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Simulation is an indispensable tool in both engineering and the sciences. In
simulation-based modeling, a parametric simulator is adopted as a mechanistic
model of a physical system. The problem of designing algorithms that optimize
the simulator parameters is the focus of the emerging field of simulation-based
inference (SBI), which is often formulated in a Bayesian setting with the goal of
quantifying epistemic uncertainty. This work studies Bayesian SBI that leverages a
parameterized quantum circuit (PQC) as the underlying simulator. The proposed
solution follows the well-established principle that quantum computers are best
suited for the simulation of certain physical phenomena. It contributes to the field
of quantum machine learning by moving beyond the likelihood-based methods
investigated in prior work and accounting for the likelihood-free nature of PQC
training. Experimental results indicate that well-motivated quantum circuits that
account for the structure of the underlying physical system are capable of
simulating data from two distinct tasks.
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1 Introduction

1.1 Context and motivation

Simulation has been an indispensable tool for the understanding and discovery of
complex and open-ended phenomena in situ via the study of dynamic systems and
processes in silico (Lavin et al., 2021). The studied phenomena run the gamut of scale
and domain, from biology (Dada and Mendes, 2011) and climatology (Vautard et al., 2013)
to economics and the social sciences (Elshafei et al., 2016). In simulation-based modeling, a
parametric simulator is adopted as a mechanistic model of a physical system. Given specific
parameter values, the simulator produces synthetic data. The general modeling principle is
that parameters that lead to synthetic data close to the actual observations from the physical
system are considered the most plausible ones to explain the measurements.

However, there are important challenges that have limited the adoption of simulators in
many settings of scientific and engineering relevance. On the one hand, computational costs
may motivate the imposition of simplifying assumptions, which may render the results
unusable for reliable hypothesis testing. On the other hand, at a methodological level,
simulators are poorly suited for statistical inference as they inherently provide only implicit
access to the likelihood of an observation. In fact, simulators can sample from a distribution,
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but they cannot, typically, quantify the probability of a simulation
output (Song et al., 2020; Simeone, 2022). These problems are
currently being tackled using novel machine learning tools and
probabilistic programming in the emerging field of simulation-based
inference (SBI) (Cranmer et al., 2020).

In a frequentist setting, SBI produces point estimates for the
simulator parameters, failing to capture epistemic uncertainty
arising from the access to limited data from the physical system.
Alternatively, adopting a Bayesian formulation, a distribution on the
model parameter space can be optimized in order to reflect a
probabilistic notion of uncertainty (Cranmer et al., 2020).

1.2 Quantum SBI

As illustrated in Figure 1, in this work, we study Bayesian SBI
that leverages a parameterized quantum circuit (PQC) as the
underlying simulator. PQCs are the subject of the field of
quantum machine learning (Schuld and Petruccione, 2021). They
consist of quantum circuits with a fixed ansatz whose parameters,
typically rotation angles for some of the gates, are optimized using a
classical computer. PQCs can be readily implemented on existing
noisy intermediate scale quantum (NISQ) hardware, and are viewed
as a potential means to demonstrate practical use cases for
quantum computing.

The motivation for the proposed solution, integrating PQCs
with SBI, is twofold. First, from the perspective of SBI, by
leveraging quantum circuits as simulators, we follow the well-
established principle that quantum computers are best suited for
the simulation of certain physical phenomena, especially at the
microscopic scale (Georgescu et al., 2014). Second, from the
viewpoint of quantum machine learning, Bayesian learning
methods have been argued to be potentially beneficial as they
can be better account for uncertainty in the model space,

enhancing test-time performance (Duffield et al., 2022). Our
work thus contributes to the literature on quantum machine
learning by moving beyond the likelihood-based method
investigated in (Duffield et al., 2022) by leveraging state-of-
the-art likelihood-free SBI methods.

1.3 Main contributions

This work explores the application of Bayesian SBI for the
training of simulators implemented as PQCs. The main
contributions are as follows.

• First, in a tutorial style, the article reviews two families of
Bayesian SBI methods, namely, sampling-based and
surrogate-based techniques. Sampling-based schemes aim at
producing samples from the posterior distribution of the
parameters, whilst surrogate-based methods estimate a
surrogate for either the likelihood or directly for the
posterior distribution in the model parameter space.

