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The evolution of quantum computers has encouraged research into how to
handle tasks with significant computation demands in the past few years. Due to
the unique advantages of quantum parallelism and entanglement, various types
of quantum machine learning (QML) methods, especially variational quantum
classifiers (VQCs), have attracted the attention of many researchers and have
been developed and evaluated in numerous scenarios. Nevertheless, most of the
research on VQCs is still in its early stages. For instance, as a consequence of the
mathematical constraints imposed by the properties of quantum states, the
majority of research has not fully taken into account the impact of data
formats on the performance of VQCs. In this paper, considering a significant
number of data in the real world exist in the formof complex numbers, i.e., phasor
data in power systems and the result of Fourier transform on image processing,
we develop two categories of data encoding methods, including coupling data
encoding and splitting data encoding. This paper features the coupling data
encoding method to encode complex-valued data in a way of amplitude
encoding. By leveraging the property of quantum states living in a complex
Hilbert space, the complex-valued data is embedded into the amplitude of
quantum states to comprehensively characterize complex-valued information.
Optimizers will be utilized to iteratively tune a parameterized ansatz, with the aim
of minimizing the value of loss functions defined with respect to the specific
classification task. In addition, distinct factors in VQCs have been explored in
detail to investigate the performance of VQCs, including data encodingmethods,
loss functions, and optimizers. The experimental result shows that the proposed
data encoding method outperforms other typical encoding methods on a given
classification task. Moreover, different loss functions are tested, and the capability
of finding the minimum value is evaluated for gradient-free and gradient-based
optimizers, which provides valuable insights and guidelines for practical
implementations.
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1 Introduction

Quantum computing, as a cutting-edge technology, is upending traditional computing
methods based on digital electronics, and has shown its unique advantages in various fields
(Arute et al., 2019; Hendrickx et al., 2021). The use of quantum superposition and
entanglement enables the possibility of solving intricate problems with exponential
speedup (Shor, 1994) or quadratical speedup (Grover, 1996). IBM Osprey, the latest
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Noisy Intermediate-Scale Quantum (NISQ) device used for general
purposes, has up to 433 qubits, and its successor with more than
1,000 qubits is about to be unveiled in 2023 (Gambetta, 2021).
Despite the rapid growth in the number of qubits in quantum
computers, the incorporation of quantum computing into practical
engineering problems still poses significant challenges, including
their accuracy, efficiency, and how to take quantum advantages.

Variational Quantum Algorithms (VQAs) hold great promise as
a viable technology applicable to near-term NISQ computers
(Cerezo de la Roca et al., 2021). By leveraging the inherent
merits of classical optimization approaches and parameterized
quantum circuits, VQAs possess the potential to mitigate the
impact of noise stemming from NISQ devices, which is a
substantial advantage over other quantum algorithms. Quantum
machine learning (QML) serves as a popular candidate application
in VQAs, where the VQA framework can be perfectly implemented.
The parameterized quantum circuits in VQAs can be optimized to
minimize/maximize the objective function by transforming a
general-purpose problem into a minimization or maximization task.

Recently, numerous research endeavors have been carried out
on QML, including implementation on quantum processors
(Tacchino et al., 2019), network architecture (Cong et al., 2019),
and data encoding (Schuld et al., 2021). Tacchino et al. (2019)
proposed a perceptron quantum model utilized for an elementary
classifier, which can be efficiently implemented on a real quantum
computer. A state-of-the-art quantum conventional neural network,
inspired by the traditional conventional neural network, was
provided by Cong et al. (2019) under the assumption that the
input can be prepared as a quantum state in a physical system.
Schuld et al. (2021) comprehensively investigated the pros and cons
of various data encoding methods in detail, which is an important
part of variational quantum circuits, providing good guidance in the
selection of data encoding methods.

