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We numerically study the optimal control of an atomic Bose-Einstein condensate
in an optical lattice. We present two generalizations of the gradient-based
algorithm, GRAPE, in the non-linear case and for a two-dimensional lattice.
We show how to construct such algorithms from Pontryagin’s maximum
principle. A wide variety of target states can be achieved with high precision
by varying only the laser phases setting the lattice position. We discuss the
physical relevance of the different results and the future directions of this work.
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1 Introduction

Quantum technologies seek to exploit the specific properties of quantum systems for real-
world applications in computing, sensing, simulations or communications (Acín et al., 2018).
In this framework, quantum optimal control (QOC) can be viewed as a set of methods for
designing and implementing external electromagnetic fields to realize specific operations on a
quantum device in the best possible way (Glaser et al., 2015; Brif et al., 2010; Koch et al., 2022).
QOC is becoming a key tool in many different experimental platforms, ranging from
superconducting circuits (Werninghaus et al., 2021; Abdelhafez et al., 2020; Wilhelm et al.,
2020) to cold atoms (Hohenester et al., 2007; Ansel et al., 2024; van Frank et al., 2016),
molecular physics (Koch et al., 2019) orNV centers (Rembold et al., 2020). Despite thematurity
and effectiveness of optimal control techniques which rely on a rigorous mathematical
framework, namely, the Pontryagin Maximum Principle [PMP, see (Ansel et al., 2024;
Pontryagin et al., 1962; Boscain et al., 2021; Liberzon, 2012) for details], developments and
adaptations of standardmethods are necessary to take into account experimental limitations or
additional degrees of freedom in the experiment (Bryson, 1975; Khaneja et al., 2005; Reich et al.,
2012; Werschnik and Gross, 2007; Goerz et al., 2022; Harutyunyan et al., 2023; Dionis and
Sugny, 2023). Bose-Einstein condensates (BEC) constitute a promising system (Eckardt, 2017;
Bloch et al., 2008) for applications in quantum sensing and simulation (Gross and Bloch, 2017)
in which optimal control may play a major role to prepare specific states or to improve the
estimation of unknown parameters (Koch et al., 2022). This approach has been applied in a
variety of works both theoretically and experimentally, with very good agreement (Hohenester
et al., 2007; Ansel et al., 2024; van Frank et al., 2016; Dupont et al., 2021; Jäger and Hohenester,
2013; Jäger et al., 2014; Rodzinka et al., 2024; Saywell et al., 2020; Sørensen et al., 2018; Hocker
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et al., 2016; Mennemann et al., 2015; Chen et al., 2011; Zhang et al.,
2016; Bucker et al., 2013; van Frank et al., 2014; Pötting et al., 2001;
Weidner et al., 2017; Weidner and Anderson, 2018; Bason et al., 2012;
Zhou et al., 2018; Arrouas et al., 2023; Dupont et al., 2023; Amri et al.,
2019; Adriazola and Goodman, 2022; Hohenester, 2014). A specific
example is given by a BEC trapped in an optical lattice. In this case, the
two control parameters are usually the depth and phase of the lattice
that can be precisely adjusted experimentally (Dupont et al., 2021).
However, a majority of studies consider a simplified situation in which
the non-linear term of the Gross-Pitaevski equation describing the
dynamics of the BEC is neglected. This approximation that can be
justified by the low density of the BEC is crucial and allows to study the
system in a unitary framework given by the Schrödinger equation. It
also greatly simplifies the implementation of QOC as recently shown
by our group in Dupont et al. (2021); Dupont et al. (2023) where a
gradient-based algorithm, GRAPE (Khaneja et al., 2005), has been
used. Different formulations of optimal control algorithms have been
proposed in the non-linear case. The optimal control of a BEC in a
magnetic microtrap has been investigated numerically in Hohenester
et al. (2007), Jäger and Hohenester (2013), Jäger et al. (2014). The
control problem has been solved analytically for a two-level quantum
system in Zhang et al. (2011), Chen et al. (2016), Dorier et al. (2017),
Zhu and Guérin (2024), Zhu et al. (2020). The control of the Gross-
Pitaevski equation has also been the subject of a series of mathematical
papers [see (Feng and Zhao, 2016; Hintermüller et al., 2013) to
mention a few]. In this article, we propose to revisit such works by
applying the PMP in the presence of mean-field interactions and
deriving the corresponding algorithm from this optimization principle.
Intensive use of the pseudo-spectral approach (Littlejohn et al., 2002;
Light, 1992; Leforestier et al., 1990; Kosloff and Kosloff, 1983; Guérin
and Jauslin, 1999) and FBR-DVR bases (Finite Basis Representation
and Discrete Variable Representation) is necessary to analytically
express the different quantities and accelerate the numerical
calculation. We demonstrate the effectiveness of this algorithm and
discuss the role of nonlinearity on the control procedure.