• Second, we provide examples via numerical experiments that
investigate and compare different circuit architectures for
quantum SBI. We specifically investigate the potential gains
of encoding inductive biases in the form of symmetry-
preserving circuits, following the principles of geometric
learning (Ragone et al., 2022). Experimental results indicate
that well-motivated quantum circuits that account for the
structure of the underlying physical system are capable of
simulating data from two distinct tasks.

2 Bayesian simulation-based inference

Let us assume the availability of a data setD � {X1, X2, . . . , XN},
where each data point Xn ∈ Rd for all n ∈ {1, 2, . . . , N} is modelled
as being generated from an unknown ground-truth distribution
p*(X). We are interested in optimizing a simulation-based
generative model that is able to draw samples approximately
distributed according to p*(X).

To this end, we fix a class of parameterized simulators p(X|θ)
that, given a model parameter vector θ ∈ Θ ⊆ Rp, can generate i.i.d.
samples X ~ p(X|θ). Importantly, the value of the probability
p(X|θ) as a function of the model parameter θ, which is known
as the likelihood function, is not efficiently computable.
Accordingly, models of this type are referred to as being
likelihood-free. As we will discuss in the following, this setting
describes well the use of parameterized quantum circuits as
generative models.

We focus on the problem of inferring the parameter vector θ of
the simulator based on the data setD, which is known as simulation-
based inference (SBI). We specifically adopt a Bayesian framework,
with the goal of quantifying the epistemic uncertainty on model
parameter θ given limitations on data availability. In this setting, the
main quantity of interest is the posterior distribution on the
simulator’s parameter’s θ, i.e.,

p θ|D( )∝p θ( )p D|θ( ), (1)
where p(θ) is a prior distribution on the model parameter θ, and

FIGURE 1
Quantum simulation-based Bayesian inference: A simulator
based on a parameterized quantum circuit (PQC) is trained via a
likelihood-free Bayesian inference algorithm to serve as a simulator
for a physical process of interest.
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p D|θ( ) � ∏N
n�1

p Xn|θ( ), (2)

is the likelihood evaluated on the data set D. With Bayesian SBI, the
simulator generates new samples X that are approximately drawn
from the marginal distribution

p X|D( ) � ∫p θ|D( )p X|θ( )dθ (3)

of data point X given the available data D.
Since the likelihood p(D|θ) cannot be evaluated, standard

Bayesian inference approaches are not applicable, and one can
distinguish two main classes of methods.

• Sampling-based schemes, also known as approximate Bayesian
computation (ABC): ABC methods aim at producing samples
θ ~ p(θ|D) from the posterior distribution (Sunnåker et al.,
2013; Beaumont, 2019). These samples can be used to estimate
the posterior distribution p(θ|D) using standard density
learning techniques; or directly to draw new samples X
that are approximately distributed as the marginal
distribution (Equation 3) (Lu and Van Roy, 2017; Qin
et al., 2022).

• Surrogate-based schemes: Based on the data set D, surrogate-
based methods estimate the likelihood p(D|θ), or directly for
the posterior p(θ|D) (Price et al., 2018; Papamakarios et al.,
2019; Thomas et al., 2022). In the former case, the
(unnormalized) posterior distribution can be estimated by
using the definition (Equation 1). Furthermore, samples from
the posterior p(θ|D) or directly from the marginal
distribution p(X|D) in (Equation 3) can be produced via
Markov chain Monte Carlo techniques (Marjoram et al., 2003;
Sisson and Fan, 2010; Brooks et al., 2011).

The rest of the paper is organized as follows. Section 2 presents
the problem of Bayesian SBI. Section 3, 4 review Bayesian SBI
methods based on sampling and surrogate functions, respectively.
Section 5 presents the proposed approach based on quantum
simulators. Section 6 presents experimental results, and Section 7
concludes the paper.

3 Bayesian SBI via sampling

In this section, we describe sampling-based Bayesian SBI.

3.1 Model

As shown in Figure 2, sampling-based Bayesian SBI, also known
as ABC, models the data-generating mechanism via a hierarchical
probability distribution. In it, the simulator p(·|θ) produces samples
Z that are related to the true samples X by a mismatch model. This
distribution posits an ancestral sampling procedure, whereby.

