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To train artificial intelligence (AI) systems on radiology images, an image labeling step is

necessary. Labeling for radiology images usually involves a human radiologist manually

drawing a (polygonal) shape onto the image and attaching a word to it. As datasets are

typically large, this task is repetitive, time-consuming, error-prone, and expensive. The

AI methodology of active learning (AL) can assist human labelers by continuously sorting

the unlabeled images in order of information gain and thus getting the labeler always

to label the most informative image next. We find that after about 10%, depending on

the dataset, of the images in a realistic dataset are labeled, virtually all the information

content has been learnt and the remaining images can be automatically labeled. These

images can then be checked by the radiologist, which is far easier and faster to do. In this

way, the entire dataset is labeled with much less human effort. We introduce AL in detail

and expose the effectiveness using three real-life datasets. We contribute five distinct

elements to the standard AL workflow creating an advanced methodology.

Keywords: artificial intelligence, computer vision, annotation, labeling, active learning, object discovery

INTRODUCTION TO LABELING

Artificial intelligence (AI) is a promising technology to help physicians in their daily tasks of finding
and diagnosing a variety of conditions (1). Particularly in the realm of processing radiological
images, AI can help in various ways. First, AI can sort the normal images (absence of any condition)
from those with a condition, thus allowing the physician to focus on the important images. Second,
AI can pre-screen images to detect and localize conditions that the physician then only needs to
confirm, thus allowing the physician to be more efficient and spend more time with the human
patient. Overall, it can be said objectively that multiple sources of diagnostic information improve
the diagnostic result (2) in the decision-making process of what to do with a particular patient (3, 4).

Even beyond healthcare, companies are struggling to implement and benefit from AI as shown
by the fact that only 1 in 10 companies are achieving significant financial benefits fromAI. Avoiding
three mistakes enhances the chances for success manyfold: (1) Ensure that the data is AI-ready, (2)
initially deploy AI in a use case that has a well-defined return-on-investment as opposed to a toy
problem, (3) and ensure that the team has all the necessary domain and AI expertise (5). This paper
addresses the first of the challenges in the realm of radiology. Due to reducing the cost to get started
with AI, this paper implicitly also addresses the second challenge.

Making an AI model requires training data, which includes both the input data that will be
available in the practical application as well as the desired output data that that model is supposed
to deliver. The desired output data is often called a “label” or “annotation.” In some cases, the label

https://www.frontiersin.org/journals/radiology
https://www.frontiersin.org/journals/radiology#editorial-board
https://www.frontiersin.org/journals/radiology#editorial-board
https://www.frontiersin.org/journals/radiology#editorial-board
https://www.frontiersin.org/journals/radiology#editorial-board
https://doi.org/10.3389/fradi.2021.748968
http://crossmark.crossref.org/dialog/?doi=10.3389/fradi.2021.748968&domain=pdf&date_stamp=2021-11-30
https://www.frontiersin.org/journals/radiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/radiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:p.bangert@samsung.com
https://doi.org/10.3389/fradi.2021.748968
https://www.frontiersin.org/articles/10.3389/fradi.2021.748968/full


Bangert et al. AI in Labeling Radiology Images

is measured by sensor equipment but in many cases, including
most cases involving images, the label must be provided by
a human domain expert. For all of AI, but especially in
medical imaging, labeling the image data is the bottleneck of
the field in the sense that it costs the most human labor by
far (6).

There are four standard labeling cases, (see Figure 1)
for examples:

1. Classification: The entire image is associated to a category,
e.g., tumor.

2. Detection: A part, or parts, of the image are marked by a
rectangle, which is then associated to a category.

3. Instance Segmentation: A part, or parts, of the image are
marked by a polygonal boundary, which is then associated to
a category. If there are multiple instances of a single category,
these instances are marked separately and distinguished.

4. Semantic Segmentation: All parts of the image are marked by
polygonal boundaries, which are then associated to a category.
If there are multiple instances of a single category, these are
not marked separately and not distinguished.

Beyond these standard cases, there are a multitude of more
specialized labeling cases for special-purpose AI models. While
we will not discuss them here, the methods discussed below
generalize to meet all labeling needs.

