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Glioma is a type of severe brain tumor, and its accurate segmentation is useful in

surgery planning and progression evaluation. Based on different biological properties,

the glioma can be divided into three partially-overlapping regions of interest, including

whole tumor (WT), tumor core (TC), and enhancing tumor (ET). Recently, UNet has

identified its effectiveness in automatically segmenting brain tumor from multi-modal

magnetic resonance (MR) images. In this work, instead of network architecture, we

focus on making use of prior knowledge (brain parcellation), training and testing strategy

(joint 3D+2D), ensemble and post-processing to improve the brain tumor segmentation

performance. We explore the accuracy of three UNets with different inputs, and then

ensemble the corresponding three outputs, followed by post-processing to achieve

the final segmentation. Similar to most existing works, the first UNet uses 3D patches

of multi-modal MR images as the input. The second UNet uses brain parcellation as

an additional input. And the third UNet is inputted by 2D slices of multi-modal MR

images, brain parcellation, and probability maps of WT, TC, and ET obtained from the

second UNet. Then, we sequentially unify the WT segmentation from the third UNet

and the fused TC and ET segmentation from the first and the second UNets as the

complete tumor segmentation. Finally, we adopt a post-processing strategy by labeling

small ET as non-enhancing tumor to correct some false-positive ET segmentation.

On one publicly-available challenge validation dataset (BraTS2018), the proposed

segmentation pipeline yielded average Dice scores of 91.03/86.44/80.58% and average

95% Hausdorff distances of 3.76/6.73/2.51 mm for WT/TC/ET, exhibiting superior

segmentation performance over other state-of-the-art methods. We then evaluated the

proposed method on the BraTS2020 training data through five-fold cross validation,

with similar performance having also been observed. The proposed method was

finally evaluated on 10 in-house data, the effectiveness of which has been established

qualitatively by professional radiologists.
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1. INTRODUCTION

Glioma is one of the lethal brain malignancies, and it may
severely damage the nervous system and endanger patients
(1). Early diagnoses, treatments and interventions of glioma
are hot research topics due to the high incidence of glioma
(2). Surgery is the primary treatment method for glioma, and
clear boundary detection is the prerequisite for a successful
glioma surgery. Besides, tumor volume analysis is also very
essential for evaluating the progression of the disease. In clinical
studies, it is challenging to segment glioma from a single-modal
magnetic resonance (MR) image as the image intensity may
be obscured by partial volume effects or bias field artifacts
(3–6). As such, glioma is typically detected using multi-modal
MR sequences, including T1-weighted (T1), contrast-enhanced
T1-weighted (T1ce), T2-weighted (T2), and fluid attenuation
inversion recovery (FLAIR). An example of multi-modal MR
sequences and the corresponding manual segmentation of
glioma is illustrated in Figure 1. Glioma consists of three
non-overlapping subregions: edema (ED), enhancing tumor
(ET), and necrotic core and non-enhancing tumor (NCR/NET).
Different subregions reflect different biological properties. From
the aforementioned three subregions, another three regions of
interest (ROIs) that are more commonly used in literature can
be formed, namely whole tumor (WT), tumor core (TC), and ET.
WT denotes the union of all three subregions. TC covers both
NCR/NET and ET.

Quantitative analyses of the aforementioned three ROIs
provide critical information for disease diagnosis, surgical

FIGURE 1 | An example of multi-modal MR images, three partially-overlapping

tumor ROIs (ET, TC, and WT), as well as three non-overlapping tumor

subregions (ED, NCR/NET, and ET). MR images of different modalities can

best display different ROIs; visualizations of ET, TC, and WC are, respectively,

the best in T1ce, T2, and FLAIR.

planning, and prognosis (3), for which accurate segmentation
of brain tumor and the corresponding ROIs are essential.
Labels manually traced by professional radiologists are regarded
as the gold standard. However, manual tracing is excessively
impractical in most clinical workflows because it is labor-
intensive and subjective (7). Fully-automated brain tumor
segmentation approaches are thus urgently needed.

