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Clustering algorithms are at the basis of several technological applications, and
are fueling the development of rapidly evolving fields such asmachine learning. In
the recent past, however, it has become apparent that they face challenges
stemming from datasets that span more spatial dimensions. In fact, the best-
performing clustering algorithms scale linearly in the number of points, but
quadratically with respect to the local density of points. In this work, we
introduce qCLUE, a quantum clustering algorithm that scales linearly in both
the number of points and their density. qCLUE is inspired by CLUE, an algorithm
developed to address the challenging time and memory budgets of Event
Reconstruction (ER) in future High-Energy Physics experiments. As such,
qCLUE marries decades of development with the quadratic speedup provided
by quantum computers. We numerically test qCLUE in several scenarios,
demonstrating its effectiveness and proving it to be a promising route to
handle complex data analysis tasks – especially in high-dimensional datasets
with high densities of points.

KEYWORDS

clustering, cern, high energy physics (HEP), quantum, machine learning and artificial
intelligence, quantum computation (QC)

1 Introduction

Clustering is a data analysis technique that is crucial in several fields, owing to its ability
to uncover hidden patterns and structures within large datasets (Gopalakrishnan et al.,
2024). It is essential for simplifying complex data, improving data organization, and
enhancing decision-making processes (Oyelade et al., 2019; Gu and Hübschmann, 2022;
Caruso et al., 2018; Wu et al., 2021). For instance, clustering has been applied in marketing
(Huang et al., 2007; Punj and Stewart, 1983), where it helps segment customers for targeted
advertising (Wu et al., 2009), and in biology, for classifying genes and identifying protein
interactions (Dutta et al., 2020; Au et al., 2005; Wang et al., 2010; Asur et al., 2007). In the
realm of computer science and artificial intelligence, it is invaluable for speech recognition
(Kishore Kumar et al., 2018; Chang et al., 2017), image segmentation (Coleman and
Andrews, 1979), as well as for recommendation systems (Shepitsen et al., 2008; Schickel-
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Zuber and Faltings, 2007) used for personalizing user content.
Finally, clustering techniques are pivotal for Event
Reconstruction (ER), where data points that originated from the
same “event” are to be grouped together. In High-Energy Physics,
for instance, clustering algorithms are used to reconstruct the
trajectories of subatomic particles in collider experiments. High
volumes of data are expected at the endcap High Granularity
CALorimeter (HGCAL) (Didier and Austin, 2017) which is
currently being built for the CMS detector at the High
Luminosity Large Hadron Collider (HL-LHC). This must be
tackled by new generations of clustering algorithms such as
CLUE (Rovere et al., 2020). The discovery of the Higgs boson
(Aad et al., 2012), awarded the Nobel prize in 2012, was made
possible by such algorithms.

ER enables the interpretation of data obtained from particle
collision events, including those occurring at the Large Hadron
Collider (LHC) at CERN. Several clustering algorithms like DBScan,
K-Means, and Hierarchical Clustering among others (Amaro et al.,
2023; Dalitz et al., 2019; Rodenko et al., 2019) can be employed for
ER. Our work is based on CERN’s CLUstering of Energy (CLUE)
algorithm (Rovere et al., 2020; CMS Collaboration, 2022), which is
adopted by the CMS collaboration (Hayrapetyan et al., 2023;
Hayrapetyan et al., 2024; Tumasyan et al., 2023). It is designed
for the future HGCAL detector due to the limitations of the
currently employed algorithms. Despite these limitations, such
algorithms are already at the basis of several discoveries, such as
the doubly charged tetraquark (Aaij et al., 2023), the study of rare B
meson decays to two muons (Tumasyan et al., 2023) and the
observation of four-top quark production in proton-proton
collisions (Hayrapetyan et al., 2023).

The efficiency of clustering algorithms, as illustrated by the
CLUE algorithm (Rovere et al., 2020), is crucial for handling large
datasets. Initially designed for two-dimensional datasets, CLUE
reduces the search complexity from O(n2) to O(mn) through the

use of local density and a tiling procedure, where n (m) represents
the (average) number of points (per tile).

In the context of CLUE, where the datasets in question are
limited to two dimensions, m is small, making this approach to ER
particularly effective. However, as the dimensionality of the dataset
is incremented, the value of m generally increases exponentially.
This is highlighted by Figure 1A, where for a dd-dimensional lattice
with a points per edge, m follows the relation m � add. This is a
serious challenge to CLUE and classical clustering algorithms
in general.

A first step towards extending CLUE to more dimensions is 3D-
CLUE (Rovere et al., 2020; Brondolin, 2022). In this work, data
points from different detector layers are first projected onto a
singledd � 2 surface, where clustering is then performed.
However, this projection from the original dd � 3 dataset to
add � 2 surface comes at the cost of a slower algorithm since m
becomes effectively larger. The solid lines in Figure 1B show the
increase in average points per tile in dd-dimensional datasets made
of the lattices in panel (a). While the improved performance of 3D-
CLUE in ER tasks (Rovere et al., 2020; Brondolin, 2022) justifies the
increased computational overhead, extending this enhancement to
higher dimensions and larger datasets is challenging. Finding
practical approaches to deal with datasets where dd is large is
therefore extremely important, not only for ER tasks, but also in
other fields such as gene analysis in bioinformatics (Karim et al.,
2020) and market segmentation in business (Zhou et al., 2020).