The process of labeling, as seen by these examples, typically
involves a human expert clicking through various options to
select the category and, in most cases, manually drawing on top
of the image. The drawing must be accurate and so this activity
consumes time. Providing a single image with segmentation
labeling can easily require 2–15min in simple cases and longer
for more complex cases, per image and per person (8–11). To
avoid human bias, each image is typically labeled by several
human labelers with three labelers being a typical number (12,
13). For radiological use cases, the labeler must be a trained
radiologist, who makes this process costly and temporarily
prevents the radiologist from working with patients. Having
labeled the entire dataset, AI methods produce the AI model that
can then be used in clinical applications, (see Figure 2) for the
basic AI workflow process. In this basic workflow, a vast literature
exists on the last two steps—the training of the model and the
models themselves. In practicality, the labeling process consumes
most of the resources (12).

Typical Open-Data radiology datasets have several thousand
to tens of thousands of images (14, 15) while proprietary datasets
are often 10 times as large. For reference, a dataset of 100,000
images that are labeled by three labelers each using 10min
for each image will require a total of 24 person-years to label,
considering that 1 month has 21 working days that have eight
working hours. It would require a labeling team of 24 people to do
this project in 1 year. Clearly, this is a level of effort and expense
that represents a significant barrier to entry for any organization
and makes many possible models commercially unviable. It
is important to note that the training, testing, deploying, and
maintaining of the AI model itself has not even begun at this
point; this concerns only establishing the dataset that will form
the basis for training.

This paper will present a methodology, known as active
learning (AL), with which such datasets can be labeled with
much less total human effort while achieving the same result,
i.e., a fully labeled and human curated dataset. The idea of
AL is not new, but we enhance the standard method in five
important and novel ways (see section Methodology: Advanced
Active Learning) and demonstrate their efficacy in three medical
use cases.

In section Information and Active Learning, we review
the basic ideas of AL. Section Methodology: Advanced Active
Learning presents the five ways in which the basic ideas may
be enhanced. Then, we present some results from practical
case studies in section Results: Case Studies, discuss the place
of AL in the larger ML Operations workflow in section
Practical Use: Machine Learning Operations, and present
the marketplace considerations for the technique in section
Marketplace Considerations. Finally, we conclude and explain
contrastive loss, which is an important concept for two of the
five enhancements.

INFORMATION AND ACTIVE LEARNING

It is often implicitly assumed that the amount of data is
proportional to the amount of information, or that each data
point represents the same amount of information. There is a law
of diminishing returns however, according to which some images
deliver much information and others contribute only marginal
added value (16–18).

While each image possesses a different inherent information
value, each image represents approximately the same amount
of human work to label it. If we could determine the most
informative images and label only them, we might be able
to train an intermediate AI model that would help us label
the remaining images. We note in passing that while creating
a (segmentation) label takes minutes, checking an already
existing label for correctness only takes 10–20 s (9–11). If most
of the labels proposed by this intermediate AI model are
correct, the human workforce would be able to check these
automatically-labeled images at a much faster rate than labeling
them directly.

If we imagine that labeling takes minutes and reviewing
takes seconds, the critical element in this process is how many
images must be labeled manually for the automatic labeling to be
accurate enough to deliver this quick reviewing process. Sticking
to the above example of 100,000 images that take 10min each to
label for three labelers, if we needed to label only 10% of them and
could review the other 90% at 20 s each for three reviewers, then
we would consume a total of 3.2 years as opposed to 24 years, a
saving of 87%. If the review is conducted by only one reviewer
per image, we can reduce it by a further 0.5 years to achieve a
saving of 89%. We thus find that the percentage of images that
must be labeled and the percentage of human time and cost are
approximately the same. This is the basis for our claim, in the
title, that AL is 90% effective.

As we cannot know the structure of phase space before
venturing into it, we cannot determine the right images a priori.
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FIGURE 1 | The four standard labeling cases illustrated by a brain tumor example in an MRI scan. Original image was published in Tamije Selvy et al. (7).

FIGURE 2 | The basic AI workflow process where a dataset is labeled by experts and then used by AI methods to produce a model.