In one of our previous works, Wu et al. divided a brain
into five parcellations: gray matter, white matter, cerebrospinal
fluid, lateral ventricles, and skull (8). We conjecture such prior
location information is beneficial for brain tumor segmentation,
especially in deep learning frameworks which are purely data-
driven (9, 10). Deep learning has become the mainstream for
brain tumor segmentation in recent years (11). Training and
testing utilizing 3D patches or 2D slices are adopted in most
deep learning architectures a representative one of which is UNet
(12, 13). Typically, 3D patch-based UNets perform better than
2D slice-based ones since there is additional context information
in the direction orthogonal to 2D slices (14). It is nevertheless
challenging to identify the most suitable patch sizes for 3D
UNets to ensure sufficient learning of all features, especially the
boundary features. More specifically, 3D UNets with small patch
sizes may be unable to capture sufficient features, whereas GPU
may be unable to support larger patch sizes.

To resolve the aforementioned issues, we employ a multi-
input UNet (MI-UNet) that jointly uses MR images and brain
parcellation (BP) as the input. We also make use of a joint
3D+2D training strategy in the brain tumor segmentation task
and adopt ensemble to improve the segmentation accuracy; three
UNets with different inputs are ensembled. In summary, the
contributions of this work are four-fold: (1) We demonstrate
that BP is useful for UNet-based brain tumor segmentation.
Together with joint 3D+2D and ensemble strategies, the
segmentation accuracy further gets enhanced. (2) Our method
achieves superior segmentation performance over state-of-the-
art methods on a publicly-available dataset. (3) Our method
achieves visually promising results on 10 in-house data. (4) We
release our pre-trained models and describe in great detail how
to reproduce all results presented in this work at Dockerhub
and Github.

The remainder of this paper is organized as follows. We
describe related works in section 2. The detailed procedure of
the proposed method is presented in section 3. The datasets and
evaluation criteria are presented in section 4. We then report
evaluations and experimental results in section 5. Finally, section
6 concludes the paper.

2. RELATED WORK

Recently, deep learning has made remarkable advances in
various medical image segmentation tasks, especially when there
exist large-scale training data. The multi-modal Brain Tumor
Segmentation (BraTS) challenge has released a large amount of
pre-operative multi-modal MR images and the corresponding
manual annotations of brain tumor (3–6). Benefited from this
large dataset, convolutional neural network (CNN) has quickly
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dominated the fully-automated brain tumor segmentation field
(15–29).

CNN methods can be either 2D slice-based or 3D patch-
based. In 2D CNNmethods, a 3D volume is divided into multiple
2D slices and brain tumor is independently predicted for each
slice (15–21). For example, Caver et al. employed three 2D
UNets to separately segment WT, TC, and ET in a slice-by-slice
manner (18). Choudhury et al. proposed to separately train three
multi-class segmentation models, respectively, on axial, coronal,
and sagittal slices and use majority voting to make the final
predictions (19). McKinley et al. presented a novel DeepSCAN
architecture by embedding a pooling-free DenseNet into a UNet.
They also applied their model, respectively, on three planes
and then used majority voting to make the final predictions.
This multi-view fusion technology of 2D CNN results has also
been widely used in other tasks (30–32), named 2.5D CNN.
Compared with 2D slice-based method, 3D patch-based methods
are relatively more widely used in the brain tumor segmentation
task as they can capture characteristics of the volume data in
the extra dimension (22–29). Feng et al. demonstrated that 3D
UNet performed slightly better than DenseNet in terms of TC
segmentation (24). Luo et al. presented a hierarchical decoupled
CNN (HDC-Net) by decoupling the convolution in the spatial
and channel dimensions (25). Isensee et al. suggested that a well-
trained UNet is indeed very challenging to outperform, and their
released code on UNet performed much better than existing
state-of-the-art methods on many medical segmentation tasks
(33).

Moreover, there are some studies employing other types of
deep learning networks for brain tumor segmentation, including
generative adversarial network (GAN), transformer, and capsule
neural network. For instance, Nema et al. designed a network
architecture, named residual cyclic unpaired GAN (RescueNet),
based on residual and mirroring principles (34).Wang et al.
exploited transformer in 3D CNN for brain tumor segmentation
and proposed a novel network named TransBTS based on an
encoder-decoder structure (35). Aziz et al. optimized a network
based on the capsule neural network, named SegCaps, to achieve
accurate glioma segmentation fromMR images (36).