Quantum computers provide a route to mitigate the complexity
blow-up arising from higher-dimensional datasets. Wei et al. (2020)
addresses the task of jet clustering in High-Energy Physics, while
Kerenidis and Landman (2021) targets spectral clustering, which
itself uses the efficient quantum analogue of k-means clustering
(Kerenidis et al., 2019). Gong et al. (2024a); Zhou et al. (2021)
provide k-Nearest-Neighbors based approaches for image
classification, a common machine learning task. Other
approaches include quantum k-medians clustering (Aïmeur et al.,
2007) and a quantum algorithm for density peak clustering (Duarte
et al., 2023). Gong et al. (2022); Gong et al. (2024b); Gong C. et al.
(2024) also present interesting quantum solutions to a wide number
of common machine learning tasks.

In this work we develop qCLUE, a CLUE-inspired quantum
algorithm. Similarly to other quantum algorithms (Nicotra et al.,
2023; Tüysüz et al., 2020), qCLUE leverages the advantage provided
by Grover Search (Lov, 1996). A comparison of classical and
quantum (Grover) runtimes is presented in Figure 1B, where the
solid [dashed] lines refer to the classical O(m) [quantum O( ��

m
√ )]

scaling. As can be seen, the complexity advantage that Grover search
provides can be substantial, particularly for large values of dd or a.

Overall, we find that qCLUE performs well in a wide range of
scenarios. With ER-inspired datasets as a specific example, we
demonstrate that clusters are correctly reconstructed in typical
experimental settings. Similar to other quantum approaches to
clustering that rely on Grover Search (Aïmeur et al., 2007; Pires
et al., 2021; Magano et al., 2022), qCLUE showcases a quadratic
speedup compared to classical algorithms. Magano et al. (2022) is
especially interesting as it provides a detailed computational
complexity analysis to a related problem within ER. Specifically,
this approach tackles a subsequent task compared to qCLUE,
namely the creation of so-called tracksters from hits (CMS

FIGURE 1
Scaling of point density and complexities of classical and
quantum algorithms for the unstructured search problem with
dimensiondd. In (A), different d-dimensional lattices fordd � 1, 2, 3 and
a � 3 points per edge. In (B), best-known classical (solid lines) and
quantum (dashed lines) algorithmic scaling for the Unstructured
Search Problem (Lov, 1996) applied to square d-dimensional lattices
with the values of a reported in the plot. Classically, the cost O(m)
reflects the need to iterate through all them points to find the desired
one. Grover achieves the same inO( ��

m
√ ) steps, providing a quadratic

advantage. This advantage increases with the density of points in the
considered dataset, which grows exponentially with respect to the
dimension d according to m � add.
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Collaboration, 2022). It also demonstrates that the quantum
algorithm has a quadratic advantage if compared to the classical
one in physically relevant scenarios. We mention here the
significance of variational solutions (Zlokapa et al., 2021; Tüysüz
et al., 2021) to the ER reconstruction problem but note that these do
not have predictable runtimes or error bound guarantees.

The specific advantages of qCLUE are its CLUE-inspired
approach to cluster reconstruction (which demonstrated to be
extremely successful (CMS Collaboration, 2022; Hayrapetyan
et al., 2023; Tumasyan et al., 2023; CMS Collaboration, 2024)),
and its consequent seamless integration with the classical framework
currently employed by the CMS collaboration (Rovere et al., 2020;
Brondolin, 2022; CMS Collaboration, 2023).

This paper is structured as follows. In Section 2, we describe our
algorithm qCLUE. Specifically, we provide a general overview of its
subroutines – namely the Compute Local Density, Find Nearest
Higher, and the Find Seeds, Outliers and Assign Clusters steps. We
describe the results of our simulated version of qCLUE on a classical
computer in Section 3. In more detail, we explain the scoring metrics
we use to quantify our results, and describe qCLUE performance
when the dataset is subject to noise and different clusters
overlap. Conclusions and outlook are finally presented in Section 4.

2 qCLUE

qCLUE is a quantum adaptation of CERN’s CLUE and 3D-
CLUE algorithms (Rovere et al., 2020; Brondolin, 2022), that is
specifically developed for ER, yet it is suitable to work with any (high
dimensional) dataset. The main advantage of qCLUE stems from
employing Grover’s algorithm, which provides a quadratic speedup
for the Unstructured Search Problem (Lov, 1996). While qCLUE is
designed to work in arbitrary dimensions, for clarity we restrict
ourselves to dd � 2. This simplifies the following discussions and
allows us to simulate qCLUE with meaningful datasets on a classical
computer. Generalizations to higher dimensions can be done
following the steps outlined below. Furthermore, to provide a
better connection with CLUE and 3D-CLUE, we employ a
similar notation.