1. A model parameter is drawn from the prior θ ~ p(θ);
2. The simulator outputs conditionally independent and

identically distributed latent variables Z � {Z1, Z2, . . . , ZM},
where Zi ∈ Rd for every i ∈ {1, 2, . . . ,M}, with probability

p Z|θ( ) � ∏M
m�1

p Zn|θ( ); (4)

3. And the data set D is generated from the mismatch model
p(D|Z).

The distribution p(D|Z) defining themismatchmodel is subject
to design, and it accounts for the fact that the simulator p(·|θ) is
generally misspecified (Schmon et al., 2020). This is in the sense that
there is typically no model parameter θ such that the simulator
p(·|θ) matches exactly the data-generating distribution

p* D( ) � ∏N
n�1

p* Xn( ). (5)

if no such mismatch is expected, one can set

p D|Z( ) � 1 D � Z( ), (6)
where 1(·) is the indicator function for discrete data and the Dirac
impulse function for continuous-valued data.

More generally, the choice of the mismatch model must account
for requirements of accuracy and efficiency, and it is typically
specified as (Wilkinson, 2013; Schmon et al., 2020)

p D|Z( )∝ κ S D( ), S Z( )( ), (7)
where κ(·, ·) is a kernel function and S(·) ∈ Rs is an s-dimensional
summary statistic. The choice of the statistics S(·) is often done
based on knowledge about the problem. For instance, for discrete-
time sequences, one may use as statistics empirical transition rates
(Sunnåker et al., 2013).

By (Equation 7), the data D are assumed to be more likely to
correspond to samples Z if the data sets D and Z are “closer” in
terms of the correlation between the statistics S(D) and S(Z) as
measured by the kernel κ(·, ·). A typical choice for the kernel yields
(Sunnåker et al., 2013)

p D|Z( )∝ 1 ρ S D( ), S Z( )( )≤ ϵ( ), (8)
where ρ(·, ·) is an error measure and ϵ> 0 is tolerance level.
Equivalently, the distribution (Equation 7) can be expressed as
(Schmon et al., 2020)

FIGURE 2
Probabilistic graphical model adopted by sampling-based
Bayesian SBI. We follow here the definition of mismatch model given
in (Schmon et al., 2020).
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p D|Z( )∝ e−ℓ S D( ),S Z( )( ), (9)
where ℓ(·, ·) is a loss function measuring the discrepancy between
the statistics S(D) and S(Z). Specifically, to match (Equation 7), one
can set the loss as ℓ(S, S′) � −log(κ(S, S′)).

By the model in Figure 2, the posterior distribution over model
parameters and samples produced by the simulator given the data
set D is given by

p θ,Z|D( )∝p θ( )p Z|θ( )p D|Z( ). (10)
by marginalizing out the simulator’s outputsZ, we obtain the model
parameter posterior as

p θ|D( ) � ∫p θ,Z|D( )dZ . (11)

in the special case in which no mismatch is accounted for in the
model, i.e., when p(D|Z) � 1(Z � D), then the distribution
(Equation 11) evaluates as

p θ|D( ) � p θ,Z � D|D( )∝p θ( )p D|θ( ), (12)
which corresponds to the conventional posterior distribution
(Equation 1) in the ideal case of a well-specified model.

The goal of ABC is to produce samples θ of the model parameter
vector that are approximately distributed according to the posterior
distribution p(θ|D) in (Equation 11). This can be accomplished by
generating samples (θ,Z) from the joint posterior p(θ,Z|D) in
(Equation 10), and then discarding the simulator’s outputs Z. We
next review two ABCmethods of increasing complexity and efficacy.

3.2 Rejection-sampling ABC

Rejection-sampling ABC (RS-ABC) iteratively draws candidate
samples θ′ from the prior p(θ). Each such sample is accepted with
a probability that ensures that all accepted samples are drawn
from the posterior p(θ|D) (Beaumont et al., 2002; Sunnåker
et al., 2013).

To this end, for each candidate model parameter sample θ′, the
simulator produces M samples Z′ � {Z1′, Z2′, . . . , ZM′ } distributed
as p(Z|θ) � ∏M

m�1p(Zm′ |θ′). Therefore, RS-ABC produces the
candidate pair (θ′,Z′) distributed as

θ′,Z′( ) ~ p θ( )∏M
m�1

p Zm′ |θ′( ). (13)

The sample (θ′,Z′) is selected with acceptance probability
p(acc|θ′,Z′), where “acc” denotes the event that a candidate
sample is accepted. The acceptance probability generally depends
on the model parameter θ′ and on the generated samples Z′, as
discussed next.