In addition to the aforementioned 2D slice-based and 3D-
patch based CNN methods, efforts have also been made
in exploring additional input information so as to enhance
the segmentation performance. Prior knowledge in the form
of template or shape has been successfully used for brain
segmentation in some previous studies. Dalca et al. proposed
an inference algorithm by modeling intensity, shape, and spatial
distribution of pathologies to capture their anatomical prior,
for an automatic segmentation of cerebrovascular pathologies
in brain MR images (37). Wu et al. proposed and validated a
multi-atlas and diffeomorphism guided 3D fully convolutional
network for brain segmentation (38). Moreover, there have been
studies employing shape prior. Mahbod et al. extracted level
set based context feature as an additional input of a neural
network for automatic brain segmentation (39). Brusini et al.
proposed a deep learning based hippocampus segmentation
framework embedding statistical shape of the hippocampus as
context information (40). In addition to template and shape prior,

some studies incorporated BP in their segmentation pipelines.
Kao et al. employed a pre-defined brain atlas to obtain BP and
demonstrated that using BP as an additional input to CNN
can improve the brain tumor segmentation accuracy (23). We
previously also demonstrated that an additional BP input can
improve the stroke lesion segmentation accuracy (41). Unlike
most deep learning-based segmentation methods utilizing only
MR images as the input, we proposed MI-UNet with BP as an
additional input. MI-UNet performed significantly better than
UNet with MR images being the single input, in both 2D and
3D settings. Our proposed MI-UNet even outperformed some
existing state-of-the-art methods (41).

Recently, some researchers have tried to combine 2D and 3D
CNNs in a unified framework. For example, Li et al. proposed
a hybrid densely-connected UNet (H-DenseUNet) that used a
2D DenseUNet to capture intra-slice features and then a 3D
DenseUNet to capture inter-slice features (42). Jia et al. proposed
a Hybrid Discriminative Network (HD-Net), jointly making use
of a 3D segmentation decoder and a 2D boundary decoder (43).
One of our previous works presented a joint 3D+2D strategy
by using the probability map from a pre-trained 3D UNet as
an additional input to a subsequent 2D UNet (44). We then
extended this joint 3D+2D strategy to the pancreas segmentation
task and successfully demonstrated that this strategy can reduce
both false-negative and false-positive predictions (14).

Compared to a single CNN model, ensemble provides a more
robust solution with less variance (45). The ensemble strategy has
also been employed in the brain tumor segmentation methods.
For example, Sun et al. independently trained three models
(CA-CNN, DKFZ Net, and 3D UNet) and then used majority
voting to obtain the final brain tumor segmentation (22). Kao
et al. trained eight models with different network architectures,
input channels, as well as convolutional kernels (23). They then
obtained the final brain tumor segmentation based on an average
of the outputted probability maps from all eight models.

3. METHOD

UNet is a widely used method for biomedical image
segmentation, which has an encoder-decoder architecture
with skip connections (12, 13). We utilize UNet as our
baseline and then explore the effectiveness of MI-UNet,
joint 3D+2D, as well as ensemble. There are three UNets
separately trained in the proposed method. As shown in
Figure 2, the major difference among these three UNets lies
in the number of the input channels. To be specific, model 1,
model 2, and model 3, respectively, have four, five, and eight
input channels.

3.1. 3D UNet
Considering the fact that different tumor subregions are
better visible in MR images of different modalities (46), four
different-modal MR images are jointly used in our proposed
pipeline, including T1, T1ce, T2, and FLAIR. As shown
in Figure 1, the provided labels for training are the three
non-overlapping tumor subregions, namely ED, NCR/NET,
and ET. However, evaluation of the segmentation is based
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FIGURE 2 | Procedure of the three UNets employed in the proposed method. (A) 3D UNet. (B) 3D MI-UNet. (C) Joint 3D+2D MI-UNet.

on the three partially-overlapping tumor ROIs, namely WT,
TC, and ET. We use the overlapping ROIs rather than the
non-overlapping subregions as the expected output because
it has been previously suggested that this strategy can
obtain better segmentation performance (47, 48). The hyper-
parameters of our 3D UNet are fully automatically generated by
nnUNet (33).

3.2. 3D MI-UNet
In some previous works (23, 41), BP has been demonstrated to
be useful in improving the brain lesion segmentation accuracy.
We train a 3D MI-UNet that uses not only the multi-modal MR
images but also the corresponding BP as the inputs. A BP model
is trained using a dataset published in one of our previous works
(8), which outputs a five-class BP with a T1 MR image as the
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input. All MR images of the BraTS dataset have already been
skull-stripped. As such, the BP of T1 MR images from the BraTS
dataset consists of only four subregions: lateral ventricles, white
matter, gray matter, and cerebrospinal fluid, an example of which
is shown in Figure 3. We use this model to obtain BPs for all
training and validation data.