In Section 2.1, we offer an overview of the algorithm and its
different subroutines. Section 2.2 is dedicated to the first subroutine
of qCLUE, namely, calculating the Local Density. We then explain
how to determine the Nearest Highers (N j), Seeds, and Outliers in
Section 2.3. Finally, Section 2.4 delves into the conclusive Cluster
Assignment subroutine, where the points in the dataset are
effectively heirarchically clustered.

2.1 Overview and setting

As for CLUE and 3D-CLUE (Rovere et al., 2020; Brondolin,
2022), we consider a dataset with spatial coordinates and an weight
for every point. Similar datasets can also be found in medical image
analysis and segmentation (Qaqish et al., 2017; Ng et al., 2006), in
the analysis of asteroid reflectance spectra and hyperspectral
astronomical imagery in astrophysics (Galluccio et al., 2008;
Gaffey, 2010; Gao et al., 2021) and in gene analysis in
bioinformatics (Karim et al., 2020; Oyelade et al., 2016).

In dd � 2 dimensions, the spatial coordinates Xj for point j are
Xj � [xj,1, xj,2], that are promptly generalized for larger values
ofdd. Both CLUE and qCLUE first perform tiling over the
dataset to reduce the search and therefore enhance the efficiency
of the algorithm. Tiling is the process of partitioning the dataset into
a grid of rectangular tiles □k, where k is the tile index (see Figure 2).
Therefore, our input dataset comprises of point and tile indices j and
k, respectively, the coordinates Xj, and a parameter Ej associated to
each point. Following CLUE’s notation, we call Ej the weight, yet
this should be considered as a label that can be employed to improve
the clustering quality for any given dataset. The tiling procedure of
qCLUE and CLUE enables searching only over Search Spaces S
marked by the tiles in green in Figure 2A as opposed to the full
dataset. In case of CLUE, this allowed for an improvement in scaling
from O(n2) to O(mn). The scaling of qCLUE is investigated below.

In this work, we employ a qRAM to store and access data, which
is an essential building block for quantum computers. Following
Giovannetti et al. (2008), we therefore assume that we can efficiently
prepare the state.

∑
j

j
∣∣∣∣ 〉 →qRAM j

∣∣∣∣ 〉 Dj

∣∣∣∣ 〉, (1)

where Dj is the data associated with a given index j, e.g., the jth

point in the database. As explained in Giovannetti et al. (2008),
the cost of preparing the dataset for qRAM is O(n), which has to
be done once. Subsequent accesses cost O(log n). This makes this
step more efficient than the other subroutines within qCLUE. For
convenience, here, in Equation 1, and throughout this paper we
do not explicitly write the normalization factors of
quantum states.

The qCLUE algorithm consists of the following steps:

2.1.1 Local density
The first step is to calculate the local density ρj of all points j

[e.g., black point in Figure 2A] that is defined by

ρj � Ej + 1
2

∑
di,j < dc

Ei (2)

and it is indicative of the weight in a neighborhood of point j. As can
be seen from Equation 2; Figure 2A, ρj is a weighted sum over the
weights Ei of all points i whose distance di,j �

��������������∑dd
α�1(xi,α − xj,α)2

√
from the base point j is within a user-specified critical radius dc that
characterizes the consideration circle for the Local Density
computation subroutine (light blue circle in the figure). As such,
Ei is the weight of the ith point which is di,j away from point j. The
choice of weight factor 1/2 for Ej in the definition of ρj in Equation 2
is empirically found to yield better performances for CLUE (Rovere
et al., 2020).

2.1.2 Find nearest higher
After calculating the local densities, we determine the nearest

highers. The Nearest HigherN j of a point j is the point nearest to j
with a higher local density ρN j

> ρj. As better explained in Section
2.4, the Nearest Higher are used to heirarchically cluster points
together in the Cluster Assignment process at the end of qCLUE. In
Figure 2B, the Nearest HigherN j of the base point j (black point) is
the pink point.
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2.1.3 Find seeds, outliers and assign clusters
As schematically represented in Figure 2C, seeds (red points) are

the points whose distance dj,N j
from their Nearest Higher N j and

whose local density ρj are lower bounded by user defined thresholds.
Outliers (blue points) are the points whose distance from Nearest
Higher is similarly lower bounded but whose Local Density has an
upper threshold. As such a point j is

a seed if dN j ,j> dc and ρj > ~ρ, (3a)
an outlier if dN j,j> δdc and ρj < ~ρ. (3b)

Here, δ is the Outlier Delta Factor that determines the upper
bound on the allowed local density for outliers. Furthermore, ~ρ is the
critical density threshold – the lowest local density a point can have
to be classified as a seed. Both δ and ~ρ are user-specified and can be
varied to enhance the quality of the output. Seeds are generally
located in areas of high weight density, and will be employed as
starting points to build clusters. Outliers are points that are likely to
be noise in the dataset and are therefore discarded.

Once seeds and outliers are determined, the clusters are
constructed. From the seeds, we iteratively combine “followers.”
If pointN j is the Nearest Higher of point j, then point j is termed as
N j’s follower. The follower of a point is most likely generated by the
same process as the point itself (in the context of ER, by the same
particle), and as such shall be included in the same cluster. In
Figure 2C, the orange and purple points form two different clusters,
and the followers of the points in the purple one are indicated
by arrows.