The distribution of an accepted sample can be computed as

p θ,Z|acc( )∝p θ( )p Z|θ( )p acc|θ,Z( ). (14)

Therefore, in order for the distribution (Equation 14) to match
the desired posterior (Equation 10), one can set

p acc|θ,Z( )∝p D|Z( ). (15)

In particular, if p(D|Z) is selected as per the conventional
choice in (Equation 8), then the acceptance step is simplified as

accept candidate sample θ′,Z′( ) if ρ S D( ), S Z′( )( )≤ ϵ. (16)

3.3 Metropolis-Hastings ABC

RS-ABC typically produces a low rate of acceptance of the
generated samples, particularly when data are sufficiently high
dimensional. To see this, consider the common case in which the
prior p(θ) supports, with non-negligible probability, model
parameters θ corresponding to simulators p(·|θ) that are very
different from the ground-truth distribution p*(·). Using the
conventional acceptance rule (Equation 16), a sample (θ′,Z′) is
retained only if the sufficient statistics S(D) and S(Z′) for
simulator’s samples and data set are sufficiently close. Given that
RS-ABC draws the model parameter θ from the prior as per (3.2),
this acceptance event is quite unlikely, resulting in a low rate of
acceptance of the generated samples.

To overcome this drawback, reference (Marjoram et al., 2003)
proposed Metropolis-Hastings ABC (MH-ABC). MH-ABC
proceeds to sample from Equation 10) in a sequential manner.
To elaborate, let us denote as θi−1 the last sample accepted at the
beginning of the i-th iteration. Furthermore, we introduce a
transition probability distribution q(·|θi−1), which constitute a
key design choice for MH-ABC. At the i-th iteration, a new
sample (θ′,Z′) is drawn from the conditional proposal distribution

q θ′,Z′|θi−1( ) � q θ′|θi−1( )p Z′|θ′( ). (17)
accordingly, a new parameter θ′ is sampled from theMarkov transition
kernel q(·|θi−1) dependent on the last accepted sample θi−1, and the
data set Z′ is generated from the simulator p(·|θ′). The rationale for
this choice is that samples close to previously accepted samples, as
dictated by the distribution q(·|θi−1) may be more likely to have the
desired distribution. The downside of the approach is that consecutive
accepted samples are not independent, as in RS-ABC. Rather, the
temporal correlation is determined by the Markov kernel q(·|θi−1).

Let p(acc|θ′,Z′) be the acceptance probability of the proposed
sample (θ′,Z′). In order to ensure a stationary distribution given by
the posterior p(θ,Z|D), it is sufficient to impose detailed-balance
condition (Hastings, 1970)

p θi−1,Z i−1|D( )q θ′,Z′|θi−1( )p acc|θ′,Z′( )
� p θ′,Z′|D( )q θi−1,Z i−1|θ′( )p acc|θi−1,Z i−1( ). (18)

this equality can be ensured by setting

p acc|θ′,Z′( ) � min 1,
p θ′,Z′|D( )

p θi−1,Z i−1|D( ) ·
q θi−1,Z i−1|θ′( )
q θ′,Z′|θi−1( )( ). (19)

using Equations 10, 17, we finally get the acceptance probability
adopted by MH-ABC as

p acc|θ′,Z′( ) � min 1,
p θ′( )p Z′|θ′( )p D|Z′( )

p θi−1( )p Z i−1|θi−1( )p D|Z i−1( ) ·
q θi−1|θ′( )p Z i−1|θi−1( )
q θ′|θi−1( )p Z′|θ′( ) ⎞⎠⎛⎝

� min 1,
p θ′( )p D|Z′( )

p θi−1( )p D|Z i−1( ) ·
q θi−1|θ′( )
q θ′|θi−1( )( ). (20)
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4 Bayesian SBI via surrogates

Unlike sampling-based methods, surrogate-based methods use
the simulator, along with the data set D, to estimate the likelihood
p(D|θ), or directly the posterior p(θ|D). To this end, surrogate-
based techniques do not explicitly model the mismatch between
simulator and ground-truth data-generation mechanism as done by
sampling-based methods (see Figure 2). Rather, they directly use the
data generation mechanism as the generative model
p(θ,D) � p(θ)p(D|θ), with the simulator-based data likelihood
given by p(D|θ) � ∏N

n�1p(Xn|θ). Accordingly, in this section, we
use the notationX for the samples generated by the simulator. Next,
we review state-of-the-art methods based on ratio estimation.

