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This study investigates the possibility of achieving a slow signal field at the level of
single photons inside nanofibers by exploiting stimulated Brillouin scattering,
which involves a strong pump field and the vibrational modes of the waveguide.
The slow signal is significantly amplified for a pump field, with a frequency higher
than that of the signal and attenuated for a lower pump frequency.We introduce a
configuration for obtaining a propagating slow signal without gain or loss and
with a relatively wide bandwidth. This process involves two strong pump fields
with frequencies both higher and lower than that of the signal where the effects
of signal amplification and attenuation compensate each other. We account for
thermal fluctuations due to the scattering of thermal phonons and identify
conditions under which thermal contributions to the signal field are negligible.
The slowing of light through Brillouin optomechanics may serve as a vital tool for
optical quantum information processing and quantum communications within
nanophotonic structures.
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1 Introduction

Significant progress has been achieved in recent years in fabricating waveguides
with cross-sections nearing nanoscale dimensions (Safavi-Naeini et al., 2019), opening
new horizons for stimulated Brillouin scattering (SBS). A pivotal advance in SBS
emerged with the identification of a dominant mechanism induced by radiation
pressure, as has been theoretically predicted (Rakich et al., 2012; Van-Laer et al.,
2016; Zoubi and Hammerer, 2016; Rakich and Marquardt, 2018) and experimentally
realized (Shin et al., 2013; Beugnot et al., 2014; Van-Laer et al., 2015a; Van-Laer et al.,
2015b; Kittlaus et al., 2016; Kittlaus et al., 2017). SBS in waveguides has found
application across a broad spectrum of communication and information processing
technologies. The substantial enhancement of SBS in waveguides facilitates the
amplification of the Stokes field (Kittlaus et al., 2016; Kittlaus et al., 2017;
Otterstrom et al., 2019), paving the path towards a Brillouin laser (Otterstrom
et al., 2018a; Gundavarapu et al., 2019; Chauhan et al., 2021) and light storage (Zhu
et al., 2007; Merklein et al., 2017). Various proposals for nanoscale waveguides (Safavi-
Naeini et al., 2019) have emerged in the literature, where a waveguide’s mechanical
quality factor—determining the sound wave lifetime (Eggleton et al., 2013)—
significantly impacts the efficiency of each proposed device. Moreover, thermal
phonons pose major challenges to efficient photon and phonon processes within
waveguides (Kharel et al., 2016; Van-Laer et al., 2017; Behunin et al., 2018; Dallyn
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et al., 2022). To address these challenges, optomechanical cooling
via sideband cooling in a continuous system has been
demonstrated, using SBS to cool a continuum of traveling
wave phonons in a waveguide by tens of kelvins (Otterstrom
et al., 2018b). These achievements open the possibility of
developing versatile light–matter interfaces (Hammerer et al.,
2010) based on SBS achieving, for example, optomechanical
entanglement (Zhu et al., 2024) or nonlinear photon
interactions (Zoubi and Hammerer, 2017).

This study introduces a configuration to achieve slow
photons using SBS within waveguides. By coupling a signal
field to classical pump fields through Brillouin scattering
mediated by acoustic waves, it is possible to achieve a low
effective group velocity; however, the signal’s amplitude is
significantly amplified when the pump frequency exceeds that
of the signal and is considerably attenuated when the pump
frequency is lower (Thevenaz, 2008). A stable signal amplitude
can be maintained by employing two simultaneous pump fields
with frequencies both above and below that of the signal. The
Brillouin scattering from the higher pump field into the signal is
balanced by the scattering from the signal field into the lower
pump field. We account for the impact of thermal phonons in the
waveguide medium and identify conditions under which thermal
contributions to the signal amplitude are negligible. The real-
space quantum Langevin equations of motion for the signal field
are solved by assuming classical pump fields and adiabatically
eliminating the phonon components. As a result, the signal field
propagates through the waveguide without any gain or loss, with
an effective group velocity significantly more reduced than the
group velocity of light.

The ability to control the group velocity of light within
waveguides opens new avenues for enhancing light–matter
interactions, which are crucial for optical quantum
information processing (O’Brien, 2007). Slowing the photons
extends their interaction time with the medium, potentially
increasing the efficiency of quantum gates and other
processing elements (Zoubi and Hammerer, 2017; Zoubi,
2021; Zoubi, 2023). Furthermore, the stable propagation of
slow light without gain or loss is essential for maintaining the
coherence of quantum states necessary for quantum
communication and computing.

The paper is structured as follows. Section 2 introduces a
coupled system of photons and phonons via SBS within a
waveguide. Section 3 describes two methodologies to achieve a
slow propagating signal field utilizing SBS and a strong classical
pump field. The first method employs a pump field with a
frequency higher than that of the signal, leading to significant
signal amplification. The second method utilizes a pump field
with a frequency lower than the signal’s, resulting in considerable
signal attenuation. The impact of thermal fluctuations is analyzed
in both scenarios. Section 4 discusses the achievement of a slow
signal at the single-photon level without gain or loss by
implementing two pump fields with frequencies both above
and below that of the signal while minimizing thermal
contributions. Section 5 feature a discussion and conclusions.
Detailed derivations of the equations of motion and their
solutions are presented in the appendices.