The use of one-dimensional lattices can limit the range of
phenomena accessible to quantum simulation: higher
dimensionalities e.g., can radically change the physics of
localization (Morsch and Oberthaler, 2006), and also increase the
role of interaction, giving access to many-body phenomena such as
the Mott transition (Bloch et al., 2008). It is thus of utmost
importance to extend the 1D optimal approach to the 2D or 3D
cases. This problem has been investigated by very few studies such as
Mennemann et al. (2015), and Zhou et al. (2018). In Mennemann
et al. (2015), optimal control is applied to a BEC in a three
dimensional magnetic trap. An optimization algorithm different
from GRAPE has been used to control BEC in 2D and 3D lattices in
Zhou et al. (2018). We present in this work another numerical
implementation of QOC to a 2D lattice. We consider here a
triangular geometry, which is non-separable. This example can be
used as a test-bed for other geometries and for 3D lattices. State-to-
state transfer can be optimized numerically with a very good
precision. We discuss on this example the controllability of the
target state with respect to the number of independent
controls available.

The paper is organized as follows. Section 2 briefly recalls the
specifics of the experimental setup and the application of QOC in a
1D and linear cases. Section 3 is dedicated to the extension of the

GRAPE algorithm to the non-linear case. Optimal control with two-
dimensional lattices is described in Section 4. Conclusion and
prospective views are given in Section 5.

2 The standard one-dimensional case

Cold atom systems are characterized by their large size and the
broad range of controllable parameters they offer, which makes them
excellent candidates for applications in quantum technologies. We
consider in this paper the BEC experiment in Toulouse in the group of
D. Guéry-Odelin. Recent experimental results have shown the key role
of QOC for state-to-state transfer in this setup (Ansel et al., 2024;
Dupont et al., 2021; Arrouas et al., 2023; Dupont et al., 2023).

The experiment starts by laser cooling followed by evaporation of
a Rubidium 87 gas allowing the formation of a BEC. The condensate is
composed of 5 × 105 atoms at a temperature of 90 nK and is held in a
hybrid magneto-optical trap to confine the BEC and compensate for
gravity. A horizontal one-dimensional optical lattice trap, formed by
the interference of two counter propagating laser beams with a
wavelength λ � 1064 nm, is superimposed on the hybrid trap,
aligned with the dipole trapping beam. Using acousto-optic
modulators, the amplitude and phase of the lattice lasers can be
shaped in time. This amounts to modifying the depth of the lattice or
translating it, respectively. Following the experimental results of
Dupont et al. (2021), Arrouas et al. (2023), Dupont et al. (2023),
we assume here that the lattice depth is fixed and only the relative
phase of the lasers can be controlled.

The wave function |ψ(t)〉 describing the state of the BEC is
governed by the time-dependent Schrödinger equation which can be
expressed as

ıZ
d|ψ t( )〉

dt
� p̂2

2m
− sEL

2
cos kLx̂ + φ t( )( )( )|ψ t( )〉,

where p̂ and x̂ are respectively the momentum and the position
operators, with x the spatial coordinate along the axis of the optical
lattice. We denote by m the atom mass, kL � 2π/(λ/2) the wave
vector and EL � (Z2k2L)/(2m) the characteristic energy of the lattice.
The parameters s and φ correspond respectively to the relative
amplitude of the lattice and to its phase. In standard experimental
conditions, we stress that the atom interactions and the potential
energy due to the hybrid trap, Vhyb � 1

2mωextx2 with ωext � 2π × f
where f varies from a few Hz to 25 Hz at most, can be neglected due
to the low density of the condensate and the short timescale of the
atomic dynamics (tdyn ≪ 2π/ωext).

In order to work with dimensionless coordinates, we introduce
the following change of variables t → EL

Z t and x → kLx. We obtain

ı
d|ψ t( )〉

dt
� p̂2 − s

2
cos x̂ + φ t( )( )( )|ψ t( )〉, (1)

where p̂ � −ı ∂
∂x and x̂ � x in the position representation. Note that

the study of this dimensionless system makes it possible to transfer
the results of this paper to other experimental setups with different
characteristics. The eigenvectors of the momentum operator are
denoted by |ϕα〉, of wave function in the x representation ϕα(x) �
1��
2π

√ eıαx and of eigenvalue α. Since the potential is periodic in x, the
Bloch theorem states that α � n + q, where n ∈ Z is a relative integer
and q ∈ [−0.5, 0.5] is the quasi-momentum. The periodicity of the
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potential also implies that the quasi-momentum is a constant of the
motion during the control process. In a sub-Hilbert space
characterized by a specific value of q, the state of the system can
be expanded in the plane wave basis as follows

|ψ〉 � ∑
n∈Z

cq,n|ϕq+n〉.

It is then straightforward to show that the coefficients cq,n are
solutions of the following equation

ı _cq,n � n + q( )2cq,n − s

4
eıφ t( )cq,n−1 + e−ıφ t( )cq,n+1( ).

We deduce that the Schrödinger equation can be written in
matrix form as

ı
d|ψ t( )〉

dt
� Ĥ|ψ t( )〉 � Ĥ0 + cos φ t( )( )Ĥ1 + sin φ t( )( )Ĥ2( )|ψ t( )〉,

(2)
with

|ψ t( )〉 �

..

.

cq,n−1
cq,n
cq,n+1
..
.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Ĥ0 �

1
. . . 0 n − 1( ) + q( )2 0 0 0 . . .