4.1 Ratio estimation

Ratio estimation (RE) applies contrastive learning to estimate the
ratio between the likelihood p(D|θ), which is not available in the
likelihood-free setting of interest, and the data marginal p(D), i.e.
(Thomas et al., 2022),

r D, θ( ) � p D|θ( )
p D( ) . (21)

given an estimate r̂(D, θ) of the ratio, the likelihood can be in
principle estimated as p̂(D|θ)∝ r̂(D, θ), and the posterior
distribution as

p̂ θ|D( )∝p θ( )p̂ D|θ( ). (22)
In practice, the unnormalized posterior in (Equation 22) can be

used, without the need for an explicit normalization, to obtain
samples θ ~ p̂(θ|D) with the aid of Markov chain Monte Carlo
(MCMC) techniques (Cranmer et al., 2020; Simeone, 2022).

RE methods train a binary classifier to distinguish between data
sets generated according to the distributions at the numerator and
denominator of the ratio (Equation 21). To this end, for any fixed
value θ, the simulator is first leveraged to generate two classes of data
sets, with each data set containing a numberN of examples. The first
class of data sets contains data sets X drawn according to the
distribution p(X |θ) � ∏M

m�1p(Xm|θ); while the second class
contains data sets drawn from the marginal p(X) �∫p(X |θ)p(θ)dθ.

To generate data sets in the first class, one directly runs the
simulator with the given value θ. For the second class, one first
samples θ′ ~ p(θ) from the prior, and then a data set
X � {Xm ~ p(X|θ′)}Mm�1, discarding the sample θ′. We assign
label t � 1 to all data sets in the first class, and the label t � 0 to
all data sets in the second class.

The binary classifier takes as input a data set X of M examples,
computes a fixed function S(X), and outputs a probability
distribution p(t|S(X ), ϕ) quantifying the confidence of the
predictor in X belonging to either class. The classifier depends
on a model parameter vector ϕ. If the classifier is well trained, the
probability p(t|S(X),ϕ) provides a good approximation of the true
posterior distribution p(t|S(X )), as discussed next.

By the construction of the data set, a data set X is conditionally
distributed as.

p X |t � 1( ) � p X |θ( ) (23)
p X |t � 0( ) � p X( ). (24)

furthermore, the posterior distribution is

p t � 1|X( ) � p t � 1( )p X |t � 1( )
p t � 0( )p X |t � 0( ) + p t � 1( )p X |t � 1( )

� p t � 1( )p X |θ( )
p t � 0( )p X( ) + p t � 1( )p X |θ( ).

(25)

writing p(t � 1)/p(t � 0) � α we get

p t � 1|X( ) � αp X |θ( )
p X( ) + αp X |θ( ) (26)

and

p t � 0|X( ) � 1 − p t � 1|X( ) � p X( )
p X( ) + αp X |θ( ). (27)

Making the approximation p(t|S(X), ϕ) ≈ p(t|X), we can
finally estimate the ratio of likelihood and data marginal as

r̂ D, θ( ) ≈ p t � 1|S D( ),ϕ( )
p t � 0|S D( ),ϕ( ). (28)

4.2 Amortized ratio estimation

To improve the performance of RE, amortization techniques can
be used, whereby the classifier is amortized using the parameters
from the simulator. To explain, note that the true ratio can be
equivalently expressed as

r D, θ( ) � p X |θ( )
p X( ) � p X , θ( )

p X( )p θ( ). (29)

This modification suggests a way to train the binary classifier to
distinguish between dependent sample-parameter pairs
(X , θ) ~ p(X , θ), which are assigned class label t � 1, from
independent sample-parameter pairs (X , θ) ~ p(X)p(θ), which
are assigned class label t � 0. To do so, samples from the first
class are generated by running the simulator with the given value θ,
and concatenating the sampled sequence to the vector θ. For the
second class, one again first samples θ′ ~ p(θ) from the prior along
with a data set X � {Xm ~ p(X|θ′)}Mm�1, discarding the sample θ′;
and then generates new, independent, θ′ ~ p(θ) to which one
concatenates the output of the simulator. This method is referred
to as amortized RE (Hermans et al., 2020).