2 Continuum quantum optomechanics
in nanophotonic wires

We start by presenting a system of interacting light and sound
waves within nanoscale waveguides via Brillouin scattering. The
system consists of a waveguide composed of dielectric material
placed in free space, characterized by a refractive index n greater
than 1 (e.g., for silicon material, n ≈ 3.5), as depicted in Figure 1.
The length of the waveguide, L, significantly exceeds its
transverse dimension, d, with L ≫ d, and the light wavelength
λ is comparable to the wire dimension, λ≲ d. In our prior research
(Zoubi and Hammerer, 2016), we formulated a microscopic
quantum theory for the interaction between the light field and
mechanical excitations in nanoscale waveguides, deriving a
Brillouin-type Hamiltonian for the interplay of photons and
phonons. This configuration allows photons and phonons to
propagate freely along the waveguide while being confined in
the transverse direction, leading to the emergence of photonic
and phononic multi-mode branches. In Zoubi and Hammerer
(2016), we derived the dispersion relations for photons and
phonons and determined the photon–phonon coupling
parameter by considering both electrostriction and radiation
pressure mechanisms. In such an environment, the
photon–phonon coupling via Brillouin scattering is
significantly more intensified than conventional waveguides, a
phenomenon corroborated by experimental findings (Rakich
et al., 2012; Shin et al., 2013; Beugnot et al., 2014; Van-Laer
et al., 2015a; Van-Laer et al., 2015b; Kharel et al., 2016; Kittlaus
et al., 2016; Van-Laer et al., 2016; Zoubi and Hammerer, 2016;
Kittlaus et al., 2017). This research broadens the scope of
conventional quantum optomechanics, which typically focuses
on localized modes of photons and phonons, to include
continuum quantum optomechanics that encompass
propagating modes (Aspelmeyer et al., 2014; Kharel et al.,
2016; Zoubi and Hammerer, 2016; Safavi-Naeini et al., 2019).

The Hamiltonian for propagating photons within a waveguide is
described by

Hphot � ∑
k,α

Zωkα â†kαâkα, (1)

where â†kα and âkα represent the creation and annihilation operators
for a photon of wavenumber k and branch α, respectively, with ωkα

denoting the photon frequency. The Hamiltonian for propagating
phonons within a waveguide is expressed as

FIGURE 1
Schematic diagram of a waveguide of length L and dimension d
where L ≫ d. The input–output pump and signal fields are presented
at the two waveguide edges. The light wavelength λ obeys λ≲d.
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Hphon � ∑
q,μ

ZΩqμ b̂
†

qμb̂qμ, (2)

where b̂
†

qμ and b̂qμ are the creation and annihilation operators for a
phonon of wavenumber q and branch μ, respectively, with Ωqμ

indicating the phonon frequency. The Hamiltonian describing the
photon–phonon interaction is given by

Hphot−phon � Z∑
k,q

∑
α,β,μ

gkq,αβμ* b̂
†

qμâ
†
k−qβâkα + h.c.{ }, (3)

where gkq,αβμ represents the photon–phonon coupling parameter.
The first term describes the scattering of a photon fromwavenumber
k in branch α to wavenumber k − q in branch β through the emission
of a phonon of wavenumber q in branch μ. Conversely, the
Hermitean conjugate (h.c.) term accounts for the scattering of a
photon from wavenumber k − q in branch β to wavenumber k in
branch α via the absorption of a phonon of wavenumber q in branch
μ. Owing to translational symmetry along the wire, these processes
adhere to momentum conservation. Note that the momentum-space
operators for photons and phonons, âkα and b̂qμ, are dimensionless.

In Zoubi and Hammerer (2016), we solved the equations of
motion for the electromagnetic field and mechanical excitation to
derive the photon and phonon dispersions analytically for the
specific case of a cylindrical waveguide, obtaining the frequencies
ωkα and Ωqμ. However, the scheme of the current paper can be
implemented experimentally for nanoscale wires of any cross-
section shape—for example, circular and rectangular (Rakich
et al., 2012; Kittlaus et al., 2017; Safavi-Naeini et al., 2019). We
focus here on a linear region of the dispersion and assume that the
light injected into the waveguide possesses a finite bandwidth. For
photons, we employ the linear dispersion relation
ωkα � ω0α + vgα(k − k0α), where ω0α is the frequency at the center
of the signal bandwidth for branch α. The wavenumber bandwidth is
denoted by Bk

0α around k0α. The effective group velocity in the linear
segment is vgα for branch α. A similar approach is applied to the
phonon dispersion, where Ωqμ � Ω0μ + vsμ(q − q0μ). The
wavenumber bandwidth Bq

0μ is centered around q0μ, with the
sound velocity being vsμ for branch μ. For propagating both
photons and phonons, the wavenumbers are determined by the
periodic boundary condition in a wire of length L, where the
wavenumber is quantized as k � 2π

L m with m being integers
(m � 0,± 1,± 2,/ ). We convert the Hamiltonian from
momentum-space to real-space representation to accommodate
the space–time dynamics of pulse light fields propagating
through the waveguide. This transformation is achieved by
defining the light field operator as

ψ̂α z( ) � 1��
L

√ ∑
k∈Bk

0α

âkαe
i k−k0α( )z, (4)

and its inverse transformation by

âkα � 1��
L

√ ∫L

0
dz ψ̂α z( )e−i k−k0α( )z. (5)

Translational symmetry ensures the identities 1
L∑ke

−ik(z−z′) �
δ(z − z′) and 1

L∫L

0
dzei(k−k′)z � δk,k′, allowing field operators to

satisfy the boson commutation relations
[ψ̂α(z), ψ̂†

α(z′)] � δ(z − z′). The real-space photon Hamiltonian
is expressed as

Hphot � ∑
α

Zω0α ∫ dz ψ̂†
α z( )ψ̂α z( ){

−iZvgα ∫ dz ψ̂†
α z( ) ∂ψ̂α z( )

∂z
}. (6)

This formulation allows for a nuanced treatment of the propagation
dynamics of light pulses within the waveguide, encapsulating the
effects of group velocity and phase shifts in real space.