. . . 0 0 n + q( )2 0 0 . . .

. . . 0 0 0 n + 1( ) + q( )2 0 . . .
1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

and

Ĥ1 �

1 1

. . . −s
4

0 −s
4

0 0 . . .

. . . 0 −s
4

0 −s
4

0 . . .

. . . 0 0 −s
4

0 −s
4

. . .

1 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Ĥ2 �

1 1

. . . −ı s
4

0 ı
s

4
0 0 . . .

. . . 0 −ı s
4

0 ı
s

4
0 . . .

. . . 0 0 −ı s
4

0 ı
s

4
. . .

1 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

From a numerical point of view, the infinite-dimensional Hilbert
space is truncated to a finite one such that |n|≤ nmax, where nmax is
chosen as a function of the initial and target states in order to avoid
edge effects in the computation. In the numerical simulations, we
consider generally nmax � 10, which leads to a truncated space of
dimension 2 × nmax + 1 � 21. The parameter nmax is adjusted in each
case depending on the target state.

Different theoretical and experimental implementations of QOC
have shown the effectiveness of the procedure and the ability to
achieve a variety of target states |ψt〉, with a very good match

between theory and experiment (Dupont et al., 2021; Dupont et al.,
2023). To this aim, the optimal phase is calculated from the
application of GRAPE (Ansel et al., 2024; Khaneja et al., 2005) to
the dynamical system Equation 2. The goal of the optimal control
problem is tomaximize the fidelity F � |〈ψt|ψ(tf)〉|2 at time tf. The
PMP leads to the Pontryagin HamiltonianHp � I(〈χ(t)|Ĥ|ψ(t)〉),
with |χ(t)〉 the adjoint state, whose dynamics are also governed by
Equation 2, with the final condition χ0〈ψt|ψ(tf)〉|ψt〉, where χ0 is
the dual variable of the cost. χ0 is set to 1/2 in the numerical
simulation. We refer the interested reader to the recent tutorial
(Ansel et al., 2024) for a comprehensive introduction to the PMP for
quantum optimal control.

Using the maximization condition of the PMP, the control is
iteratively improved as

φ t( ) ↦ φ t( ) + ϵI 〈χ t( )| −sin φ t( )( )Ĥ1 + cos φ t( )( )Ĥ2( )|ψ t( )〉( ),
where ϵ is a small positive parameter. The states |ψ(t)〉 and |χ(t)〉 are
respectively propagated forward and backward in time from their
initial and final conditions. Figure 1 shows three numerical examples
of state-to-state transfers. For the three examples, the initial state of
the BEC is |ϕ0+0〉. The target states are described in the basis |ϕ0+n〉
with q � 0. They correspond either to a unique momentum state, a
superposition of momentum states or to a Gaussian or a squeezed
state [see Dupont et al. (2023) for the mathematical definition of these
states]. We denote by |g(xc, p,ξ)〉 a squeezed state centered in
(xc, pc) with the squeezing parameter ξ. The following numerical
parameters are used in the numerical simulation: s � 5, nmax � 10 and
tf � 7.6 (of the order of 150 μs in real units). More precisely, the
target states are then the momentum state |ϕ0+2〉, the superposition
1/
�
3

√ (|ϕ0−2〉 + |ϕ0+0〉 + |ϕ0+2〉), and the centered squeezed state
|g(xc � 0, pc � 0, ξ � 1/3)〉.

3Optimal control in the non-linear case

Although most experiments to date present a very good match
with numerical simulations from the linear model system given in
Equation 1, improvement can be made by taking into account the
atom interactions which have been neglected in a first step due to the
low density of the condensate. This interaction can be modeled at
the mean-field level by the Gross–Pitaevskii equation, i.e., by an
effective term in the Hamiltonian Equation 1, proportional to the
square modulus of the wave function |ψ(x, t)|2 (Dalfovo et al., 1999;
Leggett, 2001). This additional term makes the numerical resolution
of the problem more complex. Indeed the non-linear interaction
term does not have a simple state-independent matrix
representation in the basis (|ϕq+n〉)n∈Z. We present in this section
an efficient numerical method which allows rapid propagation of the
dynamics, taking into account the interactions between the atoms of
the condensate and allows the application of an optimal
control algorithm.

3.1 The model system

We consider the dimensionless (Equation 1) which describes the
dynamics of a BEC in position representation. The interaction between

Frontiers in Quantum Science and Technology frontiersin.org03

Dionis et al. 10.3389/frqst.2025.1540695

https://www.frontiersin.org/journals/quantum-science-and-technology
https://www.frontiersin.org
https://doi.org/10.3389/frqst.2025.1540695


the atoms can be treated at first order as a mean field effect, leading to an
additional non-linear term |ψ|2 and to the Gross–Pitaevskii equation,

ı
∂ψ x, t( )

∂t
� − ∂2

∂x2
− s

2
cos x + φ t( )( ) + β|ψ x, t( )|2( )ψ x, t( ). (3)

The weight of the non-linear term is given by the dimensionless
parameter β. In the experiments, this parameter is of the order of
0.5 ± 0.2 Ansel et al. (2024). This value depends on the number of
atoms and on the frequency of the hybrid trap.