These ideas give rise to the concept of AL, which is the following
process (19); (see Figure 3) for an illustration:

a. Start with a dataset of unlabeled images.
b. Initialize the process by (usually randomly) choosing a small

number of images known as a batch from the pool of all
unlabeled images. Practically, the batch size is the number of
images that the labeling team can realistically label in 1 day.

c. We have the current batch of images to label.
d. Let the labeling team label these images.
e. The current batch is now labeled.
f. An AI model, known as the AL model, is now trained on

(most of) the labeled images and is capable of automatically
labeling any similar image with a certain confidence in its own
accuracy. The accuracy is tracked by retaining some labeled
images for testing this model.

g. This model is applied to the remaining unlabeled data.
h. If the accuracy is high enough, it becomes economical to stop

the loop.
i. The AL model is then applied to all unlabeled data.
j. This application results in the entire dataset having labels;

some by the human team and some by the AL model.

k. As many labels are provided by the model that is known to
have good (but not 100%) accuracy, the auto-labels must be
reviewed or edited by a reviewer team that is almost always
the same as the labeling team.

l. After review, the entire dataset has labels that were either
produced by human experts or approved/edited by them.

m. Artificial intelligence modeling on the fully labeled dataset
can now be started.

n. The diagnostic model for clinical use is the result.

This process involves a crucial decision: When is the accuracy
high enough to stop manual labeling and proceed to reviewing
automatically-produced labels? Generally the accuracy increases
sharply at the start of the process and starts to level off after
some time. Finding this “elbow point” as the curve evolves is
one element in this decision. The other element is the inherent
accuracy requirement of the task at hand and the amount of
human labor required to correct a sub-optimal label. In most
practical cases 90–95% accuracy is fine while reminding the
reader again that this is only the intermediate model meant to
help with labeling and not the final diagnostic model intended
for clinical use. We shall see below that some datasets allow
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FIGURE 3 | The standard active learning workflow.

such accuracy to be achieved readily while for others it remains
aspirational and we must be contented with around 85% only.

This workflow may look complex, but all its steps can
be readily automated. The labeling team does not need to
act any differently than before. They are served images for
labeling, which they then do. The difference is that the
order of the images to be labeled is carefully curated by AL
whereas the order was usually random before. The process
from the point of view of the labeling is shown in Figure 4.
Active learning was first suggested in 1996 (19) and is a
well-known idea and methodology in research circles today.
Its applicability in commercial software and its practical use,
particularly in medical applications, is limited. The method was
thoroughly studied in generality (20–22). In particular Bayesian
approaches were added later (23) and various applications to
medical image classification studied (24). These studies lead to
what we call standard AL in this paper.

The workflow described above can be called standard AL. It is
possible to make this procedure better in the sense of making it
converge to a certain accuracy after fewer iterations or after fewer
manually labeled images. In the following section, we describe

FIGURE 4 | Workflow from the point of view of the labeling team.

our new AL methodology with five novel elements that enhance
standard AL. These elements represent the scientific contribution
of this paper.
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METHODOLOGY: ADVANCED ACTIVE
LEARNING

The standard workflow can be enhanced in five places to further
reduce the amount of human labor until the system can auto-
label the remaining images with relatively high accuracy. Our
advanced AL workflow is displayed in Figure 5.

Each of the five techniques introduced here is described in
detail in other publications (several of which are written by the
same authors), which are cited here. This paper discusses them
all in an overarching context of the entire AL workflow and in
concert with each other. In section Results: Case Studies, we
demonstrate some results when all five techniques are used at the
same time, as opposed to only one at a time, which is common in
the cited specialized technical publications.

In this sense, the architecture diagram of Figure 5 is the real
novelty of this paper and this is the subject of this section, which
briefly outlines each aspect and provides references for more
detailed study.

First, the initialization of the AL loop does not have to be
random but can be made based on unsupervised techniques
(steps b and c in Figure 5), as no labels exist at this point.
We attempt to learn the structure of the distribution of images
and represent this as a structure model that clusters images
based on similarity. The SimCLR framework has proven to be

particularly effective in this regard (25, 26), which optimizes for
contrastive loss, see Appendix for an explanation (27, 28). This
unsupervised initializer turns the space of images into a vector
space of latent vectors, the distances between which allow the
generation of clusters. The data points for the first batch to be
labeled are then chosen from a distribution over these clusters
to allow for maximal diversity of information at the start of
the process (29).

Second, a pre-labeling model (steps e and f in Figure 5) can
be added before the human labeling team provides its input.
This model supplies an (approximate) label so that the human
team merely corrects a reasonable first guess at a label thereby
reducing the labor time. Any such model would have had to be
trained previously on some other dataset; the more similar this
prior dataset is to the one under study, the better the pre-labeling
model will be able to initialize the label. This leads into the idea
of reproducible research or model lifecycle management: After a
model is trained on a dataset, some research team may acquire a
second dataset for the same situation and wish to label it using the
AL loop described here. The initial model would be the pre-label
model for the second dataset. The pre-label step is the AL version
of the general concept of bootstrapping.