3.3. Joint 3D+2D MI-UNet
In this brain tumor segmentation task, the aforementioned 3D
MI-UNet also outputs four probability maps that, respectively,
represent the probability that each voxel belongs to the
background, WT, TC, and ET. We firstly use the trained 3D MI-
UNet to predict the training data and then use the 2D slices of
the four multi-modal MR images, BP, and probability maps of
WT, TC, and ET as the inputs to train a subsequent 2DMI-UNet.
This strategy is named joint 3D+2D MI-UNet, the effectiveness
of which has already been identified in some other segmentation
tasks (8, 14, 44). As shown in Figure 4, this joint 3D+2D MI-
UNet has a larger field of view (FOV) than either 3D patch-based
UNet or 2D slice-based UNet.

3.4. Model Ensemble and Post-processing
In the testing stage, we obtain three segmentation results
independently from the three aforementioned UNet models
(Figure 2). To reduce model variance and further improve the
segmentation performance, we use a weighted voting strategy to
obtain a fused segmentation.

One of the most challenging parts in the brain tumor
segmentation task is to distinguish small vessels (that should
be labeled as either ED or NCR) from ET (26). To alleviate
such false-positive ET segmentation, we post-process the fused
segmentation by replacing ET with NCR/NET when the volume
of the predicted ET is less than a specific threshold (500 voxels),
which was originally proposed by Ding’s group (47) and has been
adopted in many previous works (48–50).

3.5. Implementation Details
We set the epoch number to be 1,000 in all three UNet training.
We release an end-to-end implementation of this work at
Dockerhub1, in terms of both pre-trained models and codes.
Please note our in-housemulti-modalMR data have varied image
sizes and orientations. Pre-processing for our in-house data is
the same as that for the BraTS dataset (3). Firstly, we conduct
a coregistration to align multi-modals image with different sizes.
After the coregistration, the sizes of T1, T2, FLAIR are the same
as that of T1ce. Next, we normalize all images to be of a spatial
resolution 1 × 1 × 1 mm3 and apply skull-stripping using the
FMRIB Software Library (51–53). The codes and an example have
been presented at Github2.

4. DATASET AND EVALUATION METRICS

4.1. Dataset
Details of the three datasets used in this work are tabulated in
Table 1. The first two datasets are provided by the BraTS2018 and

1https://hub.docker.com/r/sustechmedical/brain_tumor_segmentation/
2https://github.com/sustecher/brain_tumor_segmentation/

BraTS2020 challenge organizers (3–6). Please note the ground
truth labels of the BraTS2018 and BraTS2020 validation data
are unavailable, and the predicted segmentations are uploaded to
the CBICA’s Imaging Processing Portal (IPP) for evaluation3. In
addition to those BraTS datasets, we also collect multi-modal MR
images from 10 patients at The First Affiliated Hospital of Sun
Yat-Sen University, to further qualitatively evaluate the proposed
segmentation framework. We will release these clinical MR data
upon this manuscript getting accepted.

4.2. Evaluation Metrics
The Dice score (DSC) is the most widely used evaluation metric
to quantify the performance of medical image segmentation. It is
defined as

DSC(G,R) =
2 |G ∩ R|

|G| + |R|
, (1)

where R denotes an automated segmentation result, G denotes
the corresponding ground truth segmentation, andG∩R denotes
the overlap between G and R. The operator | · | returns the
number of pixels (or voxels in 3D) contained in a region which is
proportional to the physical volume of the considered region.

Let S(A) denote the set of surface vertices of a 3D volume A,
the shortest distance of any vertex v to S(A) is defines as

d(v, S(A)) = min
sA∈S(A)

||v− sA||, (2)

where || · || denotes the Euclidean distance, with a greater value
indicating a higher error.

Hausdorff distance (HD)measures how far the surface vertices
of two binary masks lie from each other. It is defined as

HD(G,R) = max

{

sup
sG

d(sG, S(R)), sup
sR

d(sR, S(G))

}

, (3)

where sR and sG, respectively, denote the surface vertices of an
automated segmentation result R and the corresponding ground
truth segmentation G, and sup denotes the supremum. To avoid
potential issues induced by small noisy segmentations, HD is
modified to be a robust version by using its 95th percentile,
namely H95, instead of the maximum distance.

The DSC and H95 of WT, TC, and ET are calculated to
evaluate the performance of our brain tumor segmentation task,
being consistent with previous studies (3–6).

