach to

assemble semi-qMRI and qMRI brain imaging biomarkers

into combinatorial models (COMRISv2) that reliably predict

neurological disability in MS patients. Compared to previously

published composite MRI scales, our study has following
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strengths: (1) The MRI features and their weights are selected using

unbiased, data-driven approach; (2) We studied a moderately large

cohort of MS patients, with good representation of subjects with

progressive MS; (3) COMRISv2 tested both semi-qMRI and

qMRI volumetric data; (4) In addition to EDSS, we modeled

COMRISv2 predictions of physical disability against SNRS,

highly granular CombiWISE and NeurEx scales, and predictions

of cognitive disability against SDMT; (5) Our models are

validated in the independent cohort of MS patients that did not

contribute to the development or optimization of the model(s).

We also recognize the following limitations of current study:

(1) Although our original COMRISv1 computation is publicly

available, including detailed guideline for semi-qMRI ratings

(22), and we observed that adherence to those guidelines leads

to mean interrater variability less than 10%, up till now no

external group attempted to reproduce our data. This causes

uncertainty whether other investigators could achieve

analogous reproducibility of COMRIS models; (2) We did not

test qMRI measures of atrophy or T2LL in the medulla/upper

SC, as Lesion-TOADS algorithm does not provide these

outcomes and also because we lacked dedicated SC MRI;

(3) Our study did not include qMRI biomarkers derived from

advanced imaging methods such as MTR or DTI.

While we can’t influence the first limitation, we can address

the effect of subsequent two limitations by literature review:

First, high quality volumetric SC data require dedicated SC

imaging, not available in our patients. Second, published

observations suggest that addition of qMRI cervical SC

biomarkers would have limited effect on COMRISv2

performance: e.g., the second iteration of Magnetic Resonance

Disease Severity Scale (MRDSS2) (21) demonstrated that

addition of upper cervical SC area to MRDSS1 model (which

consisted only of brain qMRI features) increased correlation with

EDSS from 0.25 to 0.33 (p = 0.013). Both COMRISv1 and

COMRISv2 models (using only semi-qMRI features) validated

much stronger correlations with EDSS (i.e., Rho = 0.857, p <

0.001). Analogously, meta-analysis (21 studies/1,933 participants)

of dedicated 3 T SC imaging showed moderate correlation of

cervical SC atrophy with EDSS (Rho =−0.42; p < 0.0001) (33).

This likely represents over-estimation, as included studies with

small number of participants showed invariably larger

correlations. It has been convincingly shown that small studies

over-estimate effect size (34). Correspondingly, large study (n =

1,249) published after the aforementioned meta-analysis

measured Rho −0.315 (p < 0.01) for correlation of cervical SC

volume with EDSS (35). These are analogous or smaller

univariate correlations as those we observed in COMRIS models

between EDSS and two highest ranking semi-qMRI biomarkers:

medulla/cervical SC atrophy and T2LL [Figure 3 and (22)].

Based on the limited value of volumetric qMRI compared to

semi-qMRI biomarkers in COMRISv2 models of physical

disability, we do not expect that incorporating MTR or DTI

data could meaningfully enhance correlations with clinical
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outcomes for several reasons: (1) These advanced imaging

biomarkers have even poorer SNR than volumetric qMRI

measures (6, 10); and (2) COMRISv2 optimized for

CombiWISE or NeurEx already explains close to 70% of

physical disability variance in the independent validation

cohort, which is exceptionally good performance.