FIGURE 2
Pictorial representation of the main subroutines of qCLUE. In (A), the Local Density computation subroutine is represented. The consideration circle
of radius dc (light blue) centered at the base point j (black) contains all points (green) that satisfy di,j ≤dc. This consideration circle intersects 2 tiles □k

(indexed by tile index k), highlighted in blue, that form the search space S. As per Equation 2, the Local Density computation step determines the set of
green points from all points in the search space (green and grey) and then computes the local density. In (B), we pictorially present the Find Nearest
Higher (N j) subroutine. The consideration circle (green) around base point j (black) has radius dm. This consideration circle, containing the green points
as well as the Nearest Higher N j (pink), intersects the 4 tiles highlighted in green, which form the search space S. In (C), we describe the Find Seeds,
Outliers and Assign Clusters subroutines. The seeds (red) and outliers (blue) are determined via Grover search on the dataset. In this specific example there
are two clusters in the dataset whose non-seed points are in orange and purple, respectively. Followers (seemain text) in these clusters are connected by
dashed arrows. The Cluster Assignment subroutine is shown to be working on the orange cluster where the cluster C currently consists of the seed (red,
dashed border) and the first of its followers (orange, dotted border). Followers are being found within the Dynamic Search Space (DSS, light red box with
solid red border). The DSS is formed as the set of tiles □k covered partially or fully by the minimum bounding box of the square windows that contains all
the search spaces S of the points within C.

FIGURE 3
Algorithm flow for Local Density computation and for Assigning
Clusters. The quantum state is initialized in the green “Initialize” box.
For Local Density Computation (Cluster Assignment), it comprises all
points in the DSS S (in the DSS). The “Grover” (light blue) block
performsUψ andUP in successionO( ��

m
√ ) times, and returns all points

satisfying the required condition. The inset considers the case of Local
Density computation where the condition is di,j <dc. For the cluster
assignment step, we check if points in the DSS are followers of the
points in the cluster C (see Section 2.4). The output of the Grover
subroutine is then measured to yield an index that is checked for
validity in the grey “Valid?” diamond. If the point satisfies the chosen
condition, the Y branch is executed. Within the “Update” (light blue)
step this point is then removed from either S or the DSS and stored to
be returned in the “Return” orange box. Once all points are found, the
“Valid?” condition triggers the N branch to terminate the algorithm.
Depending on the chosen subroutine, the returned indices are
employed to compute the Local Density from Equation 2, or to
construct C.
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2.2 Local density computation

In this section, we describe the subroutine (schematically
represented in Figure 3) that computes the Local Density ρj of
the point j, as defined in Equation 2. To perform the computation,
all points i whose distance di,j from point j is smaller than the
threshold dc need to be determined from the search space S. This
search space is the smallest set of tiles □k required to cover the
di,j < dc consideration circle. In Figure 2A, S is highlighted
in light blue.

We shall refer to S as the local dataset that, as explained above,
can be efficiently prepared with the qRAM (Giovannetti et al., 2008).
To do so, we only require determining the tiles □k that are in the
search space, which can be done efficiently classically (Rovere et al.,
2020). The initial state of this subroutine, after being prepared via
the qRAM, is therefore

∑
k∈S

∑
i∈□k

i| 〉 →qRAM ∑
k∈S

∑
i∈□k

i| 〉 Xi, Ei| 〉, (4)

where the index i is unique for each point in S. i ∈ □k indicate all
indices within tile k [either of the light blue squares in Figure 2A].
Ancillary qubits, omitted for clarity in Equation 4, are employed
within the Grover search (for more information, see Supplementary
Appendix SA).

At this stage, we must find the points i [green dots in Figure 2A]
that are within a radius of dc from the base point j [black point in
Figure 2A]. As shown in Figure 3, we perform Grover Search
Brassard et al. (2002) to prepare.

∑
i

i| 〉 Xi, Ei| 〉 →Grover ∑
di,j < dc

i| 〉 Xi, Ei| 〉. (5)

Here, the first register of the Grover output contains all points
characterized by indices i such that di,j <dc. As shown in the inset of
the figure, the Grover Search consists of O( ��

m
√ ) repetitions (where

m is the number of points in S) of the Uψ and UP operators. UP is
the diffusion operator and Uψ is the unitary associated with the
oracle of Grover Search (Lov, 1996). Further details regarding
Grover Search and the unitaries we use for our algorithm can be
found in Supplementary Appendix SA.

When the algorithm is run, measurement either yields a point
that satisfies this distance condition, or (if there are no valid indices
left) an index that does not satisfy this condition. This is verified by
the grey “Valid?” diamond in Figure 3. The branched logic following
this block ensures that the algorithm loops until all the required
points are returned by the algorithm in the “Return” block.

Once we have obtained all indices i of points satisfying the
distance condition (di,j < dc), we perform the summation in
Equation 2. This is computed and stored in the original dataset
for each point. The database is now updated using qRAM with local
density values for all points where the jth point in the database has
the corresponding computed local density ρj.