Expanding the state |ψ〉 over the eigenvectors of the momentum
operator |ψ〉 � ∑n∈Zcq,n|ϕq+n〉, the non-linear term |ψ|2 can be
expressed in position representation as,

ψ
∣∣∣∣ ∣∣∣∣2 � ψ x, t( )*ψ x, t( )

� 1���
2π

√ ∑
m∈Z

cq,m* e−ı q+m( )x⎛⎝ ⎞⎠ 1���
2π

√ ∑
l∈Z

cq,le
ı q+l( )x⎛⎝ ⎞⎠

which leads to

ψ
∣∣∣∣ ∣∣∣∣2 � 1

2π
∑
m,l∈Z

cq,m* cq,le
ı q+l−m( )x.

The dynamics of the coefficients cq,n are then given by

ı _cq,n � n + q( )2cq,n − s

4
eıφ t( )cq,n−1 + e−ıφ t( )cq,n+1( )

+ β

2π
∑
m,l∈Z

cq,m* cq,lcq,n+m−l. (4)

Unlike the Schrödinger Equation 2, an analytical matrix
representation to this non-linear problem cannot be given here.
This means that the simple matrix exponential method used earlier

cannot be used anymore to propagate the dynamics. A first option
consists in applying the Runge-Kutta of order 4 approach (RK4).
However, for large dimensional systems, this method can be very
costly in terms of calculation time. Typically a propagation of

FIGURE 1
Example of three state-to-state transfers of a BEC from the initial state |ϕ0+0〉. The first, second and third rows (from top to bottom) correspond
respectively to the target states |ϕ0+2〉, 1�

3
√ (|ϕ0−2〉 + |ϕ0+0〉 + |ϕ0+2〉) and |g(0,0, 1/3)〉. The columns (A–C) represent respectively the corresponding

controls φ(t), the final population distribution in the momentum basis and the probability distribution in position at the final time.

FIGURE 2
Time evolution of |〈ψ(t)|ϕ0+0〉|2 for a zero control, φ � 0. The
initial state is |ψ(0)〉 � |g(0,0, 1/2)〉. The blue and orange solid lines
represent respectively the propagation of the state with the matrix
exponential approach for β � 0 and β � 1. The dashed black line
corresponds to a dynamic computed with the RK4 method for β � 1.
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Equation 4 takes about 15 s, for a constant control φ(t) � 0 (see
Figure 2). Numerical simulations have been performed on a
standard laptop. Optimal control, which requires a hundred
propagations, is therefore difficult to apply with this approach, as
the design of a single control would require a computational time of
the order of 1 hour. In order to speed up the optimization process,
we propose in this paper to combine optimal control algorithms
with the FBR-DVR bases as described in Section 3.2.

3.2 The FBR-DVR bases

An efficient approach to express the non-linear term of Equation
3 in matrix form is the FBR-DVR (or pseudo-spectral) approach
(Littlejohn et al., 2002; Light, 1992; Leforestier et al., 1990; Kosloff and
Kosloff, 1983; Guérin and Jauslin, 1999). This method consists in
using two different bases for the matrix representation of the
operators. In our case, the FBR basis (for Finite Basis
Representation) is the basis of the eigenvectors |ϕq+n〉 of the
momentum operator. In this basis, it is straightforward to express
the operators p̂ and cos(x̂). The DVR basis (for Discrete Variable
Representation) corresponds to a basis built from the discretization of
a continuous parameter, here the position x. In this basis, a matrix
representation of the non-linear term |ψ(x, t)|2 can be given. A
unitary transformation allows to go from one basis to the other,
and therefore to express all the operators in the FBR basis, for
example. The time propagation of the system can then be done by
the matrix exponential approach.

We apply this method to Equation 3. The FBR basis corresponds
to the basis of the eigenvectors |ϕq+n〉 of the momentum operator.
From a numerical point of view, we work in a finite dimensional sub-
space HN of H of dimension N � 2nmax + 1, with nmax ∈ N and
−nmax ≤ n≤ nmax. The potential energy is a periodic spatial function,
of period 2π. We choose the interval [0, 2π] for the position x. The
DVR basis is built from the discretization of the variable x ∈ [0, 2π],
such that xj � 2π

N j with 0≤ j<N. A scalar product is given by,

∀Ψ,Φ ∈ HN, ∫2π

0
Ψ* x( )Φ x( )dx � 2π

N
∑N−1

j�0
Ψ* xj( )Φ xj( ).

From the orthogonality of functions ϕq+n we deduce that we
have approximately:

2π
N
∑N−1

j�0
ϕq+m* xj( )ϕq+n xj( ) � δm,n. (5)

From the definition of the plane wave functions, we have also for
nmax large enough:

2π
N

∑nmax

n�−nmax

ϕq+n xi( )ϕq+n* xj( ) � δi,j. (6)

We introduce the matrix R̂ defined as

R̂ �
R0,−nmax R0,−nmax+1 . . .

..

