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The standard quantum mechanical harmonic oscillator has an exact, dual
relationship with a completely classical system: a classical particle running
along a circle. Duality here means that there is a one-to-one relation between
all observables in one model, and the observables of the other model. Thus the
duality we find, appears to be in conflict with the usual assertion that classical
theories can never reproduce quantum effects as observed in many quantum
models. We suggest that there must be more of such relationships, but we study
only this one as a prototype. It reveals how classical hidden variables may work.
The classical states can form the basis of Hilbert space that can be adopted in
describing the quantum model. Wave functions in the quantum system generate
probability distributions in the classical one. One finds that, where the classical
system always obeys the rule probability in = probability out, the same
probabilities are quantum probabilities in the quantum system. It is shown
how the quantum x and p operators in a quantum oscillator can be given a
classical meaning. It is explained how an apparent clash with quantum logic can
be rationalized.
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1 Introduction

It has become customary to investigate quantum theories by proving that they cannot be
represented in terms of ontological variables. These ontological variables, known as “local
hidden variables” (LHV), are assumed to reproduce the results of all experiments that can be
performed on a given quantum system, which is subsequently shown to lead to logical
contradictions.

However, when the outcome of an extensively examined quantum experiment is
compared with a classical theory, it is often the classical dynamics that is finished off in
one short sentence: “This cannot be the result of a classical theory.” One may however
suspect that the assumptions made concerning these LHV are too strict, so that there could
be loopholes.1 Many investigations are aimed at closing these loopholes by making further
assumptions (Bell, 1964; Bell, 1982; Bell, 1987; Conway and Kochen, 2008; Clauser et al.,
1969; Greenberger et al., 1990).
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1 A very important loophole, not discussed further in this paper, is that models such as the Standard

Model of the elementary particles, require perturbation expansions, which are known to be

fundamentally divergent. This procedure introduces uncertainties (Hooft et al., 2021) that can be

studied further, under the suspicion that this could be the cause of the tendency of quantum wave

functions to spread.
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This, we claim, may not be the only way to improve our
understanding of quantum mechanics. Here, we approach the
question concerning the interpretation of quantum mechanics
from the other end: which quantum systems do allow for
classical variables, and can these models be extended to include
physically useful ones? Can these models be demanded to obey
(some form of) locality? Can we use them as building blocks? We
claim that this is a rich field for further investigation (Brans, 1988;
Vervoort, 2013; ’t Hooft, 2016; ’t Hoofta, 2023).

Here, a very important example is exhibited: the quantum
harmonic oscillator. As we shall see, it contains a variable that
can explain everything we see in a quantum harmonic oscillator, in
terms of completely classical mathematical logic. Our variables are
not hidden at all, and completely ontological; therefore we call our
variable “COV”, standing for “Classical Ontological Variable.” The
letter L is omitted, since locality may not be guaranteed, and anyway,
we do not intend to contradict earlier no-go theorems, but rather
search for ways out.2 Understanding the COV may be an important
pathway that could lead us to new insights, perhaps even in model
building (Jegerlehner, 2021; ’t Hooft, 2022).

The most important part of this paper is Section 2. Here we show
how any quantum harmonic oscillator, contains an ontological
degree of freedom. Using modern jargon, we observe that the
quantum harmonic oscillator is dual to a classical particle on a circle.

Questions asked after a talk I presented at the Lindau Meeting,
June/July 2024, made me realise that the features discussed below are
not very well-known and therefore this short publication may
be useful.

2 The harmonic oscillator

In one space-like dimension, consider the Hamiltonian3 H of an
elementary quantum harmonic oscillator in terms of the variables x
and p,

x, p[ ] � i , H � 1
2

p2 + x2 − 1( ). (1)

Planck’s constant will always be set as Z � 1, and as such it merely
relates the units of energy to the units of frequencies. Also the
angular frequency ω is set to 1. The operator equations are

dx
dt

� i H, x[ ] � p ,
dp
dt

� i H, p[ ] � −x. (2)

We shall need the annihilation operator a and the creation
operator a†, defined by

a � 1�
2

√ x + ip( ) , a† � 1�
2

√ x − ip( ) , a, a†[ ] � 1,

x � 1�
2

√ a + a†( ) , p � i�
2

√ a† − a( ) , x, p[ ] � i.
(3)

(For practical reasons, the signs chosen in our definitions, deviate
from the signs chosen in other work). The eigenstates |n〉E ofH, and
their eigenvalues En, are found as usual to obey:

H|n〉E � a†a |n〉E � En|n〉E , En � n � 0, 1,/ (4)

This, of course, is a completely standard, quantum mechanical
procedure applied to the harmonic oscillator, but now we claim that
it is dually related to a completely classical model. The classical
system we have in mind is a particle moving on the unit circle, with
fixed velocity v � 1, and period � 2π. The solution of its e.o.m. is:

φ t( ) � φ 0( ) + t mod 2π; (5)
φ is constrained to the interval [0 , 2π), where the boundary
conditions are periodic.