VQCs are one of the commonly used algorithms in the field of
QML. For a classification task, we use a set of training data DT and a
set of test dataDSwith their labels, andDT ∪ DS � Ω ∈ Rd. The goal
of the classification task is to approximate a potential mapping of
data features to labels on DT, which can predict labels L(s) � ~L(s)
with high precision on DS. The loss function of VQCs is defined as
the error between the true labels and the expectation values of the
observations, and classical optimizers are employed to minimize it.
Parameterized circuits were popularized by authors such as Farhi
et al. (2014), who studied parameterized circuits for solving MaxCut
and related problems. Since then, parameterized quantum circuits
have emerged for quantum classification algorithms. Farhi and
Neven (2018) formulated a general classification framework
based on quantum computers. Initially, labeled input strings are
mapped to computational quantum states. Classical optimizers train
a quantum neural network to learn the mapping between strings and
labels. In this paper, only basis encoding was investigated, which was
only suited to the bit-strings z ∈ {0,1}n. Thus, methods for other types
of input data need to be further explored. Mitarai et al. (2018)
proposed a novel and specialized data encoding method, designed to
approximate analytical functions by the property of nonlinearity of
the designed tensor product. The numerical result shows themethod
has the capability of representing elementary functions and has the
potential to handle the non-linear classification task with a low-
depth ansatz. However, this data encoding method requires a

complex quantum circuit to implement and is highly based on
the selection of basis functions. In reference to Havlíček et al. (2019),
a VQC was constructed using a methodology akin to traditional
support vector machines. This approach not only enhances the
classification performance but also opens up the possibility of
exploiting quantum advantages. It introduces a sophisticated data
encoding technique designed to be computationally challenging for
classical evaluation, highlighting the potential for achieving
quantum advantages. Nevertheless, a comprehensive analysis of
the individual factors influencing VQCs is not thoroughly
demonstrated. The relationship between feature maps and kernels
is implicitly analyzed in Schuld and Killoran (2019). The analysis
result disclosed the fact that the process of data encoding is actually a
kernel method that maps data to quantum Hilbert space, and ansatz
with optimal parameters served as a hyperplane to separate unseen
data. The performance of the proposed QML framework with more
qubits is still not clear, and further efforts are required to refine and
enhance the current approach.

In this paper, on the basis of the previous VQC framework, we
develop a VQC that is used for handling the input data living in
complex domains, such as complex power and voltage in alternating
current power systems. By leveraging the property of n-qubit
quantum states |ψ〉∈ (C2)⊗n, the coupling data encoding method
exploits amplitude encoding to embed the complex-valued data into
quantum states. Then an optimizer is used to update the variational
parameters in the parameterized quantum circuit until finding the
minimum of the loss function. Finally, the parameterized quantum
circuit with the set of optimal parameters is employed to process the
encoded quantum states, and further performs the classification
problem, e.g., finding unstable equilibrium points of power system
from its operating dataset. Compared with other data encoding
methods, the developed approach requires fewer qubits to
accomplish the classification, and it also gives the highest
accuracy. In addition, we investigate different factors in the VQC
construction, including data encoding methods, loss functions, and
optimizers, which may have an effect on the performance of VQC.
The results show that these factors directly affect the performance of
VQC, loss function l2, misclassification-based loss function, and
gradient-based optimizers demonstrate better capabilities for
the given task.

The contributions of this work can be summarized into three
main aspects.

• We explore the applicability of amplitude encoding for complex-
valued data and validate its effectiveness in universal VQCs,
achieving high accuracy in classification tasks.

• Different factors that may influence the result of VQCs are
compared and analyzed in the experiment, including data
encoding methods, loss functions, and optimizers. The
analysis and experimental results offer a reference for
selecting the proper methods in VQCs.

• The power system data is utilized as the input data of VQCs.
The experimental result of VQC shows the potential of QML
in real-world engineering problems.

The remainder of this paper is organized as follows. Section 2
introduces the general scheme of VQCs. Section 3 introduces three
types of critical components in VQCs, including the coupling and
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splitting data encoding methods, the construction of loss functions
in the framework of VQCs, and typical optimizers. The numerical
result is given in Section 4 to verify the effectiveness of the coupling
amplitude encoding method used for complex-valued data and
compares the influence of the above factors. Conclusions are
discussed in Section 5.