.
1

RN−1,−nmax RN−1,nmax

⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎠, (7)

with matrix elements Rj,n given by

Rj,n � 1��
N

√ eı
2π
N q+n( )j.

Equations 5, 6 are equivalent to R̂
†
R̂ � Î and R̂R̂

† � Î. The
matrix R̂ is thus a unitary matrix. The DVR basis (|uj〉)j∈[0,N−1] is
then built from the following kets as

|uj〉 � ∑−nmax

n�nmax

R̂jn* |ϕn〉.

This basis connects a basis of HN to the spatial discretization
basis. We deduce that an operator Ŵ depending on x has a diagonal
representation in the DVR basis given by

〈ui|Ŵ|uj〉 ≃ W xj( )δi,j.
The matrix R̂ allows to express a known operator in the DVR

basis to the FBR basis, and vice versa

Ŵ
FBR � R̂

†
Ŵ

DVR
R̂.

Since the square modulus of the wave function, |ψ(x)|2, depends
on the position x as shown in Equation 4, it is straightforward to obtain
its matrix representation in the DVR basis, and then in the FBR basis.
The exponential matrix approach can then be used to propagate the
dynamics. We denote by Ĝ

DVR
the matrix of |ψ(x)|2 in the DVR basis,

Ĝ
DVR �

G0

G1

1
GN−1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (8)

where

Gj � 1���
2π

√ ∑nmax

n�−nmax

cq,ne
ı2πN q+n( )j

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣
2

.

The parameters cq,n are the coefficients of the state in the FBR
basis. Using the notations introduced in Section 2 and the relations
Equations 7, 8, Equation 3 can be written in matrix form in the FBR
basis as follows

ı
d|ψ〉
dt

� ĤGP|ψ〉

� Ĥ0 + cos φ t( )( )Ĥ1 + sin φ t( )( )Ĥ2 + βR̂
†
Ĝ

DVR
R̂( )|ψ〉,

(9)
with ĤGP the Gross–Pitaevskii Hamiltonian.
For comparison, the propagation for a constant control is here of

the order of 0.6 s, i.e., a total of around 2 min for the calculation time
of the optimal control. Figure 2 shows the time evolution of the
projection of the state |ψ〉 on |ϕ0+0〉, calculated from the matrix
exponential approach and the RK4 method. The initial state is the
squeezed state |g(0, 0, 1/2)〉 and the phase φ(t) � 0. For β � 1, we
observe that the two methods give the same result.

3.3 The non-linear GRAPE

We show in this section how to extend the standard GRAPE
algorithm to this non-linear case. The corresponding algorithm is
called non-linear GRAPE.
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We consider the state-to-state transfer defined with the fidelity
F � |〈ψt|ψ(tf)〉|2, with the dynamics of Equation 3. In this case, the
Pontryagin Hamiltonian Hp can be written as

Hp � I 〈χ|ĤGP|ψ〉[ ],
with ĤGP, the Gross–Pitaevskii Hamiltonian in position

representation,

ĤGP � − ∂2

∂x2
− s

2
cos x + φ t( )( ) + β|ψ x, t( )|2.

The time evolution of the adjoint state is given by the relation,
_χ(x, t) � −∂ψHp, which leads to

ı
∂χ

∂t
� − ∂2

∂x2
− s

2
cos x + φ t( )( ) + 2β ψ

∣∣∣∣ ∣∣∣∣2( )χ − βψ2χ*. (10)

Note that the nonlinearity of the Gross-Pitaeski equation breaks
the symmetry between the state and the adjoint state which are no
longer solutions of the same differential equation. The transversality
condition on the adjoint state χ(x, tf) � χ0∂ψF yields

χ x, tf( ) � 2χ0〈ψt|ψ tf( )〉ψt,

with χ0 � 1/2 in the numerical simulations. Finally, the
maximization condition of the Pontryagin Hamiltonian leads to
the iterative procedure of GRAPE

φ t( ) ↦ φ t( ) + ϵI 〈χ|∂ĤGP

∂φ
|ψ〉[ ]

where ϵ is a small positive parameter. The state and the adjoint state
are respectively propagated forward and backward in time. The
differential Equation 10 associated with the adjoint state can be
written as

ı
∂χ

∂t
� − ∂2

∂x2
− s

2
cos x + φ t( )( ) + β ψ

∣∣∣∣ ∣∣∣∣2( )χ − 2ıβI χ*ψ[ ]ψ.
The backward propagation can be done in matrix form with the

final conditions |ψ(tf)〉 � |ψf〉 and |χ(tf)〉 � 〈ψt|ψ(τf)〉|ψt〉,
with the following extended system

ı
| _ψ〉
| _χ〉( ) � ĤGP 0

−2ıβR̂†
Î
DVR

R̂ ĤGP
( ) |ψ〉

|χ〉( ),
where ĤGP is the Gross–Pitaevskii Hamiltonian in matrix form
given by Equation 9, and Î