To make our point, it is important to introduce (temporarily) a
large integer N, and a variable s � 0 , . . . , N − 1, discretising the
allowed values of φ, as follows:

φ � 2πs/N , s � 0 , 1 , / , N − 1.

This matches with the introduction of small, finite time steps
δt � 2π/N. The φ states span an N-dimensional vector space
{|s〉ont}, where the superscript “ont” stands for ontological.

The energy eigenstates |n〉E , n � 0 , / , N − 1, of this
rotating particle are superpositions of the ontological states:

|n〉E � 1��
N

√ ∑N−1

s�0
e
2π
N i n s |s〉ont, (6)

with the inverse:

|s〉ont � 1��
N

√ ∑N−1

n�0
e−

2π
N i n s |n〉E. (7)

Note that these equations are merely discrete Fourier
transformations. By checking the time dependence of |n〉E and
|s〉ont, we see that

|n〉E t( ) � e−i n t |n〉E 0( ). (8)
and |s〉ont t( ) � |s − t/2πN〉ont 0( ).

We now note that the firstN energy eigenstates of the harmonic
oscillator, Equation 4, obey exactly the same Equation 8, and
therefore Equations 6, 7 define N states, obeying (Equation 5).
There is an important reason to start with a finite numberN. We see
that, in these equations, the energy spectrum not only has a lowest
energy state, |0〉E, but also a highest energy state, |N − 1〉E. With
strictly continuous angular variables |φ〉ont, we could postulate an
energy spectrum running from −∞ to +∞. This would not dually
correspond to a harmonic oscillator.4 In this paper, we keep the
lowest energy to be E � 0, while the highest energy will be
unbounded. This enables us to take the limit N → ∞, where we
can write:

φ � 2πs/N , dφ � 2π
N

, and |φ〉ont � |s〉ont/ ���
dφ

√
;

2 Locality is not a meaningful concept for the single harmonic oscillator.

3 For convenience, we set the ground state energy to zero; ground-state

energies can be returned whenever this might be needed.

4 At finite N, there is an exact, dual relationship to the SU(2) algebra, with

N � 2ℓ + 1.
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This turns Equations 6, 7 into

|n〉E � 1���
2π

√ ∮ dφ eiφ n |φ〉ont , |φ〉ont � 1���
2π

√ ∑∞
n�0

e−iφ n |n〉E.

Thus we proved that harmonic oscillators can be described in terms
of variables |φ〉ont that evolve deterministically. It is easy to see that, due
to Equation 5, the wave function in terms of the s variable (or the φ
variable) does not spread. However, the wave function may not have
been chosen to collapse. In that case, the probability distribution
ϱ(φ1) � |〈φ1|φ〉ont|2 can be seen to rotate along the circle in the
same way as φ itself, so that we easily conclude that this probability
distribution merely reflects the probabilities of the initial state.

This is a typical feature of the COV in a theory: these variables
can be projected on the basis states of any Hilbert space, in which
case the theory reproduces the probability distribution of the final
states in terms of that of the initial states. It is very important,
however, that this identification between Hilbert space and the space
of classical probability distributions, only applies to the ontological
basis of Hilbert space, that is, the basis spanned by all ontological
states (the states |φ〉ont in the case of the harmonic oscillator).

Thus we emphasise: any quantum harmonic oscillator is
mathematically equivalent to a periodically moving particle on a
unit circle, and the wave function of a quantum harmonic oscillator
merely reflects the probability distribution on this circle, if the initial
state is not known with infinite precision.

Some useful auxiliary functions are

G z( ) ≡ ∑∞
n�1

�
n

√
zn , and g φ( ) � G eiφ( ). (9)

Since the annihilation operator a, defined in Equation 3 obeys

a|n〉E � �
n

√ |n − 1〉E ,

we can derive the matrix elements

ont〈φ1|a|φ2〉ont �
1
2π

e−iφ1 g(φ1 − φ2) ,

and ont〈φ1|a†|φ2〉
ont � 1

2π
eiφ2 g(φ1 − φ2) ,

and from this, using Equation 3, we find the matrix elements of the
operators x and p of the original quantum harmonic oscillator, in
terms of the basis states |φ〉ont:

〈φ1|x|φ2〉 � 1
2π

�
2

√ e−iφ1 + eiφ2( )g(φ1 − φ2); (10)

〈φ1|p|φ2〉 � i

2π
�
2

√ e−iφ1 − eiφ2( )g(φ1 − φ2). (11)

It is possible to combineN oscillators with different frequencies
ωi, requiring us to generalise Equations 1–4 as

H � ∑N
i�i

Hi ; Hi � 1
2
(ω2

i x
2
i + p2

i − ωi) � ωia
†
iai ,

ai � 1�
2

√ (ω1/2
i x + iω−1/2

i p) ,
Ei
n � ni ωi.