2 General scheme of VQC for complex-
valued data

A VQC is a class of hybrid methods that combines quantum
computing techniques with classical optimizers (Cerezo de la Roca
et al., 2021), which can be used for classification tasks. Utilizing
VQCs allows the finding of an ansatz with optimized parameters to
classify data as does classical machine learning methods. Moreover,
by leveraging the advantages of entanglement and superposition of
qubits, VQCs potentially offer enhanced capabilities for tackling
classification problems.

The workflow of VQCs is outlined in Figure 1, including the
following three steps:

• Data Encoding: In order to run in a superconducting quantum
processor, the training data set DT and test data set DS are
mapped to quantum states |Φ(x)〉 on a basis state, e.g., |0〉⊗n
(Nielsen and Chuang, 2010).

• Ansatz: Ansatz (parameterized quantum circuit) acts as a
candidate quantum circuit with a set of variational
parameters. The ansatz with optimal parameters can lead to
the best quantum state for given tasks.

• Loss Function and Optimizer: This step is implemented on
classical computers. A loss function is expected to be properly
designed and then used to evaluate the gap between true labels
and predicted values, and optimizers are classical algorithms
that are used to adjust the parameters of ansatz, thereby
minimizing loss functions of VQCs.

Similar to conventional supervised learning, VQCs also contain
two phases: the training phase and the classifying phase. First, in the
training phase, a loss function evaluates the gap between true labels
and predicted values, so a classical optimizer can be employed to
tune the ansatz. The goal of the training phase is to find a set of
parameters that maximizes the accuracy of the classification models.
Second, in the classifying phase, the encoded quantum state will
evolve through the well-trained ansatz W(θ) with optimized
variational parameters θ. Finally, the resulting quantum state will
be measured, and a customized function f: {0,1}n→ {−1, 1} is utilized
to map the distribution of the measurement results to the labels.

From the aforementioned workflow, we can find that there are
several factors that can potentially impact the effectiveness of VQCs,
including the data encoding method, the loss function, the type of
optimizers, etc. Carefully selecting methods in VQCs tailored to
specific problems is crucial to achieving improved classification
results. In practice, furthermore, a large amount of data is
presented in the form of complex numbers, e.g., phase data for
power systems and Fourier transform results on image processing.
How to process and analyze such data by VQC remains a
challenging problem. In the following analysis, we will delve into
these factors and provide the most suitable method specifically for
the case of complex-valued data.

3 Methods—VQCs for complex-
valued features

3.1 Data encoding for complex-valued data

Data encoding is a methodology that transforms classical data
into quantum information, which can be further processed by
quantum computers. Choosing proper data encoding methods
can better characterize classical data, enhancing its compatibility
and interpretability within the QVC framework. Schuld (2021) has
proven that data encoding is equivalent to kernel methods for

FIGURE 1
The general scheme of VQCs.
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supervised learning, where kernel methods are employed to project
original data into a high-dimensional space. Thus, in the field of
QML, the original data is also mathematically mapped into a new
Hilbert space through data encoding, which serves as the
mathematical framework where quantum states reside and
interact. In practice, a unitary quantum circuit is commonly
employed to realize the data encoding process. Specifically, the
basis state |0〉⊗n evolves through the unitary quantum circuit to
become different quantum states with input features.

So far, researchers have proposed many data encoding strategies
(Biamonte et al., 2017), including basis encoding, amplitude
encoding, angle encoding, etc. Data encoding methods can be
achieved by building unitary quantum circuits. Rotation gates
and controlled gates are the main components in these quantum
circuits. By taking advantage of quantum entanglement, 2n features
can be encoded into quantum states with a n-qubit quantum circuit.
In this paper, a unitary quantum circuit UΦ(x), a feature map,
represents the data encoding process, and the resulting states
processed by this map can be expressed as |Φ(x)〉 � UΦ(x)|0〉⊗n.
Next, two categories of data encoding strategies will be introduced
for complex-valued data used for QML.