DVR
is the diagonal matrix associated with

the term I[χ*ψ] in the DVR basis. The matrix elements of Î
DVR

are
Ij � I[ 1

2π∑m,ndq,m* cq,neı
2π
N (q+n−m)j], dq,n being the coefficients of the

adjoint state |χ〉 in the FBR basis, −nmax ≤ n,m≤ nmax.
As an illustrative example, we consider the transfer from the

state |ψ(0)〉 � |ϕ0+0〉 to the squeezed state |g(0, 0, 3/2)〉. The
control time is set to tf � 150 μs, the lattice depth to s � 5, and
the quasi-momentum to q � 0. A first control is optimized for β � 0
as represented in Figure 3. The dynamics are then propagated for
this control with a non-linear coefficient β going from 0 to 1,
β ∈ [0, 1]. Figure 4 shows the evolution of the fidelity with
respect to the nonlinear parameter β. The grey area indicates the
experimental uncertainty on this parameter. We observe that for
β � 0.7, the upper bound of the uncertainty interval, the fidelity is
only of the order of 0.93, which means that the target state is not

reached by system. A second control is optimized by using the non-
linear version of GRAPE for β � 0.5. In this case, the fidelity is equal
to 0.994 for the same control time. Figure 3 depicts the different
populations in the momentum eigenbasis. The role of β on the
dynamics depends on the initial and target states considered for the
optimal control.

4 Optimal control of a BEC in a two-
dimensional optical lattice

In this section we show how to apply the GRAPE algorithm to a
two-dimensional optical lattice. We assume here that the non-
linearity of the Gross-Pitaevski equation can be neglected.

FIGURE 3
(A) Time evolution of the optimal controls for β � 0 (red line) and
β � 0.7 (green line). (B) Populations |c0,n|2 at the final time. The blue,
green and red columns correspond respectively to the populations of
the target state |g(0,0, 3/2)〉, of the final state for a control
optimized with β � 0.7 and of the final state for a control with β � 0.
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Before presenting the modeling of an experiment with a 2D
lattice, it may be useful to recall the concept of direct and reciprocal
lattices, as well as Bloch’s theorem in the multidimensional case. The
direct lattice is a set of vectors describing the nodes of the lattice,
i.e., here the positions where the potential is minimum. We denote
by ai the vectors of the basis of the direct lattice and N the
corresponding dimension. A node is an element of this set,

D � ∑N
i�1

jiai, ji ∈ Z
⎧⎨⎩ ⎫⎬⎭. (11)

The reciprocal lattice is described by the set,

R � ∑N
i�1

jibi, ji ∈ Z
⎧⎨⎩ ⎫⎬⎭ (12)

where the vectors bi are defined from the relation,

ai · bj � 2πδij,

with ai ∈ D and bj ∈ R. Using the Bloch’s theorem, it can be
shown that the wave function ψ(r) solution of the time-independent
Schrödinger equation,

− Z2

2m
∂2

∂r2
+ V r( )( )ψ r( ) � Eψ r( ), (13)

where the potential V is periodic, V(r + R) � V(r) for any R ∈ D
and r � ∑N

i�1riai is the position of the system, can be expressed as

ψq r( ) � eıq·ruq r( ), (14)

with q � ∑N
i�1qibi the two-dimensional quasi-momentum and uq(r)

a periodic function in D.

4.1 The model system

A one-dimensional optical lattice can be generated by the
superposition of two lasers. A two-dimensional optical lattice
requires three or more lasers. A large variety of two-dimensional
configurations can be realized experimentally (Morsch and
Oberthaler, 2006). As an illustrative example, we consider the
following configuration, three lasers with the same angular
frequency ω which propagate in the plane (ex, ey) of the
laboratory frame with a linear polarization along the z- axis. The
wave vectors are defined in this plane by

k1 � k 1, 0( )
k2 � k

2
−1, �

3
√( )

k3 � −k
2

1,
�
3

√( ),
where k � ω

c is the wave number. The angle between the vectors is
2π/3. The total electric field is then given by

E � E0∑
i

cos ki · r − ωt + φi( )ez,
where E0 is the amplitude of the electric field, r the position vector
and φi is the phase of the laser i, with i � 1, 2, 3. The interaction
between the electric field and the atom is described by the
Hamiltonian ĤI � −μ · E, where μ is the induced dipole moment.
At first order, the dipole moment is given by μ � −α

2 E, where α is the
polarizability of the atom. This leads to ĤI � −α

2 E · E. The electric
field is not resonant with the transition frequencies of the atom, and
the period associated with the ω frequency is much shorter than the
characteristic time of the experiment, Tdyn. The interaction
Hamiltonian can be averaged to only consider the long-time
dynamics. The BEC is then subjected to the following
dipole potential

V � 〈ĤI〉 � −3
4
αE2

0 −
α

2
E2
0 cos k1 − k2( ) · r + φ12( )[

+ cos k2 − k3( ) · r + φ23( )
+ cos k3 − k1( ) · r + φ31( )],

where φjk � φj − φk, and 〈 · 〉 denotes the time average over one
period τ, such that 2π

ω ≫ τ≫Tdyn. Finally, we deduce that this
average potential governs the 2D-dynamics (31), with r � (x, y).