This system ofN quantum harmonic oscillators, gives usN variables
of the COV type,

φi(t) � φi(0) + ωit mod 2π . etc.

Ideas of treating quantized field theories as systems in a box with
periodic boundary conditions were investigated by Dolce (2023).
The wave equation then fixes the timelike component of the
periodicities, and systems of this kind may then be regarded as
multiple systems of COV variables.

3 On the analytic structure of the
auxiliary function G(z)

The auxiliary function G(z) is defined by Equation 9, but this
only converges for values of z within the unit circle, that is, |z|< 1.
Also, on the unit circle, this definition seems to diverge. Usually,
expansions that oscillate wildly at some distance from the origin, can
be defined by slightly smearing the coefficients, but here, this
procedure is tricky. Indeed, the mathematics needed to show that
the probabilities generated by applying g(φ) are uniquely defined
and real, is rather delicate, an understatement, as shown in
this section.

This section is intended only for mathematically minded
readers. Their comments would be appreciated.

At finite N the function

GN(z) � ∑N
n�1

�
n

√
zn (12)

has N zeros. Most of these will be close to the unit circle, |z|n → 1.
The questions we would like to see answered are:

1. What will be the analytic structure of Equation 12 in the
limit N → ∞?

2. Is it possible at all to define and compute an analytic
continuation for the function GN for |z|> 1?

3. Where are the zeros and the poles of this analytic function?
4. Can one prove that

G*(z) �? G(z*) , (13)

FIGURE 1
The ontological states |s〉ont when time is discrete, δt � 2π

N . In this
picture, the choice N � 11 was made. The energy spectrum is shown;
the energies form the same sequence as in harmonic oscillators, in
particular if we take the limit N → ∞.
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so that the operators x and p defined in Equations 10, 11 can be seen
to be Hermitian?

The last question is not quite trivial because one must first
redefine the limit function g(φ), but by careful study of the
equations, we found that Equation 13 is true, due to the fact that
the coefficients

�
n

√
are all real, see Figure 2.

First, we find that G(z) is the second derivative of a function
F(z) that stays strictly finite on the unit circle (where |z| � 1):

G(z) � (z∂z)2F(z) , F(z) � ∑∞
n�1

zn/(n �
n

√ ) ;

g(φ) � −∂2
∂φ2 f(φ) , f(φ) � F(eiφ) . (14)

Therefore, F(z) is also accurately defined on the unit circle, but
before using it to recuperateG(z), onemust carefully choose the order of
the limits N → ∞ and |z| → 1. In practice, one encounters no
problems, see Figure 2. A useful transformation may be the following:

y � 4z

(1 + z)2 , (15)

and its inverse:

z � −1 + 2
y

1 − �����
1 − y

√( ) � 1
4
y + 1

8
y2 + / . (16)

This can also be written as

��
y

√ � 2�
z

√ + 1/ �
z

√ . (17)

The second Riemann sheet describes the solution with the opposite
sign of the square root on Equation 16. There, we get the solution

~z � −1 + 2
y

1 + �����
1 − y

√( ) � 1/z ,

which is easiest to see in Equation 17.

GN(z) � ∑N
n�1

�
n

√
~zn � ∑N

n�1

�
n

√
z−n ;

Figure 3 shows how the unit circle (Figure 3A) is mapped on the
first Riemann sheet (Figure 3B). by the function (Equation 15), and
how the branch cut at the right connects the two sheets. The function
G(z) does go to infinity where the branch cut begins; the function F
stays finite. They are related through Equation 14. By using Cauchy’s
theorem one may be able to use this branch cut to define faster
converging nexpressions for the function f(φ), and with that, our
auxiliary function g(φ). Our attempts to use these observations for
obtaining more convergent expressions for G(z) were however
unsuccessful; much more work must be done to realise this, but
an excessive list of calculations on this matter was not the aim of this
paper. The function G(z) does go to infinity where the branch cut
begins; the function F stays finite. They are related through Equation
14. Question (4) is now obviously answered in the positive.