Similarly, we define the mechanical excitation field operator as

Q̂μ z( ) � 1��
L

√ ∑
q∈Bq

0μ

b̂qμe
i q−q0μ( )z, (7)

and its inverse transformation by

b̂qμ � 1��
L

√ ∫L

0
dz Q̂μ z( )e−i q−q0μ( )z, (8)

which satisfy the commutation relation [Q̂μ(z), Q̂†

μ(z′)] � δ(z − z′).
The real-space phonon Hamiltonian is given by

Hphon � ∑
μ

ZΩ0μ ∫ dz Q̂†

μ z( )Q̂μ z( ){ −iZvsμ ∫ dz Q̂†

μ z( ) ∂Q̂μ z( )
∂z

}.
(9)

The real-space photon and phonon field operators, having a dimension
of 1/

�����
length

√
, represent slowly varying spatial amplitudes.

The coupling parameter for photon–phonon interaction, gkq,αβμ,
is considered constant across the photon and phonon bandwidths
Bk
0α and Bq

0μ. Utilizing the local field approximation, the coupling
parameter simplifies to gαβμ. Consequently, the real-space
photon–phonon interaction Hamiltonian is expressed as

Hphot−phon � Z
��
L

√ ∑
α,β,μ

∫ dz gαβμ* Q̂†

μ z( )ψ̂†
β z( )ψ̂α z( ){

+gαβμ ψ̂†
α z( )ψ̂β z( )Q̂μ z( )}. (10)

FIGURE 2
(A) The photonic branches (s) and (p) are presented for the
angular frequency ω as a function of the wavenumber k. The two
branches are assumed to have linear dispersion in the appropriate
zones with the same group velocity vg. The relevant photon
modes treated in the paper are indicated, which are the two pump
fields (ωu , ku) and (ωl , kl), and the signal field (ωs, ks). (B) The phononic
branch is presented for the angular frequency Ω as a function of the
wavenumber q. The branch is assumed to be dispersion-less in the
appropriate zone. The relevant phononmodes treated in the paper are
indicated, which are (Ωu ,qu) and (Ωl,ql), where Ωu � Ωl with qu ≠ ql.
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This formulation provides a compact description of the interaction
between photons and phonons in the real-space framework,
accommodating the direct and inverse scattering processes.

3 Slow light in Brillouin quantum
optomechanics

We proceed on this basis to describe the phenomena of signal
field amplification and attenuation by exploiting stimulated inter-
modal Brillouin scattering of co-propagating photons that belong to
distinct spatial optical modes (Kittlaus et al., 2017). We assume a
signal field in branch (s) centered around frequency ω0s � ωs.
Conversely, the pump field occupies a distinct branch (p) and is
centered around frequency ω0p � ωp. Both branches are assumed to
share identical slopes, leading to equal group velocities vg for the
fields in each branch (Figure 2A). The pump field, being
considerably stronger than the signal field, is treated as a classical
quantity with a stationary (slowly varying) amplitude denoted by
E � 〈ψ̂p〉. On the phonon side, we assume a non-dispersive single
branch with a constant frequency Ωqμ � Ω0μ � Ω and negligible
sound velocity vsμ (Figure 2B). Consequently, the photon
Hamiltonian is formulated as

Hphot � Zωs ∫ dz ψ̂†
s z( )ψ̂s z( ) − iZvg ∫ dz ψ̂†

s z( ) ∂ψ̂s z( )
∂z

. (11)

Both the signal and pump fields are assumed to propagate in the
rightward direction. The rate of photon damping is considered
negligible during their transit along the waveguide’s length L. We
account for phonon dissipation by incorporating a damping rate Γ,
and thermal fluctuations are represented through the Langevin force
operators F̂ , adhering to the properties outlined in Gardiner and
Zoller (2010)

〈F̂ z, t( )F̂ z′, t′( )〉 � 〈F̂ †
z, t( )F̂ †

z′, t′( )〉 � 0,

〈F̂ †
z, t( )F̂ z′, t′( )〉 � Γ�n δ t − t′( )δ z − z′( ),

〈F̂ z, t( )F̂ †
z′, t′( )〉 � Γ �n + 1( ) δ t − t′( )δ z − z′( ),

(12)

with �n representing the average phonon count at frequency Ω. At
low temperatures, the appearance of thermal photons is negligible,
while thermal phonons are likely present and treated here as a heat
reservoir in applying the Markovian approximation (Gardiner and
Zoller, 2010).