The scaling of the subroutine that determines the local density of
a single point is given by the number of points in the blue
consideration circle in Figure 2A such that di,j < dc. If we say this
number is p, O(p) runs are required. This is therefore a O(p ��

m
√ )

algorithm as opposed to the O(m) classical iterative algorithm for
the Unstructured Search Problem.

As a final remark, we highlight that it is in principle possible to
design a unitary that computes the Local Density directly and stores
the output in a quantum register. This unitary would remove the
requirement of finding individually the indices i such that di,j <dc,
thus removing the overhead of p in O(p ��

m
√ ). However, designing

this circuit is non-trivial and its depth may be large. This is therefore
left for future investigations.

2.3 Find nearest higher

Here, we describe qCLUE’s subroutine for finding the Nearest
Highers (N j) introduced in Section 2.1. As a reminder, N j is the
nearest point to the base point jwhose local density ρN j

is more than
the local density ρj of the base point, see Equation 3a.

Similar to the initialization carried out for the Local Density
Computation step, we use qRAM to initialize the quantum state

∑
k∈S

∑
i∈□k

i| 〉 →qRAM∑
k∈S

∑
i∈□k

i| 〉 Xi| 〉 ρi
∣∣∣∣ 〉. (6)

Here, the indices i are within the tiles □k, as in Equation 4, and S
is the considered search space, schematically represented by the light
green box in Figure 2B. This search space is determined from dm as
opposed to dc, which is the user-defined threshold that is set to be
δdc. Note that the weight Ei, employed for determining the densities
ρi in Section 2.2, is hereon not required.

To find the Nearest Higher, we use a Grover-Enhanced Binary
Search (GEBS) where each search step is enhanced by Grover’s
algorithm (Equation 5). The output of every Grover run,

∑
dL < di,j < dt ,

ρi > ρb

i| 〉 Xi, ρi
∣∣∣∣ 〉, (7)

is a superposition over all points i whose distance di,j from the base
point j lies between the thresholds dL and dt. Furthermore, their
local density ρi should be higher than that of the base ρj. At each
step, dL and dt are updated based on whether a point satisfying the
conditions in the grey diamond of Figure 4A is found. Ancilla
registers are used here as detailed in Supplementary Appendix SA.

To better understand the algorithm, we provide a step-by-step
walkthrough of the example in Figure 4B. The search space S is
schematically represented by the inset in the right hand side, where
each dot represents a point with a size that is proportional to its local
density. The consideration circle (light green, dotted border)
highlights all points within a radius dm � δdc. In this work, we
set the outlier delta factor δ to 2. The consideration circle in the inset
corresponds to dL � 0 and dt � dm, shown in step (I). In the main
panel, vertical lines refers to the steps (I–VI) of GEBS that are
reported below, and schematically represent the distances of all
points (coloured dots) from the base point j (black one at
the bottom).

GEBS starts with the higher threshold set as dt � dm and the
lower threshold dL � 0 as shown in vertical line (I) of Figure 4B.
Following the probabilistic nature of quantum mechanics, assume
that the point with a red border indexed i is found after measuring
the output of the Grover Search in Equation 7. This triggers the
updates in the Y branch in the diagram of Figure 4A, such that we
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assign N j � i and update dt ↦ (di,j + dL)/2. The point indexed i is
then removed from the search space, as can be seen in (II). Now,
since no point satisfies the conditions in the diamond of the flow
diagram [see (II)] and dt was just set to (di,j + dL)/2, the B branch is
carried out. This updates the thresholds dt and dL for the next
iteration of the algorithm, see (III).

Now, assume that the new point with a red border is found
[step (III)]. Updates in the Y branch of Figure 4A are carried out
again with a new index i and the search region is reduced to
contain a single point. In the next step (IV), that point (yellow) is
found and, for the third and last time, the nearest higher and the
thresholds are triggered according to the Y branch. Next, since no
point is found in (V), qCLUE executes the updates in the B
branch of the diagram. In the last iteration (VI), no points satisfy
the desired conditions. The parameter dt was just set to dt−1,
i.e., the subroutine just ran B which means that the A branch is
now executed and N j is returned.

The runtime complexity of the GEBS procedure, with m points
in the search space S, is O(α ��

m
√ ) as opposed to O(m) classically.

The α term is due to the binary search procedure and depends on the
size of the quantum register used to encode the distance. Specifically,
for a chosen precision 2−Δ used for the positions of the points in the
datasets, α � Δ.

2.4 Find seeds, outliers, and assign clusters

Once the Nearest Highers N j are determined for all points j in
the dataset, Seeds and Outliers are found via another Grover Search
over all points in the dataset. As per the definition in Equation 3a,
Seeds [red points in Figure 2C] are the points with highest local
density within a neighbourhood. Outliers [blue points in Figure 2C]
are mathematically described by Equation 3b, are most likely noise,
and therefore do not belong to any cluster.

Similar to the previous subroutines, the quantum registers for
these procedures are initialized via qRAM. Seeds and outliers are
then determined based on the corresponding conditions via Grover
Search. Two quantum registers, the first marking whether a point is
an outlier and the second to store the seed number – which is also
the cluster number – are added to the quantum database.