In cases when the divergence between the densities is large, the
classifier can obtain almost perfect accuracy with a relatively poor
estimate of the density ratio. This failure mode is known as the
density-chasm problem, and can be overcome by transporting
samples from one distribution to the other, creating a chain of
intermediate data sets. The density-ratio between consecutive
datasets along this chain can be then accurately estimated via
classification. The chained ratios are then combined via a
telescoping product to obtain an estimate of the original density-
ratio. This method is referred to as telescopic amortized RE (Montel
et al., 2023).

Finally, as practical note, we emphasize that, both in the
amortized and non-amortized settings, to avoid numerical errors
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one can extract the logit, log(r̂(D, θ)), from the classifier before
applying the activation in the output layer. This choice also mitigates
vanishing gradient issues.

5 Quantum bayesian simulation-
based inference

In the previous sections, we have reviewed sampling-based and
surrogate-based Bayesian SBI techniques. In the proposed quantum
Bayesian SBI system, illustrated in Figure 1, both classes of methods
are applicable. The key new element is the introduction of a PQC as
the simulator p(X|θ) (or p(Z|θ) in the notation of Section 3).

5.1 Parameterized quantum circuits as
simulators

The proposed quantum SBI solution aims at developing
simulators for the generation of a quantity of interest X that can
take values in a set of 2d elements for some integer d. Note that this
requires the quantity X to be either discrete to start with, or to be
quantized as finely as allowed by a resolution of d bits. To this end,
we propose to implement a PQC that acts on a register of d qubits.
Accordingly, the allowed resolution of quantity X increases
exponentially with the physical dimension of the qubit register.
In such a setting, one can assume, without loss of generality, that the
quantity X – or its quantized version–assumes values in the set of
integers {0, 1, . . . , 2d − 1}, or equivalently in the set of all binary
strings of d bits.

As reviewed in (Schuld and Petruccione, 2021; Simeone et al.,
2022), PQCs implement a parameterized unitary transformation
U(θ), a 2d × 2d complex-valued matrix, on a register of a given
number, d, of qubits. The unitary transformation U(θ) is described
by a quantum circuit that is specified by quantum gates placed
according to a predefined arrangement. The arrangement is referred
to as the ansatz of the PQC. Some of the quantum gates in the
quantum circuit can be controlled by selecting real-valued
parameters, which are collectively denoted as vector θ, see Figure 3.

Initializing the register of d qubits in a reference state |0〉⊗d, the
PQC produces the output state

|ψ θ( )〉 � U θ( )|0〉⊗d. (30)

Furthermore, by Born’s rule, the probability distribution p(X|θ) is
given by

p X|θ( ) � |〈X|ψ θ( )〉|2, (31)
where |X〉 represents the state in the computational basis
corresponding to integer X.

5.2 Choosing the ansatz

In general, choosing a good ansatz for the quantum simulator
entails a difficult trade-off between adherence to the physics of the
problem and complexity of implementation. In particular, if prior
knowledge about the structure of the data are available, this may be
encoded as an inductive bias into the choice of the quantum circuit
architecture, assuming that the complexity of the
implementation allows it.

The typical way to encode structure into the ansatz is to leverage
symmetries in the data. Symmetries refer to transformations of the
data that leave it invariant or change it in a predictable, equivariant
manner. For example, the binding energy of a molecule does not
change by permuting the order of the atoms, and a picture of a cat
still depicts a cat regardless of the position of the cat within the
image. This prior knowledge can be encoded into the simulator
ansatz as a geometric prior. Notable examples include quantum
graph neural networks (QGNNs) (Verdon et al., 2019;Mernyei et al.,
2022) and quantum convolutional neural network (QCNNs) (Cong
et al., 2019), which preserve equivariance to permutations and shifts,
respectively. Other examples include quantum recurrent neural
networks for time series processing (Nikoloska et al., 2023).

In the absence of prior knowledge, or when the practitioner is
concerned with efficient hardware implementation, they may choose
to use a hardware-efficient architecture (HEA). Such architectures
use only single qubit and two qubit gates, placed along the existing
connectivity of the quantum computer, which are easily
implemented on both gate-based or pulse-based NISQ machines
(Zulehner et al., 2018; Gyongyosi and Imre, 2021).

6 Results

In this section, we provide experimental results to validate the
proposed concept of quantum Bayesian SBI.