In our analysis, we explore two distinct scenarios based on the
relationship between the pump and signal frequencies: 1) the pump
frequency is higher than that of the signal, denoted as ωp >ωs, and 2)
the pump frequency is lower than the signal frequency, indicated by
ωp <ωs.

3.1 Slow light with signal amplification

In the scenario where ωp >ωs, a pump photon is scattered into a
signal photon through the emission of a phonon, or conversely, a
signal photon is converted into a pump photon by the absorption of
a phonon (Figure 3). The amplitude of the pump field is represented
by Eu, with its frequency designated as ωu ≡ ωp. The phonon

operator is expressed by Q̂u, and the associated Hamiltonian for
the phonons is formulated as

Hu
phon � ZΩ∫ dz Q̂†

u z( )Q̂u z( ). (13)

The interaction Hamiltonian between photons and phonons is
given by

Hu
phot−phon � Z

��
L

√ ∫ dz gu*Eu Q̂†

u z( )ψ̂†
s z( ) + h.c.{ }. (14)

The Heisenberg–Langevin equations of motion for the photon
and phonon field operators are formulated as

∂

∂t
+ vg

∂

∂z
( )ψ̂s z, t( ) � −iωs ψ̂s z, t( ) − i

��
L

√
gu*Eu Q̂†

u z, t( ),
∂

∂t
+ Γ
2

( )Q̂u z, t( ) � −iΩ Q̂u z, t( ) − i
��
L

√
guEu ψ̂†

s z, t( )
−F̂ z, t( ).

(15)

The resulting signal field operator is (see appendix A for details):

ψ̂s z, t( ) � ψ̂in
s z − vgt( )e Gu−iκu( )z + i

��
L

√
gu*Eu

vg
e−iΔωut

× ∫t

0
dt′∫z

0
dz′F̂ †

z′, t′( )e−Γ
2 t−t′( )e Gu−iκu( ) z−z′( ),

(16)

where ψ̂in
s (z − vgt) represents the incoming signal field operator and

Δωu � ωu − ωs − Ω denotes the detuning frequency (Figure 3B). The
gain parameter is defined as

FIGURE 3
(A) A pump field (ωu , ku) scatters into a signal field (ωs , ks) by the
emission of a phonon (Ω,qu). The process obeys conservation of
energy ωu ≈ ωs +Ω and conservation of momentum ku − ks ≈ qu. (B)
Schematic energy diagram of the photon and phonon modes. A
pump photon (of frequency ωu) is annihilated and a signal photon (of
frequency ωs) and a phonon (of frequency Ω) are created. The
detuning of the process is Δωu � ωu − ωs −Ω. (C) A signal field of
frequency ωs is propagating to the right, with a co-propagating
classical pump field of frequency ωu where ωu >ωs . Due to stimulated
Brillouin scattering, a pump photon scatters into a signal phonon by
the emission of a counter-propagating phonon of frequency Ω.
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Gu � 2|gu|2
vgΓ

Iu

1 + Δ2
u

{ }, (17)

and the shift in wavenumber is given by

κu � 2|gu|2
Γvg

ΔuIu

1 + Δ2
u

, (18)

with Δu � 2Δωu/Γ representing the scaled detuning and Iu � L|Eu|2
denoting the dimensionless pump intensity.

Using the relations (12), the average number of photons per unit
length, or photon density, is calculated as

〈ψ̂†
s z, t( )ψ̂s z, t( )〉 � 〈ψ̂in†

s z − vgt( )ψ̂in
s z − vgt( )〉e2Guz +N u z, t( ),

(19)
where N u(z, t) represents the thermal contribution

N u z, t( ) � −|gu|2L|Eu|2
2Guv2g

�n + 1( ) 1 − e−Γt( ) 1 − e2Guz( ). (20)

In this formulation, correlations between the Langevin force
operators and the initial signal operator are disregarded. This
approach focuses on the significant impact of the gain and
thermal noise on the evolution of the photon density within the
medium, illustrating how amplification and thermal effects
contribute to the overall behavior of the signal.

The effective group velocity is defined by

1
vue

� 1
vg

− ∂κu
∂ωs

. (21)

We obtain

vue
vg

� 1 + 4|gu|2
Γ2 Iu

1 − Δ2
u[ ]

1 + Δ2
u[ ]2

⎧⎨⎩ ⎫⎬⎭⎛⎝ ⎞⎠−1

. (22)

The rate of change of the gain Gu with respect to the signal
frequency is

∂Gu

∂ωs
� 8|gu|2

vgΓ2
Iu

Δu

1 + Δ2
u[ ]2

⎧⎨⎩ ⎫⎬⎭. (23)

Our primary goal is to achieve a slow propagating signal, aiming for
vue
vg

≪ 1 while also preferring the signal to propagate without significant
gain, henceGuL ≪ 1. Additionally, it is crucial to minimize the impact
of thermal phonons, ensuring thatN uL ≪ 1. While the condition for
slow light can be met, this comes at the cost of high signal amplification
and increased thermal fluctuations. A specific physical example is in
gu � 106 Hz, Γ � 108 Hz,Iu � 1

4 × 108,L � 10−2 m, vg � 108 m/s, and
Δu � 1

2, we find
vue
vg
≈ 2 × 10−4, and ∂Gu

∂ωs
≈ 0.64 × 10−4 s/m. This results

in slow light with a relatively large bandwidth, yet with a substantial gain
factor of GuL ≈ 40. At a phonon frequency ofΩ � 50 GHz, an average
number of thermal quanta �n ≈ 0.0224 is achievable at a temperature of
T ≈ 0.1 K°. At the waveguide’s output (z � L) in the high gain limit of
GuL ≫ 1, the thermal contribution becomes significant, leading to
N u

outL ≫ 1.
For the case of Iu � 108, we plot in Figure 4 the gain factor GuL

from Equation 50 as a function of Δu. In Figure 5A, we plot the
relative effective velocity vue

vg
from Equation 22 as a function of Δu.