The final subroutine of qCLUE is the assignment of points to
clusters. At this stage, outliers have been removed from the input
dataset, as they have been already identified. The algorithm flow is
the same as that of the Local Density step in Figure 3. For a chosen
seed s, we define C to be the set containing the indices of all points
determined to be in the associated cluster at the end of this
subroutine. To assign points to C, we follow a procedure similar
to that of the Local Density step in Figure 3. In the “Initialize” step, C

FIGURE 4
(A) Diagrammatic representation of the algorithm. GEBS determines successive candidates for the “Nearest Higher” until the proper one is found.
The quantum state in Equation 6 is prepared in the “Initialize” step (green box). Grover Search (larger diamond) is then performed to find the points
satisfying dL <di,j <dt, ρi < ρj. If this condition is satisfied (“Y” branch), dt is updated and Grover run again. If not (“N” branch), control flows to the “?”
diamond. The branch A is entered if the “?” condition is being checked for the first time or if branch Bwas just run. Branch B is entered if branch Y was
just run. (B) The algorithm’s working is shown step-by-step (numbers at the bottom) for the search space S in the inset in the top right corner. The points
are mapped to a line where the height represents the distance di,j from the base point j (black dot at the bottom). The grey (orange) points are outside
(inside) the green consideration circle with radius dm [see also Figure 2B]. At each step of GEBS, the thresholds dL and dt are updated according to the
logic in panel (A). The dot with the red border indicates the current candidate forN j; when filled (empty) it is (not) found by Grover Search at that step. The
yellow point is the Nearest Higher N_{j} that is found at the end of GEBS.
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is initialized to {s} and the quantum registers are initialized via
qRAM to the state.

∑
i∈DSS

i| 〉 →qRAM∑
i

i| 〉 Vi| 〉, (8a)

Vi| 〉 � Xi, ρi, dN i ,i, XN i

∣∣∣∣ 〉. (8b)

In the “Grover” block, we search over a superposition of points
in the dataset which we call the Dynamic Search Space (DSS) created
by qRAM as shown in Equations 8a, 8b. The DSS differs from the
search space S in the Local Density step as it is dynamic. This is
because it depends on the points in C, which are updated at each
iteration. In Figure 2C, for instance, the red seed and the orange
point both with black borders are the elements of the current C. To
find the DSS, a square window of edge 2dm is first opened for every
point in C (in the figure, the squares with the same border style as the
corresponding points). A rectangular region (red box) is then
obtained by finding the axis-aligned minimum bounding box for
these windows. The set of tiles □k covered partially or fully by this
minimum bounding box is the DSS. For example, in Figure 2C, it
comprises the 9 tiles highlighted in light red.

With a similar procedure as for the Local Density subroutine, the
“Grover” block now systematically identifies all followers of all
points within set C. Here, in the “Update” step in Figure 3, as
the point found by the “Grover” block has passed the “Valid”
condition, it is appended to C. Once no more points are found,
the “Return” block yields C, following the same flow as the Local
Density computation subroutine.

The complexity of the Cluster Assignment step is similar to the
one of the Local Density Computation subroutine. The quantum
advantage stems from the quadratic speedup provided by the Grover
algorithm, which allows determining the follower faster if compared
to CLUE. If there are f points in a cluster C and m points in the
corresponding DSS, the classical complexity of the Cluster
Assignment step is O(m), while the quantum algorithm has a
runtime of O(f ��

m
√ ).

3 Results

In this section, we test qCLUE in multiple scenarios, each
designed to investigate its performance for different settings. In
Section 3.1, we introduce the scoring metrics used for our analysis.
In Section 3.2, we describe the performance of the algorithm applied
on a single cluster in a uniform noisy environment. In Section 3.3,
we study the performance on overlapping clusters. Finally, in
Section 3.4, we study the performance of qCLUE on non-
centroidal clusters with and without a weight profile.

3.1 Scoring metrics: homogeneity and
completeness scores

It is more important to correctly classify high-weight points such
as seeds as compared to low-weight points such as outliers. Since we
would like our metric to be cognizant to this, we use modified,
weight-aware versions (Jekaterina, 2023) of the Homogeneity (FH)
and Completeness (FC) scores (Rosenberg and Hirschberg, 2007).

These metrics are defined in terms of the predicted cluster labels Cp
obtained from qCLUE, and the true cluster labels Ct of the generated
dataset. FH and FC are based on the weight aware (Jekaterina,
2023) mutual information I(Cp: Ct), the Shannon entropy H(Ct),
and the joint Shannon entropy H(Ct, Cp) (Nielsen and
Chuang, 2010):

FH � I Cp: Ct( )
H Ct( ) andFC � I Cp: Ct( )

H Cp( ) , (9a)

H Cp( ) � −∑
a

Ea

E
log2

Ea

E
, (9b)

H Ct( ) � −∑
b

Eb

E
log2

Eb

E
, (9c)

H Cp, Ct( ) � −∑
a

∑
b

Ea,b

E
log2

Ea,b

E
, (9d)

I Cp: Ct( ) � H Cp( ) +H Ct( ) −H Cp, Ct( ). (9e)