FIGURE 3
An example of a PQCwhich serves as a simulator of a physical process. In this work, we propose to treat the PQC as a likelihood-freemodel that can
be trained via Bayesian simulation-based inference.
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6.1 Tasks

6.1.1 Generating bars-and-stripes images
We first consider the classical small-scale benchmark problem of

generating 2 × 2 images from the bars-and-stripes (BAS) data set
MacKay andMac Kay, 2003. BAS is a synthetic data set consisting of
four images. Each image consists of a 2 × 2 grid of black, denoted as
“1″, and white, denoted as “0″, pixels. In vector form, bars
correspond to bit strings X of the form [0 0 1 1] and [1 1 0 0],
while stripes correspond to bit strings [0 1 0 1] and [1 0 1 0].

6.1.2 Simulating molecular topologies
In this second task, which is closer to a real-life application of the

proposed method, the task of the simulator is to generate valid
molecular structures, i.e., valid primary topologies, for 4-atom

molecules comprised of carbon (C), hydrogen (H), boron (B),
oxygen (O), or nitrogen (N) atoms. Knowing a valid molecular
topology, specifying which atom is covalently bonded to which other
atom, is crucial for determining classical potentials for biomolecules.
Each sample consists of a 4 × 4 adjacency matrix describing the
covalent bonds in the molecular graph, where “1″ denotes the
presence of a covalent bond between two atoms, and “0″,
denotes the absence of a covalent bond. We only consider single
covalent bonds, and we use Pennylane datasets (Bergholm et al.,
2018), whereby the number of valid structures is 2, whilst the
number of all possible structures is 24. In vector form (the upper
right adjacency matrix), the topologies of molecules with three H
atoms, BH3 and NH3, correspond to bit string X � [0 1 0 1 0 1],
whilst the topologies of molecules with two H atoms C2H2, H2O2,
N2H2, and H4 correspond to bit string X � [1 0 0 1 0 1].

FIGURE 4
Distribution of the TVD between distribution of the samples produced by the simulator and ground-truth distribution for the BAS data set (left), and
for the primary molecular structure task (right).

FIGURE 5
Distribution of the TVD between distribution of the samples produced by the simulator and ground-truth distribution for the BAS data set (left), and
for the primary molecular structure task (right).
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6.2 Simulator ansatz and hyperparameters

We consider four circuit architectures. All of the considered
architectures are comprised of four qubits and two layers.

6.2.1 QCNN
For BAS, an image dataset, we employ a QCNN. QCNN is a

translation-equivariant model that uses convolution layers and
applies a single quasi-local unitary (Cong et al., 2019). Each pixel
is represented by a qubit. We do not employ pooling, and the quasi-
local unitary is applied on pairs of qubits. To determine the i-th pixel
value, we measure the observable Zi.

6.2.2 QGNN
For molecular topologies, we employ a QGNN. as molecules can

be well represented as graphs. A QGNN is an permutation-
equivariant ansatz (Verdon et al., 2019). Each atom is
represented by a qubit. To determine whether a covalent bond is
present between each atom pair (i, j), we measure the observable
ZiZj. It is useful to note that, unlike classical graph structure
discovery schemes in which the number of trainable parameters
scales with the number of edges, in the QGNN architecture, the
number of parameters scales with the number of nodes (which is
typically much smaller.

6.2.3 HEA
As a basic benchmark, for both tasks, we also implement an

HEA, which consists of general single qubit gates, i.e., rotations
described by three angles, and by CNOT gates applied in a cyclical
manner across all pairs successive qubits. The same observables
described above are considered to extract information from the
output states for the two tasks.

6.2.4 Separable circuits
Finally, to gauge the potential benefits of entanglement, we

adopt a mean-field, or separable, ansatz that consists solely of
general single-qubit gates. The resulting circuits can be efficiently
simulated on classical computers for any number of qubits, with no
need for quantum hardware. Therefore, this setup essentially
represents a classical benchmark. The same observables are again
applied for the two tasks.

6.3 SBI algorithms

As a representative of sampling-based schemes, we implement
RS-SBI with the classical kernel (Equation 8) with summary
statistics given by the histogram of the generated samples Z. We
set ϵ � 0.3, and we drawM � 1000 examples for each draw from the
prior distribution p(θ). For surrogate-based schemes, we adopt the
amortized RE technique whereby the surrogate model is
implemented as three-member ensemble in which each member
is comprised of a transformer layer with three attention heads
followed by a linear layer with ReLU activations (Vaswani et al.,
2017). The outputs of the ensemble members are averaged to obtain
the logit. We use dropout with rate 0.1, and the Adam optimiser with
learning rate 0.001.