The rate of change of the gain factor with respect to the signal
frequency, ∂Gu

∂ωs
from Equation 23, is plotted in Figure 5B as a function

of Δu. It is evident that the effective group velocity vue is significantly
smaller than the group velocity vg around zero detuning and that the
rate of change of the gain factor is negligible in the same zone.
However, the gain factor GuL is large in this interval, leading to
significant amplification of the signal photons.

3.2 Slow light with signal attenuation

For the scenario where ωp <ωs, a pump photon is scattered into
a signal photon by the absorption of a phonon, or conversely, a
signal photon is scattered into a pump photon by the emission of a
phonon (Figure 6). The amplitude of the pump field is represented
by El, with its frequency designated as ωl ≡ ωp. The phonon
operator is denoted by Q̂l, and the associated Hamiltonian for
the phonons is formulated as

Hl
phon � ZΩ∫dz Q̂†

l z( )Q̂l z( ). (24)

Furthermore, the interaction Hamiltonian between photons and
phonons is described by

Hl
phot−phon � Z

��
L

√ ∫ dz gp
l El Q̂l z( )ψ̂†

s z( ) + h.c.{ }. (25)

The Heisenberg–Langevin equations of motion for the photon
and phonon field operators are given by

∂

∂t
+ vg

∂

∂z
( )ψ̂s z, t( ) � −iωs ψ̂s z, t( ) − i

��
L

√
gp
l E l Q̂l z, t( ),

∂

∂t
+ Γ
2

( )Q̂l z, t( ) � −iΩ Q̂l z, t( ) − i
��
L

√
glEp

l ψ̂s z, t( )
−F̂ z, t( ).

(26)

The solution to the equations of motion, as provided in Appendix
B, yields

FIGURE 4
The gain factor GuL (GlL) as a function of the scaled detuning
Δu (Δl).
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ψ̂s z, t( ) � ψ̂in
s z − vgt( )e− Gl+iκl( )z + i

��
L

√
gp
l E l

vg
eiΔωl t

× ∫t

0
dt′∫z

0
dz′ F̂ z′, t′( )e−Γ

2 t−t′( )e− Gl+iκl( ) z−z′( ),
(27)

with the detuning frequency defined as Δωl � ωs − ωl −Ω
(Figure 6B). The gain parameter is

Gl � 2|gl|2
vgΓ

I l

1 + Δ2
l

{ }, (28)

and the wavenumber shift is

κl � 2|gl|2
Γvg

ΔlI l

1 + Δ2
l

, (29)

where Δl � 2Δωl/Γ represents the scaled detuning and I l � L|El|2
signifies the dimensionless pump intensity.

The photon density, using relations (12), is given by

〈ψ̂†
s z, t( )ψ̂s z, t( )〉 � 〈ψ̂in†

s z − vgt( )ψ̂in
s z − vgt( )〉e−2Glz +N l z, t( ),

(30)
where the thermal contribution is defined by

N l z, t( ) � |gl|2L|E l|2
2Glv2g

�n 1 − e−Γt( ) 1 − e−2Glz( ). (31)

The effective group velocity is given by

1
vle

� 1
vg

− ∂κl
∂ωs

. (32)

This leads to

vle
vg

� 1 − 4|gl|2
Γ2 I l

1 − Δ2
l[ ]

1 + Δ2
l[ ]2

⎧⎨⎩ ⎫⎬⎭⎛⎝ ⎞⎠−1

. (33)

The rate of change of the gain with respect to the signal frequency is
calculated as

∂Gl

∂ωs
� −8|gl|2

vgΓ2
I l

Δl

1 + Δ2
l[ ]2

⎧⎨⎩ ⎫⎬⎭. (34)

Our main goal is to achieve a slow propagating signal, aiming for
vle
vg

≪ 1. It is essential for the signal to propagate without loss along
the wire, requiringGlL ≪ 1. Additionally, minimizing the influence
of thermal phonons is crucial, ensuring N lL ≪ 1. Although
achieving slow light is possible, it comes at the cost of high
signal attenuation. Using the previously mentioned physical

FIGURE 5
(A) The relative effective group velocity vue

vg
as a function of the scaled detuning Δu. (B) The rate of change of the gain factor with respect to the signal

frequency ∂Gu
∂ωs

as a function of the scaled detuning Δu.