5. RESULTS

5.1. Comparison With Other Methods on
the BraTS2018 Validation Dataset
Table 2 compares the proposed method with some published
ones. All these methods were trained using the BraTS2018
training dataset and tested on the BraTS2018 validation dataset.
The compared methods can be roughly categorized into 2D slice-
based ones (17–20) and 3D patch-based ones (22–26). Typically,
3D patch-based methods perform better than 2D slice-based

3https://ipp.cbica.upenn.edu/
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FIGURE 3 | 3D displays and overlayed T1 MR images of the four brain parcellations for a representative case from the BraTS dataset.

FIGURE 4 | Illustration of image space and the filed of view for different training settings. Both 3D patch-based and 2D slice-based methods has relative smaller field

of views than the proposed joint 3D+2D method.

TABLE 1 | The three datasets used in this work.

Dataset Training Validation Experiment setting

BraTS2018 285 66 285 for training, 66 for validation

BraTS2020 369 125 Five-fold on the 369 training dataset

SYSU 0 10 Validation only

ones. However, some 2D slice-based methods with a multi-view
ensemble strategy (19, 20) achieve even better segmentation
results than 3D patch-based methods (22, 23), indicating the
potential of 2.5D slice-based methods as they can capture the
entire FOV in each single plane (see Figure 4). All methods show
better performance in WT segmentation than both TC and ET
segmentation in terms of DSC. This is because a large-object
segmentation task can easily obtain a higher DSC than a small-
object segmentation task. It can be nevertheless observed that
H95 will not be affected by such volume bias. Feng et al. achieves
the best H95 of TC (5.34 mm) using six UNets (24), but their
H95 of ET is relatively worse than other methods. Luo et al.
achieves the best Dice/H95 of ET (81.5%/2.42 mm) using the
singe HDC-Net (25), but their Dice/H95 of TC (84.3%/8.76 mm)
are relatively worse than other methods.

Although a single 3D model such as HDC-Net can deliver
promising results, most existing methods employ ensemble

strategies to further improve the accuracy. With an ensemble
of three UNets, the proposed method exhibits outstanding
segmentation performance in terms of both DSC and H95
(86.02% and 4.34 mm), performing even better than some
methods that ensemble more models (23, 24, 26). Furthermore,
the proposed method obtains the highest DSC and lowest H95
in WT segmentation. Our UNet is implemented based on
codes released by no-new-Net (26), but our method achieves
a competitive segmentation accuracy with fewer models, which
clearly demonstrates the effectiveness of the three strategies
that we use: (1) MI-UNet, (2) joint 3D+2D, (3) ensemble
and post-processing.

5.2. Ablation Analysis on the BraTS2018
Validation Dataset
Table 3 evaluates the importance of each component in the
proposed method. We would like to kindly point out that
CNN architecture design may involve fine-tuning a vast set of
parameters. Considering most existing methods are based on
UNet (17, 18, 22–24, 26), we simply use UNet as our baseline
to emphasize our core contributions and findings: (1) BP can
improve both DSC and H95 of WT segmentation. (2) The
joint 3D+2D strategy can further improve the H95 of WT
segmentation. (3) An ensemble of all the three UNets can obtain
the best performance in all metrics (DSC/H95 of WT/TC/ET).
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We obtain an average DSC of 90.79/86.12/78.95% and an
average H95 of 4.40/7.12/2.93 mm in WT/TC/ET segmentation
using our baseline UNet (33). Apparently, UNet is indeed a
strong baseline, the overall performance of which (85.28%/4.82
mm) is even better than the best single model in Table 2

[HDC-Net: 84.93%/5.26 mm (25)] in terms of DSC/H95. As
shown in Figure 2, the only difference between 3D UNet and
3D MI-UNet is the additional input channel of BP. It can
be observed from Table 3 that MI-UNet can improve the WT
segmentation accuracy from 90.79%/4.40 mm to 91.02%/4.12
mm in terms of DSC/H95. The joint 3D+2D MI-UNet can
significantly reduce the H95 of WT from 4.12 mm to 3.76
mm (p-value < 0.05). However, this joint strategy may impair
the segmentation performance of TC/ET. As such, we set the
ensemble weights of 3D UNet, 3D MI-UNet, and joint 3D+2D
MI-UNet to be 0/0.5/0.5, 0/0.5/0.5/, 1/0/0 for WT/TC/ET, and
sequentially assign the final segmentation of WT, TC, and ET in
the ensemble step. The final segmentation after post-processing
performs better than each individual model in respect of both
DSC and H95 for WT/TC/ET segmentation.