As discussed in (Jekaterina, 2023), Ea is the weight aggregated
over all points that qCLUE classifies into cluster a. Eb is the weight
aggregated over all points in cluster b in the true dataset. Ea,b is the
sum of weights of all points in cluster b in the true dataset that are
also assigned to cluster a by qCLUE. E is the accumulated weight of
all points in the dataset. We remark that for unit weights, Equations
9a, Equations 9e, reduce to the more common form presented in
Rosenberg and Hirschberg (2007).

qCLUE applied to an input dataset yields homogeneity FH � 1
if all of the predicted clusters only contain data points that are
members of a single true cluster. On the other hand, FC � 1 is
obtained if all the data points that aremembers of a given true cluster
are elements of the same reconstructed cluster. Therefore, these
metrics are better suited to different scenarios. The impacts of noise
and cluster overlap investigated in Sections 3.2, 3.3 are better
captured by FH. Indeed, if qCLUE incorrectly classifies noise
points into predicted clusters, FC is unaffected. On the other
hand, FC shall be employed when studying non-centroidal
clusters in Section 3.4, since FH � 1 if one true cluster is divided
by qCLUE into many sub-clusters.

3.2 Noise

Here, we study the performance of qCLUE for a single cluster in
a noisy environment. We vary the number NN of noise points
sampled from a uniform distribution over a square region of fixed
size. A cluster of NC points with coordinates Xj � [xj,1, xj,2] is
sampled from the multivariate Gaussian distribution.

pdf Xj( ) � e
−1
2 Xj−μj( )T

Σ−1 Xj−μj( )
2π( )n2|Σ|12 , (10)

where μ � [μx1, μx2]T is the mean of the distribution (set to [0, 0]T in
our case) and Σ the covariance matrix. Here, we choose Σ � σI , with
I being the identity matrix and σ a positive real number.

Examples of the generated clusters (in orange) and noise (in
blue) are given in Figures 5A, B for NN/NC � 0.33 at σ � 32 and
NN/NC � 1 at σ � 10, respectively. The weight assigned to each
point Xj in the cluster is given by A × pdf(Xj) [see Equation 10]
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with A � 5 × 102. The weight of each noise point is randomly
sampled between zero and one. This choice resembles the typical
scenarios in ER tasks for which CLUE (Rovere et al., 2020)
was designed.

In Figure 5C, we show the variation of homogeneity score FH

with respect to the ratioNN/NC. We employ the values of σ reported
in the legend, associated to different colors in the plot. As can be
seen, the clustering performance is inversely proportional to both
NN/NC and σ. When these parameters are small, the typical
distance between cluster points is much smaller than that
between noise points, and FH approaches unity. With a higher
chance of labeling noise points as within the cluster, however, FH is
lowered. As such, the degradation of FH is proportional to the
probability of a noise point being in the cluster region, which
increases with both σ and NN/NC.

3.3 Overlap

Here, we consider the case of two circular clusters with N1 and
N2 points respectively, each sampled from themultivariate Gaussian
distribution in Equation 10 and with Σ � σI . The weight profile is
determined by pdf(Xj) for coordinates Xj. The centers μ1 and μ2
(two instances of μ) are chosen to be (r/2, 0) and (−r/2, 0),
respectively, such that the distance between the cluster centers is r.

In Figure 5D, we study the variation of homogeneity scoreFH as
a function of r/σ for several values ofN2/N1. The computed clusters
for r/σ � 2 atN2/N1 � 1 and r/σ � 2.67 atN2/N1 � 2 are shown in
panels (e) and (f), respectively, to showcase the typical scenarios
considered here.

For all N1/N2, FH is zero for low r/σ (high overlap). There is
then a region where FH increases with r/σ and then saturates at

unity for high r/σ (little to no overlap).When the two clusters are too
close, i.e., r/σ≪ 1, they are in fact indistinguishable and qCLUE
labels all points together. Increasing the ratio r/σ makes the clusters
move away from each other and thus qCLUE can discern them. This
behavior can be observed in Figures 5E, F. Importantly, large values
of FH are already attained when the clusters still have a significant
overlap. In this scenario, employing the weight labels and the weight
density considerably contributes to accurate cluster assignment. In
fact, the nearest higher points are more likely to connect the points
near or on the decision boundary with the more energetic core, thus
separating the clusters better.

The performance of qCLUE is also affected by the ratio N1/N2.
When one cluster contains more points than the other, it is more
likely to “capture” points from the smaller. The resulting loss in
homogeneity score FH for low r/σ ratios is evident from Figure 5D,
where it can be seen that clusters of similar sizes are better
distinguished from each other.

3.4 Non-centroidal clusters

Finally, we study the performance of qCLUE on non-centroidal
clusters. For this purpose, we use the Moons and Circles datasets in
Figures 5G–J, generated using scikit − learn (Pedregosa et al., 2018).
Two settings are considered - one where a uniform weight profile is
applied over the points [panels (g, h)] and one where a linear
gradient weight profile is employed [panels (i, j)].