6.4 Evaluation and performance metrics

We are interested in evaluating the adherence of the distribution
of the samples produced by the simulator to the ground-truth data-
generating distribution. To this end, for any fixed simulator
parameters θ, we use the simulator to generate a large number of
samples, namely, 1,000, from the corresponding model distribution
p(X|θ). The probability distribution p(X|θ) is estimated using the
histogram of the generated samples. The quality of the samples is
then quantified via the total variation distance (TVD)
D(p(X|θ), p*(X)), where p*(X) is the ground-truth distribution,
which in the examples at hand can be obtained from the training set.

In Bayesian SBI, the model parameter θ is drawn from the learnt
posterior distribution, which represents the uncertainty of the
learner on the optimal parameters of the simulator. In the
examples at hand, the training data sets are sufficiently
informative to fully describe the data-generating distribution
p*(X). However, epistemic uncertainty remains, owing to the
unknown likelihood. In fact, the lack of access to the likelihood
limits the information that the learning algorithm can extract from
the simulator to theM samples drawn to evaluate the statistics S(·),
here the histogram.

Each draw of the model parameter vector θ yields a generally
different TVD D(p(X|θ), p*(X)) between the distribution
produced by the simulator, p(X|θ), and the ground-truth
distribution, p*(X). In the following, we evaluate the epistemic
uncertainty produced by Bayesian SBI by plotting an estimate of the
distribution of the TVD produced due to the randomness on the
model parameter vector θ. The estimate is obtained via a kernel
density estimator (KDE) with bandwidth equal to 0.9.

As a benchmark learning algorithm, we also show the
performance of a scheme that produces a point estimate for the
parameters θ. This strategy may be considered as a representative of
frequentist learning methods that do not attempt to characterize
epistemic uncertainty. Specifically, we implement a simple approach
that looks for the value of parameters θ that maximizes the
likelihood estimated via the TVD between the histogram of the
M samples generated by the simulator and the ground-truth
distribution. To this end, we retain the parameter vector θ that
yields the minimum mentioned TVD across all samples θ generated
by the considered Bayesian SBI schemes.

6.5 Results

The distributions of the TVD for both sampling- and surrogate-
based Bayesian SBI schemes are shown in Figure 4 for the two tasks
under study. For this figure, we adopt the best-performing ansatz for
each task, namely, the QCNN and QGNN, respectively. It is
observed that, by accounting for the uncertainty on the
likelihood, Bayesian SBI schemes can outperform conventional
frequentist techniques. In fact, samples produced from the
posterior distribution can yield significantly lower TVD values,
which indicate a closer match of the ground-truth distribution.
Furthermore, the spread of the distribution produced by Bayesian
SBI strategies is task-dependent. Similarly, the choice between
sampling-based and surrogate-based schemes is also seen to
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depend on the task, with the latter having a clear advantage in
the BAS task.

We now analyze the impact of different ansatzes by showing in
Figure 5 distributions of the TVD for various architectures of the
quantum simulator. Whilst we do not claim that quantum circuits
are provably better than classical counterparts for the problem at
hand, the separable circuits is observed to result in a very large TVD.
In contrast, for both tasks, the symmetry-preserving
simulators–QCNN for the BAS task and QGNN for the
molecular topology task–result in the smallest TVD between the
generated samples and the true distribution, suggesting that
encoding inductive-biases in the simulator is indeed helpful for SBI.

7 Concluding remarks

Simulation intelligence is an emerging multi-disciplinary topic
that views simulation as a central tool for design and discovery
(Lavin et al., 2021). The scope and reach of the field are only
expected to grow in importance with the fast development of
generative artificial intelligence tools and with the spread of
digital twinning as a framework for engineering complex systems
(Ruah et al., 2023). Quantum circuits are known to be efficient
solutions to implementing samplers from complex distributions in
discrete spaces. This property makes quantum circuit appealing as
co-processors for the controlled generation of latent random
variables (Nikoloska and Simeone, 2022). In this context, this
work has taken a few steps towards the idea of integrating
quantum circuits as simulators in a simulation-based process.

Themain aim of this article is to provide readers with a background
in quantum machine learning with an introduction to Bayesian SBI
tools. Many problems are left open to future investigations, including
the investigation of larger-scale use cases, the implementation on NISQ
computers, and the analysis of the impact of quantum noise.
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