FIGURE 6
(A) A signal field (ωs , ks) scatters into a pump field (ωl, kl) by the
emission of a phonon (Ω,ql). The process obeys conservation of
energy ωs ≈ ωl + Ω and conservation of momentum ks − kl ≈ qu. (B)
Schematic energy diagram of the photon and phonon modes. A
signal photon (of frequency ωs) is annihilated and a pump photon (of
frequency ωl) and a phonon (of frequency Ω) are created. The process
detuning frequency is Δωl � ωs − ωl −Ω. (C) A signal field of frequency
ωs is propagating to the right, with a co-propagating classical pump
field of frequency ωl where ωs >ωl. Due to stimulated Brillouin
scattering a signal photon scatters into a pump phonon by the
emission of a co-propagating phonon of frequency Ω.
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values with I l � 108 and Δl � 2, we find vle
vg
≈ 2 × 10−4 and ∂Gl

∂ωs
≈ −

0.64 × 10−4 s/m. This scenario yields slow light with a relatively large
bandwidth but incurs a significant loss factor of GlL ≈ 40. At the
waveguide output—that is, at z � L — and under the condition of
high loss GlL ≫ 1, the thermal contribution becomes negligible,
where N l

outL ≪ 1.
In Figure 4, we plot the gain factor GlL from Equation 60 as a

function of Δl. In Figure 7A, the relative effective velocity vle
vg
from

Equation 33 is plotted as a function of Δl. The rate of change of the
gain factor with respect to the signal frequency, ∂Gl

∂ωs
from Equation

34, is depicted in Figure 7B as a function of Δl. The plots
demonstrate that the effective group velocity vle is significantly
smaller than the group velocity vg around zero detuning.
Meanwhile, the rate of change of the gain factor is negligible in
the same region, but the loss factor GlL is substantial in this interval,
leading to significant attenuation of the signal photons.

4 Slow light without gain and loss

Based on this discussion, we conclude that achieving a slow
signal within a waveguide while maintaining a constant signal
amplitude using SBS with a single pump field is unattainable.
Our primary interest lies in slowing down the signal field to the
level of single photons. Our objective is to attain a propagating signal
with an effective group velocity significantly lower than that in free
space while also ensuring a constant average number of quanta.
Additionally, it is crucial to minimize the impact of thermal
fluctuations, preventing them from significantly affecting the
propagating signal. Therefore, our goal is to introduce a
configuration that enables the realization of slow signals at the
single-photon level without inducing gain or loss.

To address the challenges previously discussed, we propose a
unique configuration in which the signal field is coupled through SBS
to two pump fields, involving a dispersion-less vibration mode. This
approach aims to demonstrate that by merging the two above
scenarios, a slow signal can be achieved without gain or loss,
where the processes of signal amplification and attenuation

counterbalance each other. Specifically, a signal with frequency ωs

and group velocity vg is coupled to two classical pump fields with
amplitudes El and Eu, and frequencies ωl and ωu respectively, where
ωu >ωs >ωl (Figures 8, 9). The involved dispersion-less vibration
mode operates at frequency Ω. The SBS process adheres to the phase
matching condition for coupling with both the upper and lower pump
fields. The photon–phonon coupling parameter is considered to be
real, local (i.e., wavenumber independent), and identical for both
interactions, with g � gl � gu. Additionally, the lower and upper
detuning frequencies are defined as Δωl � ωs − ωl − Ω and
Δωu � ωu − ωs − Ω, respectively, as schematically illustrated in
Figure 9B. Both the upper and lower SBS processes involve
phonons at the same frequency Ω but with distinct wavenumbers.
The phonon damping rate is denoted by Γ, and the Langevin force
operator F̂ is considered identical for both Brillouin
scattering processes.

The photon Hamiltonian is specified in (11), and the phonon
Hamiltonian combines both upper and lower phonon contributions,
Hphon � Hu

phon +Hl
phon, utilizing Hamiltonians (13) and (24).

Correspondingly, the photon–phonon interaction Hamiltonian
merges the two interaction scenarios
H phot−phon � Hu

phot−phon +Hl
phot−phon, conferring Eqs 14, 25.

FIGURE 7
(A) The relative effective group velocity vle

vg
as a function of the scaled detuning Δl . (B) The rate of change of the gain factor with respect to the signal

frequency ∂Gl
∂ωs

as a function of the scaled detuning Δl.

FIGURE 8
A signal field of frequency ωs is propagating to the right, with two
co-propagating classical pump fields of frequencies ωu and ωl , where
ωu >ωs >ωl . Due to stimulated Brillouin scattering, a signal photon
scatters into a pump photon of frequency ωl by the emission of a
co-propagating phonon of frequency Ω, and a pump photon of
frequency ωu scatters into a signal photon by the emission of a
counter-propagating phonon of the same frequency.
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In the interaction picture, the equation of motion for the photon
operator is expressed as

∂

∂t
+ vg

∂

∂z
( )ψ̂s z, t( ) � −i ��

L
√

gEue
−iΔωut Q̂†

u z, t( )

− i
��
L

√
gEle

iΔωl t Q̂l z, t( ), (35)

and the phonon equations of motion follow from Equations 15 and
26. Adopting a similar approach to that in Appendices A and B for
solving these equations, we arrive at

ψ̂s z, t( ) � ψ̂in
s z − vgt( )e G−iκ( )z

+ i

��
L

√
g

vg
∫t

0
dt′∫z

0
dz′e G−iκ( ) z−z′( )e−Γ

2 t−t′( )

× ElF̂ z′, t′( )eiΔωl t + EuF̂ †
z′, t′( )e−iΔωut{ }

where G � Gu − Gl and κ � κu + κl, integrating Gu, κu from, 50,
51 and Gl, κl from 60, 61. The gain G and phase shift κ are given by

G � 2g2

vgΓ
Iu

1 + Δ2
u

− I l

1 + Δ2
l

{ }, (36)

and

κ � 2g2

vgΓ
ΔuIu

1 + Δ2
u

+ ΔlI l

1 + Δ2
l

{ }. (37)

The key control parameters remain the scaled detunings Δu �
2Δωu/Γ and Δl � 2Δωl/Γ, alongside the dimensionless pump
intensities Iu � L|Eu|2 and I l � L|El|2.