The direct lattice nodes correspond to the minima of the
potential energy for φjk � 0. We have

k1 − k2( ) · r � 0 mod 2π( )
k2 − k3( ) · r � 0 mod 2π( )
k3 − k1( ) · r � 0 mod 2π( )

A node of the direct lattice belongs to the setD Equation 11 with,

a1 � − 4π

3k2
k3,

a2 � 4π

3k2
k2.

A node of the reciprocal lattice is an element of the set R
Equation 12 with

FIGURE 4
Evolution of the fidelity F for the target state |g(0,0, 3/2)〉 as a
function of β. The blue and orange lines correspond respectively to
β � 0 and β � 0.5.
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b1 � k1 − k3,
b2 � k2 − k1.

Since the potential is periodic, Bloch’s theorem applies, and
eigenvectors are as in Equation 14. Within a given sub-Hilbert space
of quasi-momentum q, a generic wave function can be written as:

ψ r( ) � ∑
m,n∈Z

cq,m,ne
ıq·reı mb1+nb2( )·r. (15)

We denote by ϕm,n � eı(mb1+nb2)·r the functions of the Fourier
basis. The coefficients cq,m,n are the coefficients of the state in this
basis. In order to simplify the study, we consider below that the
quasi-momentum is zero, which is a reasonable experimental
assumption (Dupont et al., 2021). Plugging the expression of
ψ(r, t) of Equation 15 into Equation 13, we obtain,

ıZ ∑
m,n∈Z

_cm,ne
ı mb1+nb2( )r � ∑

m,n∈Z

Z2

2m
cm,n mb1 + nb2( )2eı mb1+nb2( )r

− ∑
m,n∈Z

V0

4
cm,n eı k1−k2( )·r+φ12( )eı mb1+nb2( )r + e−ı k1−k2( )·r+φ12( )eı mb1+nb2( )r[ ]

− ∑
m,n∈Z

V0

4
cm,n eı k2−k3( )·r+φ23( )eı mb1+nb2( )r + e−ı k2−k3( )·r+φ23( )eı mb1+nb2( )r[ ]

− ∑
m,n∈Z

V0

4
cm,n eı k3−k1( )·r+φ31( )eı mb1+nb2( )r + e−ı k3−k1( )·r+φ31( )eı mb1+nb2( )r[ ],

where the constant term −3
4 αE

2
0 of the potential V is removed, and

V0 � αE2
0 is the lattice depth. From the relations, k1 − k2 � −b2,

k2 − k3 � b1 + b2, k3 − k1 � −b1, b1 · b1 � b2 · b2 � 3k2 and
b1 · b2 � −3

2k
2, we arrive at

ıZ ∑
m,n∈Z

_cm,ne
ı mb1+nb2( )r

� ∑
m,n∈Z

3k2Z2

2m
cm,n m2 + n2 −mn( )eı mb1+nb2( )r

− ∑
m,n∈Z

V0

4
cm,n eıφ12eı mb1+ n−1( )b2( )r + e−ıφ12eı mb1+ n+1( )b2( )r[ ]

− ∑
m,n∈Z

V0

4
cm,n eıφ23eı m+1( )b1+ n+1( )b2( )r + e−ıφ23eı m−1( )b1+ n−1( )b2( )r[ ]

− ∑
m,n∈Z

V0

4
cm,n eıφ31eı m−1( )b1+nb2( )r + e−ıφ31eı m+1( )b1+nb2( )r[ ].

Projecting this equation onto the state ϕm,n and introducing the
dimensionless time τ � 3Zk2

2m t and lattice depth s � 2mV0/(3Z2k2),
we obtain the differential equation governing the dynamics of the
coefficients cm,n,

ı _cm,n � m2 + n2 −mn( )cm,n − s

4
eıφ12cm,n+1 + e−ıφ12cm,n−1[

+ eıφ23cm−1,n−1 + e−ıφ23cm+1,n+1 + eıφ31cm+1,n + e−ıφ31cm−1,n].
(16)

FIGURE 5
Transfer from the state |ϕ0,0〉 to the target 1�

2
√ (|ϕ−3,−3〉 + |ϕ3,3〉); (A)

Time evolution of the controls φ12, φ23 and φ31, (B) Populations of the
initial (orange) and target (blue) states.

FIGURE 6
Same as Figure 5 but for the target state 1�

2
√ (|ϕ−1,−1〉 + |ϕ3,3〉). Only

the controls φ3,1 and φ2,3 are optimized.
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4.2 Optimal control problem