3.1.1 Coupling encoding method for complex-
valued data

The coupling encoding method refers to encoding complex-valued
data as a whole entity without splitting it into individual components
and representing it in a quantum state when performing data encoding.
Amplitude encoding is a type of quantum state preparation in which
classical data are encoded as the amplitudes of quantum superposition
states, and also one of the common data encoding methods in the field
of quantum computing is one of the common data encoding methods
in the field of quantum computing (Harrow et al., 2009). For a classical
vector x ∈ C2n that satisfies∑2n

k�1|xk|2 � 1, it can be represented by the
amplitudes of a quantum state |Φ(x)〉, which is defined by Eq. 1,

|Φ x( )〉 � ∑2n
k�1

xk|k〉, (1)

where |k〉 is the kth computational basis.
If the original vector x ∈ CN is not normalized, in order to

encode x through amplitude encoding, the initial step is to normalize
it to ensure that it satisfies ∑N

k�1|xk|2 � 1. This step implies that
quantum states represent the data in a dimension that is one less
than its original dimension. To address this issue, one approach is to
add an element 1 to the given feature vector and normalize the
resulting vector. For instance, for any vector x �
[x1, x2, . . . , xN]T ∈ CN to be normalized, we can increase its
dimension by one and set the added component as 1. The
augmented vector ~x ∈ CN+1 can be expressed as Eq. 2,

~x � x1, x2, . . . , xN, 1[ ]T, (2)

The augmented vector after normalization is given by Eq. 3,

x̂ � x1

‖~x‖,
x2

‖~x‖, . . . ,
xN

‖~x‖,
1
‖~x‖[ ]T

, (3)

where ‖~x‖ is the norm of the augmented vector ~x. When the
Euclidean norm is employed for normalization,

‖~x‖2 �
��������������������
x1

2 + x2
2 +/ + xN

2 + 1
√

. We can find that the
information on the norm of the vector remains in x̂.
Therefore, by changing the N-dimensional vector to a N + 1-
dimensional vector, the original data will not lose information. In
the quantum phase, if an N + 1-dimensional vector is encoded
into an n-qubit quantum state, the number of the quantum state n
is required to satisfy n ≥ log (N + 1). Generally, n = log (N + 1)
holds with a very tiny probability, so the dimension of the
encoded vector is usually less than log (N + 1). When the
dimension of the processed data in (3) is less than 2n, we can
always extend it into a new vector with a dimension of precisely
2n by adding zero entries. Thus, the data can fit into an n-qubit
quantum state.

Power systems are a vast and intricate network that encompasses
extensive energy interactions and data transmission. Phasor
measurement units (PMU) are a fundamental monitoring
component in modern alternating current power systems Guarnieri
(2013). With the large-scale deployment of PMUs, modern power
systems have become easier to monitor and control. In practice, PMUs
quickly capture the samples from a sinusoidal waveform (including
voltage, current, and power) and compute the magnitude and phase
angle of an electrical phasor quantity.

For an operating power system, the complex power S in phasor
form can be expressed as Eq. 4,

S � |S|∠ϕ � |S|ejϕ � |S| cos ϕ + j|S| sin ϕ � P + jQ, (4)
where j represents the imaginary unit, |S| and ϕ are the magnitude and
the phase angle of the complex power, P denotes the active power andQ
denotes the reactive power. Similarly, this property exists in various
electrical quantities. Note that S ∈ C in which the amplitudes of
quantum states live. Hence, the raw complex data provided by PMUs
can be directly embedded in quantum states by amplitude encoding.We
can also use the Bloch sphere to visualize a normalized complex electrical
quantity shown as Figure 2. For high-dimensional complex power data,
each feature can be embedded into the amplitude in (1) as long as the
data encoding circuit with a sufficient number of qubits is available.