In the latter case, we assign the highest value of the weight for
each cluster to a single point and lower the weights of all other
points proportionally to their x2 coordinate. In the case of the moon
dataset, E � x2 for the upper moon (so the top point of the upper
moon has the maximum weight in the cluster) and E � 60 − x2 for

FIGURE 5
Numerical results from qCLUE simulated on a classical machine. (A–C) qCLUE’s performance in noisy environments. The dataset generated for
these experiments and visualized in panels (A, B) consists of a cluster (noise) with NC � 750 (NN) points sampled from the Gaussian distribution in
Equation 10 (uniform distribution) over a square of size 500. The weight of noise points is sampled uniformly between zero and one, while each cluster
point is assigned a weight that is the probability of being sampled multiplied by a factor A � 500. (A, B) Computed clusters at NN/NC � 0.33, σ � 32,
and NN/NC � 1, σ � 10, respectively. In (C), FH is plotted against NN/NC for the σ in the legend. (D–F) Performance for overlapping clusters. In (D), FH vs.
r/σ is shown for σ � 30 and different ratiosN1/N2. Here, r is the distance between the centers of two clusters withN1 � 500 andN2 points, andwe assign to
each point a weight that is equal to its sampling probability in Equation 10. (E, F) Computed clusters at r/σ � 2.0,N1/N2 � 1, and r/σ � 2.67,N1/N2 � 2,
respectively. The shadowed regions in (C, D) represent the standard deviations of FH over 30 iterations. (G–J) Performance over non-centroidal clusters
of 500 points each generated from scikit − learn (Pedregosa et al., 2018). In (G, H) the points’weight profile is uniform, while in (I, J) is varied linearly with
respect to the distance such that each cluster has a single, most energetic point (see Section 3.4). For all experiments, dc was set to 20 and ~ρwas set to 25.
(A–F) use the weight-aware metric in Equation 9a, Equation 9e, while in (G–J), since the weight profile is assigned by the user and is not part of the
dataset itself, in the scoring process we set all points to have the same weight.
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the lower moon (so the bottom point has the highest weight in the
cluster). For the circles, E � |x2 − 200|/10 for the inner circle and
E � |x2 + 100|/5 for the outer one.

Since these datasets are noiseless and well separated, FH is
always one and we employ FC to characterize the performance of
qCLUE. As in Figures 5G, H the weight profile is uniform, and
several points satisfy the seed condition. Therefore, qCLUE groups
each circle into several clusters, such that we obtain limited values
for FC. On the contrary, cases with a weight profile assigned
[Figures 5I, J] results in fewer seeds that are better recognized by
qCLUE, and the completeness score FC is considerably enhanced.

4 Conclusion and outlook

We introduced qCLUE, a novel quantum clustering algorithm
designed to address the computational challenges associated with
high-dimensional datasets. qCLUE’s significance lies in its potential
to efficiently cluster data by effectively leveraging quantum
computing, mitigating the escalating computational complexity
encountered by classical algorithms upon increasing
dimensionality of datasets. The algorithm’s ability to navigate
high-dimensional spaces is particularly promising on datasets
with high point density, where local searches become too
demanding for classical computers. Therefore, qCLUE will be
beneficial in multiple scenarios, ranging from quantum-enhanced
machine learning (Haug et al., 2023; Zeguendry et al., 2023) to
complex data analysis tasks (Sinayskiy et al., 2015).

According to our numerical results, qCLUE works well and
its performance is significantly enhanced when a weight profile is
assigned. Specifically, we study qCLUE in noisy environments, on
overlapping clusters, and on non-centroidal datasets that are
commonly used to benchmark clustering algorithms (Fujita,
2021; Tiwari et al., 2020). In scenarios that are typically
encountered in ER tasks, qCLUE correctly reconstructs the
true clusters to a high level of accuracy as it matches the
performance of CERN’s CLUE on a given dataset. On the
other hand, a weight profile can significantly boost qCLUE
performance as we have seen in the case of non-centroidal
clusters. Our numerical results, backed up by the well-studied
CLUE and by the quadratic speedup stemming from Grover
search, make qCLUE a promising candidate for addressing
high-dimensional clustering problems (Wei et al., 2020;
Kerenidis and Landman, 2021; Duarte et al., 2023).

As a first outlook, we identify the implementation of qCLUE on
NISQ hardware (Celi et al., 2020; Labuhn et al., 2016; Bernien et al.,
2017; Lanyon et al., 2011; Arute et al., 2019; Córcoles et al., 2015;
Debnath et al., 2016). This requires a comprehensive consideration
of real device constraints. Aspects such as circuit optimization (Nash
et al., 2020), and the impact of noise will be critical and must be
carefully addressed. Second, it is possible to improve the scaling of
qCLUE by devising a unitary that mitigates the need for repeating
Grover’s algorithm for each point satisfying the search condition
and thereby eliminating the factors of p, α, andf in the scaling of the
subroutines outlined in Sections 2.2–2.4 respectively.We finally note
that it is worth investigating variations of qCLUE that improve the
quality of clustering in different scenarios. For instance, one can
devise more sophisticated criteria for the Nearest Higher or Local

Density computation steps. Performance on a given dataset can also
be improved by performing exhaustive hyperparameter searches or
via hyperparameter optimization algorithms (Wu et al., 2019).
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