To put our results into perspective, we performed a meta-

analysis of 302 studies describing ML models of MS disability

and severity outcomes (36), including 40 studies that modeled

EDSS as an ordinal scale. Only half of those reported effect

sizes. The meta-analysis evaluated published studies based on

seven criteria (e.g., blinding, outlier removal, explanation of

missingness, adjustment for confounders, adjustment for

multiple comparison, presence of controls, and validation) and

identified significant negative correlation between effects size

and number of criteria fulfilled. An independent validation

cohort, used in our study, that is essential to understand the

true predictive power of composite construct on patients whose

data did not contribute to model development, was missing in

all published MRI studies predicting EDSS. Only one study out

of 20 showed cross-validation results for EDSS models,

achieving R2 of 0.16–0.19 (37). In comparison, our optimized

EDSS model explains 75% of variance in the independent

validation cohort. Similar observation was made for MRI

biomarker-based models of SDMT – 5 out of 12 studies

reported effect sizes as R2 ranging from 0.3 to 0.62 in the

training cohort, compared to our optimized SDMT model that

reaches R2 of 0.933 in the training and 0.46 in the independent

validation cohort. Presented data, congruent with most

independent validation studies published, show unequivocally

that training cohort results always over-estimate true strength

of the relationships. Thus, we conclude that COMRISv2 models

achieve the highest effect sizes in predicting clinical disability

outcomes among published studies.

The limitation of the criterion validity of simple volumetric

qMRI biomarkers we mentioned in the introduction is

exemplified in highly informative post-mortem imaging

pathological assessment, which showed that SC atrophy (19%–

24%) strongly under-estimates axonal loss (57%–62%) in MS (38).

Because these imaging data were postmortem, they were not

affected by motion artifacts and signal averaging which would

further decrease the strength of relationship between imaging

biomarker and histologically measured CNS tissue destruction.

Therefore, at very best technical imaging conditions the criterion

validity of volumetric qMRI biomarkers of SC is limited.

Nevertheless, qMRI biomarkers, especially when measuring

large telencephalon structures have validated relationship to

CNS tissue destruction in MS: (1) Brain atrophy is higher in

MS compared to HV; (2) It correlates with disability in large

cohorts and (3) It predicts disability progression in long

longitudinal studies (39–41). Consequently, if we could

measure volume of all CNS structures with high accuracy,

qMRI biomarkers would likely outperform semi-qMRI
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biomarkers in all models, as we observed for SDMT version of

COMRISv2.

Unfortunately, the test-retest variance (“noise”) of qMRI

outcomes increases inversely to the size and contrast of the

structure measured and the required scanning time. Motion

artifacts from skeletal muscles, heartbeats, breathing and

cerebrospinal fluid pulsation disadvantage qMRI biomarkers

from infratentorial structures compared to large telencephalic

structures. Thus, volumetric biomarkers derived from small

infratentorial structures with low MRI contrast from

neighboring tissues, that need long acquisition times will have

high “noise” (and low SNR) (6). This explains why

infratentorial semi-qMRI biomarkers, while theoretically less

sensitive, outperformed infratentorial qMRI features

(Figures 1B, 2): because they are measured with higher

SNR. Research advances to limit measurement noise of

infratentorial qMRI biomarkers may have greater clinical value

than development of imaging methods that require longer

scanning times and increased complexity of mathematical/

physical data manipulations to produce quantitative output.

In conclusion, this study demonstrates excellent criterion

validity of measuring CNS tissue damage in MS by two

different modalities: neurological examination and brain MRI.

There is nothing in clinical data that makes them inevitably

poor quality (i.e., noisy, sparse, wrong, biased) if we approach

their collection and their aggregation into sensitive and

accurate scales with the same scientific rigor used to optimize

collection and quantification of omics data. The observations

that novel scales of neurological disability with much broader

dynamic range than EDSS (i.e., total of 20 possible disability

progression steps in the ordinal EDSS scale, vs. practically

unlimited range of CombiWISE [0–100 continuous scale] and

NeurEx [0 to theoretical maximum of 1,349] values) validated

comparably, or even outperformed EDSS demonstrates that

implementing data-driven approaches to development of new

clinical scales allows increasing sensitivity without limiting

their accuracy. The CCC of 0.866 between semi-qMRI features-

derived COMRISv2 and NeurEx in the independent validation

cohort indicates that scientists have at their fingertips a reliable

inexpensive tool that can predict the most granular scale of

neurological disability we currently have in MS research.
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