5.3. Five-Fold Cross Validation on the
BraTS2020 Training Dataset
We further conduct five-fold cross validation experiments on
the training dataset of BraTS2020, which contains 369 multi-
modal MR images and the corresponding ground truth tumor
segmentation. As shown Figure 5, the joint 3D+2DMI-UNet can
reduce some false-positive and false-negative WT segmentation
(see white circles in the last two rows). However, it mis-assigns
some disconnected ET as TC (see white arrows in the first row).
Thus, we adopt the weighted ensemble strategy that successively
assignsWT from the joint 3D+2DMI-UNet and the fusion of TC
and ET, respectively, from the 3D UNet and 3D MI-UNet as the
final segmentation.

Table 4 analyzes the impact of each component in the
proposed method for the BraTS2020 dataset. The proposed
method achieves an average DSC of 91.72/87.55/81.75% for
WT/TC/ET and an average H95 of 4.67/4.55 mm for WT/TC
on the BraTS2020 training dataset, which are similar to those
obtained on the BraTS2018 validation dataset (average DSC:
91.03/86.44/80.58% for WT/TC/ET and average H95: 3.76/6.73
mm for WT/TC). However, there is a huge difference in H95
of the ET segmentation (2.51 vs. 22.94 mm, listed on Tables 3,
4). This is because that BraTS2020 has changed their evaluation
criteria for empty labels. Given an empty ET in the ground truth
and a false-positive segmentation, the BraTS2018 criteria will
skip this case when calculating the average value. However, the
BraTS2020 criteria will assign the H95 value for such case as
373.13mm. There are 27 cases with empty ET in the ground truth
segmentation among the 369 BraTS2020 training data, but there
is no empty WT/TC. To make a fair comparison, all evaluation
results are obtained through CBICA’s IPP.

As shown in Figure 6, there are still small false-positive
ET segmentation when the ground truth is empty. The post-
processing strategy described in section 3.4 can improve the DSC
of ET segmentation from 0 to 1 for these cases.

5.4. Validation Results on In-House Data
Figure 7 shows two representative slices of the final segmentation
results from two grades of tumors (high grade and low grade).
Two professional radiologists visually check the segmentation
accuracy of the 10 in-house data and rate the potential clinical
value. All segmentation results on the 10 data are considered as
being satisfactory in terms of clinical applicability. The edema
range of the tumor determines the margin of surgical resection
(54, 55), since it is desirable to remove tumor as much as possible
to avoid recurrence. ET is highly related to treatment planning,
and the prognosis of patients with large edema (WT-TC) volumes
may be relatively poor.

6. DISCUSSION AND CONCLUSION

Brain tumor segmentation plays a vital role in disease diagnosis
and surgery planning. In this paper, we present an ensemble
model that takes advantages of three individual models (3D
UNet, 3D MI-UNet, and joint 3D+2DMI-UNet). UNet has been
identified to perform very well on medical image segmentation
(12, 26, 42), and changes in the network architecture may not
bring much improvement. Therefore, we aim to address the
tumor segmentation problem from aspects other than network
architecture design. Our goal is to provide a robust, well-
performing, and relatively simple and straightforward tumor
segmentation pipeline, which may be more likely to adopted in
routine clinics.

We demonstrate thatMI-UNet and joint 3D+2DMI-UNet are
highly beneficial for improving the WT segmentation accuracy
and the ensemble results can achieve superior segmentation
performance on the BraTS2018 dataset over some state-of-the-
art methods. We further evaluate the proposed method on the
BraTS2020 dataset and a small-scale in-house dataset.

In terms of computation time, the proposed method takes
roughly 80 s to provide the final brain tumor segmentation for
a multi-modal MR image set of size 240 × 240 × 155. This is
relatively not a real-time task. As such, it is meaningful to obtain
more accurate segmentation at the cost of a relatively longer
running time.

We have released the pre-trained models, codes, and detailed
description documents at Github and Docker, which can help
researchers easily reproduce all results reported in this work.
In the future, we will design a more user-friendly toolbox with
graphic interface. That will further improve the utility and
applicability of our proposed pipeline, especially for clinicians.