Third, the AL model itself must be chosen well for the
task. Numerous models have been investigated (20, 24). We
have chosen the Gaussian Process (30), on top of the SimCLR

FIGURE 5 | The advanced active learning workflow (compare with Figure 3).
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foundation mentioned above, and observe superior results (29).
We postulate that this method is less affected by an imbalance
in the dataset than prior methods, which is a very desirable
property in radiology as the “normal” condition will have many
more examples than various non-normal conditions, and some
conditions are rarer than others. In fact, it seems unrealistic to
expect a balanced dataset under real-life conditions anywhere
in healthcare.

Fourth, the ALmodel can be augmented with an unsupervised
model. Novel ways have been found to support object detection
in an unsupervised way (31–33) from a small number of
images (200 or less) in which certain objects appear frequently
against simple backgrounds. This process randomly chooses
many rectangular patches from each image and then trains
an embedding into pattern space by contrastive training, (see
Figure 6). Objects are distinguished from background patterns
by modulating the contrastive loss based on two assumptions:
(1) objects are relatively small and surrounded by background,
and common background patterns are relatively larger and more
uniform across images, and (2) the color distribution inside
versus outside the bounding box of an object is expected to be
distinct in a statistically significant manner. Such models could
be trained on the initial dataset without human effort being
expended and then assist the labeling effort by localizing the areas
in need of attention (34).

Fifth, the acquisition function can bemademore sophisticated
beyond the standard choices (35). An area of active research,
a better acquisition function can better identify the most
informative data points and sort them to the top of the ranking
list. As the batch size is usually limited by organizational
constraints, the ranking of images is crucial for the convergence

of the entire workflow. Our new acquisition function, Beta
approximation for Bayesian active learning (BABA), outperforms
the state of the art by approximately 40% in terms of labeling
effort required to get to a stable accuracy, [see Figure 7 (36)].

In Figure 7, as in all the case study figures to follow, the
benefitmust be read horizontally. The horizontal axis displays the
amount of human labeling injected into the project. The vertical
axis represents the AL model accuracy. We detect the benefit
of the method by determining when (in terms of labeling) we
reach a certain cut-off accuracy. We observe in Figure 7 that the
benchmark accuracy is reached using AL already after only 20%
of the dataset is labeled while the state-of-the-art AL framework
requires nearly 40% of the dataset to be labeled. The difference is
entirely due to the new acquisition function as all other elements
of the process were identical.

RESULTS: CASE STUDIES

We will examine this approach in three different scenarios. First,
we will look at lung x-ray images to detect Covid-19. Second, we
look at microscopic slide images to detect breast cancer. Third,
we will look at colonoscopy videos to detect the cleanliness of the
colon. In all three examples, the datasets are available publicly
and are expertly annotated so that the ground truth is known.

The Covid-19 dataset consists of 15,521 chest x-ray images
of which 8,851 are normal, 6,063 are pneumonia, and 601 are
Covid-19 examples. It is an assemblage of five open datasets (37–
41). The task is a classification task in which the entire image is
to be associated to one of three classes: normal, pneumonia, or
Covid-19. These were processed using our novel ALmethod with

FIGURE 6 | The unsupervised object discovery process.
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the result that after only 5% of the images were human-labeled,
the model had achieved 93.1% accuracy. The highest currently-
achievable accuracy on this dataset is 93.7% once the entire
dataset is labeled. Standard active learning requires about 16%
of the data to be human-labeled in order to achieve comparable

accuracy to our novel method. We clearly see the diminishing
returns on the human labor of labeling. Figure 8 displays the
evolution of accuracy as the labeling team labels the dataset 1%
at a time both using active learning (blue, solid) and using the
normal random order (orange, dashed) (29).

FIGURE 7 | The performance of our acquisition function, Beta approximation for Bayesian active learning, relative to the state of the art active learning method and a

benchmark accuracy based on a full AI model.