4 Epilogue

We showed how one may consider the quantum harmonic
oscillator as an ontological theory in disguise. This is important
since it appears to contradict theorems claiming that such a
behaviour in quantum theories is impossible. Of course those
theories were assumed to be far more general than a single
harmonic oscillator, or even a simple collection of harmonic
oscillators, but this now is a question of principle. Where is the
dividing line?Which other quantum systems allow for the definition
of COV variables, variables that commute with themselves and
others at all times? If for instance one considers the quantum field
theory of bosonic free particles in a box of an arbitrary shape in
multiple dimensions, one may observe that this is merely a collection
of harmonic oscillators.

One would be tempted to conclude that, therefore, bosonic
particles in a box should also contain COV states (’t Hooft, 2023),
but there is a complication in such systems: it is not easy to restore
locality in the COV, since they are defined in momentum space.
Turning these into variables that are local in position space appears
not to be impossible, but then there is another complication: the
operators one obtains that way seem to violate Lorentz invariance.
This happens since the box is not Lorentz invariant. It is conceivably
possible to restore Lorentz invariance, but we presently do not know
how to do this in the Standard Model.

Thus our observations do not imply that text books on quantum
mechanics have to be rewritten, except where they state explicitly
that classical ontological variables cannot exist. Are local ontological
variables forbidden? Locality is a meaningless concept in a single
quantum harmonic oscillator. In this paper we show exactly what an
ontological variable is. Emphatically, the ontological variable may be
assumed to have a probability distribution as in quantummechanics
and in classical theories:

All uncertainties in the final state merely reflect the uncertainties
in the initial state.

As soon as we claim that the initial state is exactly given, the
wave function of the final state will collapse. The harmonic
oscillator requires no special axiom for the collapse of the wave
function – provided that we stick to the observables in φ space.

FIGURE 2
An accurate calculation of the function f(φ), defined in Equation
14. Blue solid line: its real part, dashed red line: its imaginary part. Both
real part and imaginary part have a divergence in their first and second
derivatives, apparently only at the origin, φ → 0.
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There, we do not need to assume the existence of many universes.
Just one universe, ours, is all we need to understand.

We emphasise that what we found here as a modification of
the usual picture of quantum mechanics, is presumably merely
the tip of an iceberg. It will not only apply to pure harmonic
quantum oscillators, but also to many systems that evolve and
interact in more generic ways. It is the fact that harmonic
oscillators are periodic that counts. Whenever we consider a
simplified model of nature where variables become periodic (for
instance if we consider a box with periodic boundary conditions),
one may observe that the energy spectrum consists of regular
sequences of spectral lines (see Figure 1), so that harmonically
oscillating fields enter the picture. Time-periodic motion is
always classical. All we then need to talk about is how the
probability distributions evolve.

In all classical systems, probability distributions evolve in
the same orbits as the classical variables do. Consequently:
probability in = probability out. If, in φ space, the initial
state is defined with infinite precision, the final state will also
be infinitely precise. This implies that the “typically quantum
feature” of the collapse of the wave function, has its counter part
in ontological theories. In the model we presented, the variables
φmay be assumed to be infinitely sharply defined, but then also
the final states will still be completely sharply defined; they
always come in a collapsed form.

The clash with usual findings concerning the “impossible” physical
reality of quantum mechanical phenomena and calculations, lies in the
fact that the duality transformation is only applicable in one basis of
Hilbert space: the one consisting of the ontological states. Choosing the
conventional basis elements does not modify the results. The fact that
we wish to emphasise is that, this “ontological” basis also never needs to
be departed from, other than in approximative calculations: both the
initial states and the final, observed states of any quantum process will
be totally determined by the probabilities in the genuinely ontological
basis; therefore, other choices of basis will never be necessary from a
strictly logical viewpoint.

And it seems as if this possibility has never been considered
before; however, see Refs Brans (1988) and Vervoort (2013). As for

the numerous “quantum paradoxes” that have been formulated in
the literature, the procedure needed, to formulate the probability
patterns in an ontological basis has been worked out in Ref. Hooft
et al. (2021). The guiding principle: always stay in the
ontological basis.

The author benefitted from many discussions, notably with T.
Palmer, C. Wetterich, M. Welling and D. Dolce.
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FIGURE 3
(A) y space, regions where the function G(z) converges: domains | z |≤ .05, .1, . . . , 1.0 are shown. (B) After the transformation (Equation 15), these
domains turn into the regions shown here, that is, the entire z plane up to the branch cut, will be singularity free if expressed in the new y variable.
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