There are several potential limitations of this work. Firstly,
we only evaluate the proposed method on 10 real-life
clinical cases, and there is no manual annotation for that
dataset. Thus we cannot conduct quantitative evaluations
on those data but only qualitative assessments. In the
future, we will collect more real-life data and provide
manually-traced ground truth segmentation labels. That may
better evaluate the clinical impact of our proposed method.
Secondly, we only employ our proposed training strategy
on UNet. To establish a generalized perspective, one of our
future research plans is to further validate our proposed
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TABLE 2 | Comparison of different brain tumor segmentation results obtained on the BraTS2018 validation dataset.

Dice score (DSC)[%] 95% Hausdorff distance (H95) [mm] ↓

No. of models WT TC ET Overall WT TC ET Overall

M-UNet (17) 1 87.00 72.00 66.00 75.00 6.73 15.74 7.56 10.01

CA+DFKZ+UNet (22) 3 90.44 80.52 74.94 81.97 6.33 6.37 2.78 5.16

2D UNet (18) 3 89.1 80.9 79.3 83.1 6.99 8.96 4.12 6.69

DeepMedic+UNet (23) 26 90.5 81.3 78.8 83.53 4.32 7.56 3.81 5.17

DeeplabV3+ (19) 3 90.48 84.14 76.49 83.70 5.19 7.24 3.78 5.40

3D UNet (24) 6 90.59 83.36 78.73 84.23 4.02 5.34 3.96 4.44

DeepSCAN (20) 6 90.28 85.40 79.47 84.98 — — — —

HDC-Net (25) 1 89.0 84.3 81.5 84.93 4.59 8.76 2.42 5.26

No new-Net (26) 10 90.83 85.44 81.05 85.76 4.97 7.04 2.51 4.85

The proposed 4 91.03 86.44 80.58 86.02 3.76 6.73 2.51 4.33

The results are reported as mean and are directly copied from the original papers. Bold numbers highlight the best performance in each column.

↓ indicates that a smaller value represents a better performance.

TABLE 3 | Ablation analysis results of the proposed method on the BraTS2018 validation data.

Dice score (DSC) 95% Hausdorff distance (H95) ↓

WT (%) TC (%) ET (%) Overall (%) WT (mm) TC (mm) ET (mm) Overall (mm)

3D UNet 90.79 86.12 78.95 85.28 4.40 7.12 2.93 4.82

3D MI-UNet 91.02 85.86 78.97 85.28 4.12 6.82 3.18 4.70

Joint 3D+2D MI-UNet 90.92 85.49 76.53 84.30 3.76 7.32 3.03 4.71

Ensemble 91.03 86.44 78.95 85.47 3.76 6.73 2.93 4.47

Ensemble+post-processing 91.03 86.44 80.58 86.02 3.76 6.73 2.51 4.33

Bold numbers are the best values.

FIGURE 5 | Three representative examples of segmentation results from five-fold cross validation on the BraTS2020 dataset.
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TABLE 4 | Ablation analysis results of the proposed method on the BraTS2020 training data via five-fold cross validation.

Dice score (DSC) 95% Hausdorff distance (H95) ↓

WT (%) TC (%) ET (%) Overall (%) WT (mm) TC (mm) ET (mm) Overall (mm)

3D UNet 91.48 87.35 78.87 85.90 6.39 7.18 26.40 13.32

3D MI-UNet 91.66 87.37 79.21 86.08 5.64 5.63 21.90 11.06

Joint 3D+2D MI-UNet 91.38 87.10 77.31 85.24 4.70 4.64 27.91 12.42

Ensemble 91.72 87.55 79.20 86.16 4.67 4.55 21.90 10.37

Ensemble+post-processing 91.72 87.55 81.75 87.01 4.67 4.55 22.94 10.72

Bold numbers are the best values.

FIGURE 6 | An example to demonstrate the influence of the post-processing.

FIGURE 7 | Representative cases from our in-house dataset of the two grades of tumors (high grade and low grade). From left to right: T1ce, automated tumor

segmentation, zoomed-in segmentation, T1ce overlaid with ET, T2 overlaid with TC, FLAIR overlaid with WT, 3d display of tumor segmentation. ET, enhancing tumor;

TC, tumor core; WT, whole tumor.
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strategy on other deep learning models such as Deeplab
variants. Lastly, our proposed method does not take as
input any shape information, which maybe beneficial for
brain tumor segmentation. Incorporating shape prior into
our proposed method may further improve our brain tumor
segmentation performance.
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