FIGURE 8 | In the case of Covid-19 detection from lung X-rays, this displays the growth of accuracy due to active learning vs. random order labeling.
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A similar study is made using microscopic slide images to
detect breast cancer at the cellular level. The dataset includes
50,286 images that are fully expertly annotated (42). The task is to
classify images into one of two categories: normal or mitosis. This
is a very difficult problem where the best known model achieves
an accuracy of 88%. As shown in Figure 9, we can achieve 85%
accuracy after labeling only 16% of the data as compared to
having to label 36% of the data in a random order to achieve the
same accuracy. In other words, we can lower the human labor by
56% in this case. Standard active learning would require about
25% to achieve similar accuracy.

In a third study, we analyze the cleanliness of the colon
as described in a dataset of 5,525 images extracted from 21
colonoscopy videos (43). This is also an image classification
problem with five classes of cleanliness. We find that after
labeling only 400 of these images, we can achieve 98% accuracy
and reach 100% accuracy after 600 images are labeled, (see
Figure 10). Standard active learning would require 1,000 images
to be labeled. For the purposes of active learning, we thus achieve
an effort reduction of 93%.

As all of these case studies are based on image classification,
the results are comparable. The differences in the required
amount of human labeling must be interpreted to be due to
the difference in problem difficulty. The active learning model
included here is generic in that it can be used for any image
classification task and has in no way been tuned to these
particular cases. In particular, it was the same model and same
active learning methodology for all cases.

Depending on the complexity of the task and the diversity
of the data, we conclude that active learning can save between
56 and 93% of the human labor required to label a dataset in
preparation to AI modeling.

FIGURE 9 | In the case of breast cancer detection based on microscopic slide

images, this represents the growth of accuracy due to active learning vs.

random order labeling. Both curves have error bars that are equal to two

standard deviations about the mean.

PRACTICAL USE: MACHINE LEARNING
OPERATIONS

Once the data is labeled, the AI model can be trained and
deployed for practical use. The process does not stop here
however. Like software, AI models are never finished. The life-
cycle management procedure for AI models is known as machine
learning operations, or MLOps. We illustrate this process in
Figure 11 and describe it here.

1. Data is collected from a fleet of edge devices and stored in
some central location. In medical imaging, the edge devices
might be MRI scanners, CT scanners, ultrasound machines,
and so on.

2. Human experts annotate this data, perhaps using active
learning as illustrated above.

3. The data is provided to an AI modeling suite that performs
feature engineering, model selection, and hyper-parameter
tuning (44). The modeling procedure usually takes place on
powerful computers in a data center.

4. The outcome of the AI modeling process is the model itself.
5. The model must be assessed for accuracy (bias), variance,

and robustness.
6. Having made an objective assessment, human experts must

make a subjective decision to accept or reject the model.
7. If the model is not good enough, perhaps more data must be

collected and this closes the model creation loop.
8. If the model is good enough, it must be packaged to run on

an edge device. This generally implies (a)model compression
so that the model fits into the memory and computational
infrastructure requirements of the edge device and (b)
provision of a run-time environment that executes themodel
and provides the output.

9. The packaged model is then served, which implies the
transference onto a fleet of edge devices alongside the record-
keeping of which version of the model was deployed where.

FIGURE 10 | In the case of colonoscopy detection, this represents the growth

of accuracy of active learning as a function of the number of images that are

labeled.
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FIGURE 11 | The MLOps lifecycle management flow for an AI model.

10. As the model is used at the edge, some data points are
specially selected for observation.

11. Every observed data point must be annotated by a
human expert to see if the model output agrees with the
human annotation.

12. These observability data flow into a continual assessment
that may, or may not, trigger a re-training of the model in
the model creation loop.

13. Every data point at the edge is provided to the run-time
environment, which executes the model on the data.

14. The model output may then need to be provided to an
explainability engine, which produces a type of output that
may help the user of the edge device understand how the
model produced its output. Preferably, the model itself can
provide interpretable output.

15. The edge device receives this explanation and the
model output.

16. Finally, the output of model and explanation are provided to
the user in an understandable way.

We see that MLOps consists of two interconnected loops
that make a model and continuously observe its performance
in the wild. In this way, we can assure that the model is
always performing up to the highest scientific, transparency, and
ethical standards.