For a power system dataset withm complex-valued features, e.g.,
complex power, it can be represented by a m-dimensional vector
Eq. 5,

s � P1 + jQ1, P2 + jQ2, . . . , Pm + jQm[ ]T (5)

The quantum state after amplitude encoding is represented by
Eq. 6,

|Φ s( )〉 � P̂1 + jQ̂1( )|1〉 + P̂2 + jQ̂2( )|2〉+, . . . ,+ P̂m + jQ̂m( )|m〉

+ 1�������
‖s‖22 + 1

√ |m + 1〉,

(6)
where ‖s‖2 is the Euclidean norm of the vector s, and
P̂i � Pi/

�������
‖s‖22 + 1

√
, Q̂i � Qi/

�������
‖s‖22 + 1

√
.

An inherent advantage of amplitude encoding is that it allows for
the exploitation of quantum superposition and entanglement
properties, so a large number of features can be input into the QML
algorithm with a limited number of qubits. Specifically, the complex
vector xwith 2n features can be encoded into a n-qubit quantum state by
leveraging the superposition state of quantum systems. This means, by
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adopting amplitude encoding, data can potentially be processed in
parallel, indicating a potential to reduce computational time and
improve efficiency compared to classical machine learning methods.

3.1.2 Splitting encoding methods for complex-
valued data

Contrary to the coupling encoding method, the splitting
encoding method involves processing the real part and the
imaginary part of complex-valued data separately. Many data
encoding methods only accept real numbers as the parameters of
their quantum circuits, e.g., angle encoding and Pauli feature
map. For this type of data encoding method, we have to separate
the real parts and the imaginary parts, so we can further embed them
into quantum states.

3.1.2.1 Angle encoding
Angle encoding is a common data encoding method based on

rotation gates. It utilizes the angles of quantum gates as parameters
to encode classical information in quantum states and can be applied
to different forms of data (Schuld, 2021), such as binary, real-valued,
or categorical data. Therefore, angle encoding does not necessitate
classical data normalization, meaning that data preprocessing for
angle encoding is not required. The basic angle encoding with a
single layer of Pauli rotation gates is given by Eq. 7,

|Φ x( )〉 � ⊗n
i�1 Ri xi( )|0〉( ), (7)

where Ri represents the rotation gate of ith qubit, which can be expressed
as the exponential form of Pauli matrices σ, where σ ∈ {I, X, Y, Z}.

FIGURE 2
Data encoding for the phasor data in power systems.

FIGURE 3
An angle encoding architecture for complex-valued data with multiple repetitions. Ri,j represents the rotation gate of ith qubit in jth layer, different
colored blocks indicate the utilization of different rotation gates within the data encoding architecture. The yellow and green boxes correspond to Ry and
Rz rotation gates, respectively.
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Furthermore, a more intricate quantum circuit with multiple
layers and repetitions for complex-valued angle encoding can be
constructed by incorporating more layers of Pauli rotation gates,
i.e., Figure 3, where H is the Hadamard gate that maps |0〉 to
1�
2

√ |0〉 + 1�
2

√ |1〉. Nonetheless, for angle encoding, the number of
qubits is equal to the dimension of features as only rotation gates
exist in the data encoding circuits, which limits the potential
exploitation of quantum entanglement benefits.

For the dataset being the same as Eq. 5, the quantum state after
processing by the angle encoding in Figure 3 can be represented as Eq. 8,

|Φ s( )〉 � ∏c
k�1

⊗m
i�1Ri,1 Pi( )Ri,2 Pi( )[ ] ⊗ ⊗m

i�1Rm+i,1 Qi( )Rm+i,2 Qi( )[ ] ⊗ H⊗2m[ ]|0〉⊗2m,
(8)

where c is the number of repetitions in 3.