At this point, Equation 16 can be put in matrix from. We have

ı
d|ψ t( )〉

dt
� Ĥ0 + eıφ12Ĥ

+
12 + e−ıφ12Ĥ

−
12 + eıφ23Ĥ

+
23 + e−ıφ23Ĥ

−
23(

+ eıφ31Ĥ
+
31 + e−ıφ31Ĥ

−
31)|ψ t( )〉,

with

Ĥ0 � ∑
m,n∈Z

m2 + n2 −mn( )|ϕm,n〉〈ϕm,n|

Ĥ
+
12 � −s

4
∑

m,n∈Z
|ϕm,n〉〈ϕm,n+1|

Ĥ
−
12 � −s

4
∑

m,n∈Z
|ϕm,n〉〈ϕm,n−1|

Ĥ
+
23 � −s

4
∑

m,n∈Z
|ϕm,n〉〈ϕm−1,n−1|

Ĥ
−
23 � −s

4
∑

m,n∈Z
|ϕm,n〉〈ϕm+1,n+1|

Ĥ
+
31 � −s

4
∑

m,n∈Z
|ϕm,n〉〈ϕm+1,n|

Ĥ
−
31 � −s

4
∑

m,n∈Z
|ϕm,n〉〈ϕm−1,n|

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

From a numerical point of view, we use a Hilbert space of finite
dimension such that −M≤m≤M and −N≤ n≤N. The dimension
of this space is dH � (2M + 1) × (2N + 1). In the numerical
simulations, M and N have been set to 5. The GRAPE algorithm
can then be applied to this case (Ansel et al., 2024). For each control
φ12, φ23 and φ31, the maximization condition given by the PMP leads
to the iterative procedure of GRAPE

φ
ℓ
↦ φ

ℓ
+ ϵI 〈χ t( )|ı Ĥ+

ℓ
− Ĥ

−
ℓ

( )|ψ t( )〉[ ],
where |χ〉 is the adjoint state and ℓ corresponds to the index
12, 23 or 31.

As an illustrative example, we consider the state-to-state transfer
from the initial state |ψ(0)〉 � |0, 0〉 to a target state |ψt〉 � 1�

2
√ (|3, 3〉 +

| − 3,−3〉) with a control time tf � 250 μs. The values of the other
parameters are the same as in Section 2. Figure 5 represents the
optimization result for this control problem. Note that the controls
are not independent since φ12 and φ31 are equal. This observation also
illustrates the role of the number of controls for the controllability of this
system. Figure 6 shows this point for another target state. In this case, only
two controls φ2,3 and φ3,1 are optimized, the third one is kept constant in
time. Despite this constraint, the target state is reached with a very good
precision. Finally, in Figure 7, we consider a non-symmetric state in m
and nwith |φt〉 � 1�

2
√ (|ϕ1,2〉 + |ϕ−3,−1〉). Again, our algorithmdesigns a

very efficient control process with a fidelity above 0.99. We note that a
broad range of states can be reached with just two variable phases, which
raises the question of the controllability of this system, that is the
relationship between the set of accessible states, the number of
available controls and the lattice configuration.

5 Conclusion and prospective views

We have proposed two extensions of the gradient-based algorithm,
GRAPE, for controlling a BEC in an optical lattice.We have shown how
to adapt this algorithm to the non-linear case where the atomic
interaction is not neglected and for a two-dimensional optical lattice.
The two generalizations are supported by amathematical analysis of the
optimal control problem based on the PMP. Numerical examples show
the effectiveness of the different procedures in experimentally realistic
cases. We emphasize that such algorithms have the advantage of
simplicity and general applicability, regardless of the structure of the
optical lattice at two or three dimensions or the number of available
controls. Thus, based on the material presented in this paper, GRAPE
can be adapted to other geometric configurations.

This work describes in detail how to numerically solve the optimal
control of a BEC in an optical lattice, but it also raises a number of issues
that go beyond the scope of this paper. A first problem concerns the
controllability of this system under experimental constraints and
limitations on pulse amplitude and duration. A general problem is to
describe the set of reachable sets for a given lattice configuration and
physical constraints on the control parameters. Some mathematical
results have shown the small-time controllability of this system in an
ideal situation (Chambrion and Pozzoli, 2023; Pozzoli, 2024). However,
such results do not use a directly implementable control strategy and
consider pulses with a very large amplitude. Another interesting question
is to evaluate the role of the nonlinearity on the optimal solution. It has
been shown in Deffner (2022) that the quantum speed limit Deffner and

FIGURE 7
Same as Figure 5 but for the target state 1�

2
√ (|ϕ1,2〉 + |ϕ−3,−1〉). Only

the controls φ3,1 and φ2,3 are optimized.
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Campbell (2017) grows with the nonlinearity strength of the BEC. An
intriguing question is to test this conjecture in our system using time-
optimal control protocols. If this statement is verified, it could be of
utmost importance tominimize the preparation time of specific states by
playing with the nonlinearity of the BEC dynamics. This work assumes
that the Hamiltonian parameters of the system are exactly known. It is
not the case in practice where the experimental parameters are estimated
within a given range. This limitation could be partly avoided by
generalizing to this system the robust control pulses known for two-
level quantum systems (Kobzar et al., 2012; Li and Khaneja, 2009; Van
Damme et al., 2017; Lapert et al., 2012). An optimal control can be
designed in this case by considering the simultaneous control of a set of
quantum systems characterized by a different value of the parameter. In
this study, we only consider state-to-state transfer, but it will be
interesting to extend this approach to quantum gates (Palao and
Kosloff, 2003; Palao and Kosloff, 2002). Recently, a rigorous
foundation of quantum computing in the nonlinear case has been
developed (Xu et al., 2022). In this direction, a first goal will be to
show that the non-linear GRAPE algorithm described in this work can
be used to implement quantum gates.Work is underway in our group to
answer such questions both theoretically and experimentally.
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