MARKETPLACE CONSIDERATIONS

There are high commercial expectations of AI in healthcare to
diagnose, manage, and treat a variety of conditions (45), the
value of which is projected to be US$28B by 2025 (46). Using AI
“we can innovate procedures to be more productive with better
outcomes,” according to Frans van Houten, CEO of Philips (47).
The Food and Drug Administration of the USA government
(FDA) has published a discussion paper in 2019 followed by a
goals paper in 2021 (48) that should culminate in a policy paper
in the future governing the approval and regulation of Software
as a Medical Device (SaMD), which includes AI-based models.
There are five goals in this plan: (1) a regulatory framework,
(2) best practices for AI modeling, (3) transparency to patients,
(4) methods to evaluate and address bias and robustness, and
(5) monitoring real-world performance of AI models. It is our
interpretation of these goals that transparencymay be interpreted
as the AI topics of explainability and interpretability; bias and
robustness go beyond the usual numerical performancemeasures
and include AI Ethics, while the real-world performance is
usually referred to as MLOps.

There are 64 FDA approved AI-based medical devices as of
2020, mostly in the areas of radiology and cardiology, where
the definition of AI however remains unclear (49). Due to the
uncertain definition of AI, the count of such devices reached 130
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in 2021 (50). Platforms exist that allow the commercial sharing
of AI models intended for medical use in, for example, the
IntelliSpace AI Workflow Suite by Philips (51) and Edison Open
AI Orchestrator by General Electric Healthcare (52).

Obstacles for adopting AI in daily clinical practice include
transparency, concerns about bias, explainability (53), and trust
(54). Risks include the misuse of an AI model intended for
decision support as a primary diagnostic tool (50). If the training
data of an AI model is not representative of the population, it
may see quite different accuracy ratings on real-life datasets (50),
which is a significant risk for health care in which it is difficult
and expensive to acquire suitably diverse training data. Diversity
in this sense does not only refer to diversity of human subjects but
also diversity of device technologies, photography angles, image
resolutions, camera focus settings, and so on.

Processing medical information with AI systems requires
thought about explainability and ethics as well as legal challenges
(55) with some early frameworks being proposed (56). Processing
medical information in the cloud poses additional challenges that
must be considered (57). Anonymizing medical data is often
a legal requirement depending on the software and hardware
architecture and must be designed carefully (58). Whenever AI is
applied to people’s lives, it should be ethical and fair. What those
terms mean however, is controversial as AI methods—being
mathematical—require significantly more precise definitions of
these terms than human beings usually desire. For example,
a non-exhaustive list of 21 distinct definitions of fairness was
compiled (59). It can also be demonstrated that any one model
cannot adhere to multiple definitions of fairness simultaneously
except under specific, rare conditions (60, 61). Ultimately, this is a
multi-criterion optimization problem that almost always requires
a compromise between the different desiderata (62).

Current human culture expects humans to be fallible and
accepts a certain error-rate in its human experts. This is not true
for human-made systems, which are expected to have error-rates
that are several orders of magnitude lower (63). For example, in
the early days of AI, an AI system that had demonstrably lower
racial bias than the human process it was meant to replace was
discontinued because it was not equitable enough (64). For this
reason, it should be our aspirational goal as the AI community
to develop inherently interpretable and explainable models
(65) even though interpretability is not a universally definable
notion (66–68). In fact, numerous circumstances exist where
an inherently interpretable model has comparable accuracy to

a black-box model and is thus far more valuable in practice
(65, 69). Even for computer vision, interpretable models can be
constructed. For example, the model may point to certain parts

of an image that look like an example image from the training
data (70). The approach “this looks like that” is a frequent
method of explanation by human domain experts where images
are concerned.

CONCLUSION

We conclude that the human effort required to label an image
dataset can be reduced by approximately 90% in most cases
by using the described advanced active learning workflow. In
exceptionally difficult circumstances, this may be as low as 50–
60%. In any case, the labor saving is measured in tens of person-
years for a realistic project and so is highly significant. We have
demonstrated the efficacy of five distinct and novel elements by
which standard active learning is enhanced to deliver a significant
additional reduction of labeling effort: (1) initializing the loop
with an unsupervised clustering model, (2) adding a pre-labeling
model, (3) using a standard SimCLR and Gaussian Process model
as the centerpiece for active learning, (4) enhancing the central
model with an unsupervised model, and (5) using the novel
Bayesian acquisition function BABA.

As image labeling represents the bulk of the human effort
required for computer vision AI, this enablement technology
makes many previously commercially inaccessible use cases
realistic. We hope to demonstrate this on many more specific use
cases in the future.
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