For the photon density, we obtain

〈ψ̂†
s z, t( )ψ̂s z, t( )〉 � 〈ψ̂in†

s z − vgt( )ψ̂in
s z − vgt( )〉e2Gz +N z, t( ),

(38)
where the thermal fluctuation contribution is given by

N z, t( ) � − g2

2Gv2g
I l�n + Iu �n + 1( ){ } 1 − e−Γt( ) 1 − e2Gz( ). (39)

Utilizing relations (12) for both the upper and lower processes,
correlations among the Langevin force operators corresponding to
the upper and lower processes are neglected.

The effective group velocity is defined by

1
ve

� 1
vg

− ∂κ

∂ωs
. (40)

We have

ve
vg

� 1 + 4g2

Γ2 Iu
1 − Δ2

u[ ]
1 + Δ2

u[ ]2 − I l
1 − Δ2

l[ ]
1 + Δ2

l[ ]2
⎧⎨⎩ ⎫⎬⎭⎛⎝ ⎞⎠−1

. (41)

The rate of change of gain with respect to the signal frequency is
expressed as

∂G

∂ωs
� 8g2

vgΓ2
Iu

Δu

1 + Δ2
u[ ]2 + I l

Δl

1 + Δ2
l[ ]2

⎧⎨⎩ ⎫⎬⎭, (42)

The objective is to achieve a slow propagating signal, where ve
vg

≪ 1.
Additionally, it is essential for the signal to propagate without gain
or loss along the wire, indicated by GL ≪ 1. Concurrently, we aim
to minimize the influence of thermal fluctuations, ensuring that
N l ≪ 1. Our goal is to determine the conditions necessary to satisfy
these three requirements.

We aim to achieve the propagation of light without gain or loss,
which is possible when Gu ≈ Gl, leading to GL ≈ 0. This condition
can be satisfied by ensuring that

Iu

I l
≈
1 + Δ2

u

1 + Δ2
l

. (43)

Additionally, the thermal fluctuation contribution to the signal
needs to be significantly less than 1. At the waveguide output, at
z � L in the limit GL≪ 1 and under the condition ΓL/vg ≪ 1, the
thermal contribution is given by

N out ≈
g2ΓL2

v3g
I l�n + Iu �n + 1( ){ }. (44)

FIGURE 9
(A) A pump field (ωu) scatters into a signal field (ωs) by the emission of a phonon (Ω), and a signal field scatters into a pump field (ωl) by the emission
of a phonon of the same frequency. The two phonons differ in their wavenumbers. (B) A schematic energy diagram of the photon and phononmodes for
the two processes. A pump photon (of frequency ωu) is annihilated and a signal photon (of frequency ωs) and a phonon (of frequencyΩ) are created, with
the detuning frequency Δωu � ωu − ωs − Ω. A signal photon is annihilated and a pump photon (of frequency ωl) and a phonon (of the same frequency)
are created, with the detuning frequency Δωl � ωs − ωl −Ω.
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The contribution of thermal fluctuations to the average number of
signal photons at the waveguide output should also be much smaller
than 1: N out ≪ 1.

For further analysis of the result, we define the ratios a � Iu
I l

and
b � Δu

Δl
. We use I l � I , then Iu � aI , and Δl � Δ, then Δu � bΔ. The

requirement (43) is written as Δ2 � 1−a
a−b2. Note that 1< a< b2 or

b2 < a< 1. For example, we use the previous physical values, with
I � 108. We choose a � b � 1

4, then Δ � 2. We obtain ve
vg
≈ 10−4 and

∂G
∂ωs

≈ 1.28 × 10−4 s/m. We obtain a slow light with relatively large
bandwidth without gain or loss. For the thermal contribution, we obtain
N out ≈ 2.8 × 10−3.

For the case of zero gainG � 0, the relative effective velocity ve
vg
from

Equation 41 is plotted in Figure 10A as a function of Δu/Δl for Iu/Il �
1/4 and in Figure 10B as a function of Iu/Il forΔu/Δl � 1/4. The rate of
change of the gain factor with respect to the signal frequency ∂Gl

∂ωs
from

Equation 42 is plotted in Figure 11A as a function of Δu/Δl for Iu/Il �

1/4 and in Figure 11B as a function of Iu/Il for Δu/Δl � 1/4. The
effective group velocity ve is significantly smaller than the group velocity
vg, where

ve
vg
≈ 10−4 for detunings up to Δu/Δl < 1/3. Note that the rate

of change of the gain factor is negligible in the same zone, allowing the
propagation of a wide-band signal without gain or loss and with
negligible thermal contribution.

5 Discussion and conclusion

Optical quantum information processing is currently a leading
candidate for the development of quantum computers. Generally,
the components used in quantum information processing differ
from those used in communication, which implies a need for
interfaces between devices with varying physical properties. Such
interfacing can significantly affect the coherence of quantum

FIGURE 10
(A) Relative effective group velocity ve

vg
as a function of the relative scaled detuning Δu

Δl
. (B) The relative effective group velocity ve

vg
as a function of the

relative pump intensity Iu
I i
.

FIGURE 11
(A) Rate of change of the gain factor with respect to the signal frequency ∂G

∂ωs
as a function of the relative scaled detuning Δu

Δl
. (B) Rate of change of the

gain factor with respect to the signal frequency ∂G
∂ωs

as a function of the relative pump intensity Iu
I i
.

Frontiers in Quantum Science and Technology frontiersin.org09

Zoubi and Hammerer 10.3389/frqst.2024.1437933

https://www.frontiersin.org/journals/quantum-science-and-technology
https://www.frontiersin.org
https://doi.org/10.3389/frqst.2024.1437933


information. Nanophotonic structures involving photons can serve
purposes in both quantum communication and quantum
computing. This setup marks a crucial step toward an all-optical
on-chip platform, using the same photons for quantum
communication and computing, thereby avoiding the
decoherence effects associated with interfacing. Interactions
among photons are critical for developing optical quantum logic
gates. One of the primary obstacles to fabricating efficient photon-
based quantum logic gates is the rapid propagation of optical fields
within extensive nanophotonic structures. The high speed of light in
these structures limits the accumulation of the nonlinear phases
necessary for operating quantum logic gates.

In this study, we introduce a configuration that enables slow
signal propagation at the single-photon level by exploiting
stimulated Brillouin scattering (SBS) within waveguides. The
signal field can be significantly slowed via Brillouin scattering,
which involves a classical pump field and propagating phonons.
When the pump frequency exceeds that of the signal, it results in
a substantial amplification of the signal amplitude; conversely, a
pump frequency lower than that of the signal causes notable
attenuation. To achieve a slow signal field without gain or loss, we
propose a novel configuration that utilizes two pump fields with
frequencies both above and below that of the signal. This
arrangement allows the effects of amplification and
attenuation to counterbalance each other, thus enabling the
signal to propagate at a constant amplitude with an effective
group velocity significantly more reduced than that in free space.
Additionally, this configuration can accommodate slow signals
over wide bandwidths, extending up to tens of megahertz. We
also consider the effects of thermal fluctuations by calculating the
scattering of the pump fields off thermal phonons into and out of
the signal field and establish conditions under which thermal
contributions are negligible.

Slow light has been realized in a free-space medium
containing an atomic ensemble (Tey et al., 2008; Hammerer
et al., 2010). The control over light propagation in an optical
medium can be achieved through electromagnetic induced
transparency (EIT), which enables the generation of both fast
and slow light. In this process, coherent destructive interference
prevents excitation within the optical medium (Lukin et al.,
2001; Fleischhauer et al., 2005; Chang et al., 2014). EIT
inherently satisfies the phase-matching requirement due to
the presence of atomic components. To illustrate EIT, we
examine a three-level atom configured in a lambda scheme
with two lower metastable states, |g〉 and |s〉, and a higher
excited state |e〉, where the transition between the lower
states is dipole-forbidden. A probe field near resonance with
the dipole-allowed transition |g〉↔|e〉 is affected by a strong
control field close to resonance with the transition |s〉↔|e〉. The
control field induces a superposition of the probe field and a
coherent mix of the lower atomic states, mapping the photon
onto a collective state of the atomic ensemble. This configuration
creates a transparent window with an extremely narrow
transparency band for the probe field in an otherwise opaque
atomic medium, significantly reducing the probe field’s effective
group velocity.

EIT has been demonstrated in cavity optomechanics via
coupling between vibrational modes and photon modes

through radiation pressure (Safavi-Naeini et al., 2011), where
photons and phonons are localized within the resonator and
phase-matching occurs naturally (Weis et al., 2010). Brillouin
scattering induced transparency was shown by utilizing long-
lived propagating light and phonons in a silica resonator under
the required phase-matching conditions (Kim et al., 2015).
Moreover, higher-order side-band induced transparency in
optomechanical systems (Xiong et al., 2012), and
optomechanical group delays in spinning resonator (Zhang
and Shen, 2024) have been demonstrated. The approach
introduced in the current paper allows for the propagation of
signals across a broader bandwidth than achievable with the EIT
scheme. Here, the phonon component serves a role analogous to
the atomic component in EIT, ensuring phase-matching for the
Brillouin scattering between the signal and pump fields.

The generation of slow photons is important for fundamental
physics, such as for quantum nonlinear optics at the level of single
photons, which rely on the derivation of effective photon–photon
interactions (Zoubi and Hammerer, 2017). Additionally, the
formation of photon bound states has been explored (Zoubi,
2021). Slow photons in waveguides provide a test system for
studying quantum phases of a gas of interacting photons.
Moreover, slow photons have practical applications in
nanophotonics for physical implementation in quantum
information and quantum communication. The time delay
achieved by slowing photons inside waveguides can serve as a
memory device, a critical component for quantum computing
with photons. A time delay in the order of microseconds can be
achieved once the effective group velocity approaches the velocity of
sound waves inside a waveguide.
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