3.1.2.2 Pauli feature map
Pauli feature map was first proposed in Havlíček et al. (2019),

and it represents a family of data encoding methods. It can be
formulated as follows Eqs 9, 10,

UΦ x( ) � UΦ x( )H⊗n . . .UΦ x( )H⊗n, (9)

UΦ x( ) � e
j ∑
C⊆ n[ ]

ϕC x( )∏
i∈C

σi( )
, (10)

where [n] means the enumeration of n qubits, and C describes the
interconnections between individual qubits. Theoretically, C is very
large when the number of qubits is high, which renders the
implementation of the Pauli feature map more intricate.
Therefore, we have |C| ≤ 2 in this paper, so the Pauli feature
map can be efficiently implemented. ϕC(x) is a set of linear fl(x)
and the non-linear fnl(x) functions of the original data. Havlíček et al.
(2019) provides examples of functions utilized for the Pauli feature
map, which are defined as follows Eqs 11, 12,

ϕk x( ) � xk, (11)
ϕm,n x( ) � π − xm( ) π − xn( ), (12)

where ϕk(x) is the encoding functions embedded in single-qubit-gate
unitary, and ϕm,n(x) is the encoding functions embedded in two-
qubit-gate unitary. The repetition of H and UΦ(x) can be adjusted to
pursue better performance for VQCs. For instance, given the trade-
off between the circuit depth and its performance, the provided
feature map in Havlíček et al. (2019) consists of two Hadamard
transforms and uses the Ising model, and it has shown good
performance for their classification tasks. When specifying to
power system applications, the Pauli feature map is given in Figure 4.

For the dataset being the same as (5), the quantum state after
processing by the Pauli feature map with two repetitions can be
represented as Eq. 13,

|Φ s( )〉 � UΦ sf( )H⊗mUΦ sf( )H⊗m|0〉⊗m, (13)

where sf � [P1, Q1, P2, Q2, . . . , Pm, Qm]T ∈ R2m.
Pauli feature maps, compared with angle encoding, exhibit the

ability to handle diverse data types, but offer the potential for
quantum advantage through the exploitation of quantum
parallelism and entanglement. Nevertheless, the considerable
number of quantum gates and qubits required can pose
challenges. Moreover, its complex structure and the extensive
number of gates can result in a deep circuit, leading to the
encoding circuit being more susceptible to noise and errors in
current quantum hardware.

3.2 Parameterized quantum circuits of VQCs
for complex-valued data

Parameterized quantum circuits are typically referred to as
ansatz in the quantum computing field. They are a critical part
of VQCs, whose structure plays a crucial role in determining the
final parameters, thereby influencing the training process to achieve
optimal results. Among the various ansatzes, layered hardware-
efficient ansatzes have been prominently used for general-purpose
problems. What is even more noteworthy is that quantum circuits
can be constructed with fewer layers or parameters thanks to the

FIGURE 4
Pauli feature map for complex-valued data.
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symmetry and locality properties inherent in quantum circuits
(Iblisdir et al., 2014). Generally, ansatz architecture usually
employs a kind of universal and ‘problem-agnostic’
parameterized quantum circuits, so they can be utilized as the
training quantum circuit even in those situations where no
relevant information is readily accessible.

For a general parameterized quantum circuit, the training
parameters are embedded in unitary operators W(θ) consisting of
a collection of basic quantum gates, including some parameterized
and unparameterized gates. By increasing the depth of a
parameterized quantum circuit, the number of variational
parameters θ also increase, through which the function-fitting
capabilities of ansatz are expected to be improved. For W(θ), it
can be represented by the product of a series of unitaries Eq. 14,

W θ( ) � Wl θl( ) . . .W2 θ2( )W1 θ1( ) (14)
where l is the number of layers in ansatz.

In this paper, an ansatz initially proposed in Kandala et al.
(2017) is implemented for the classification issue of complex-valued
data, as shown in Figure 5, which contains single-qubit rotation
gates with variational parameters and entangling unitaries with fixed
phases. Each single-qubit-gate unitary is followed by an entangling
unitary, except for the final unitaryWl (θl). This ansatz architecture
leads to better performance on superconducting quantum
processors, as summarized in Kandala et al. (2017).

In Figure 5, the variational parameters only exist in the rotation
gates. Experimental validation in Kandala et al. (2017) has
demonstrated that entangling unitaries with fixed phases exhibit
superior performance compared to entangling unitaries with
variational parameters. Thus, the number of variational
parameters in the ansatz comes to 3ln, where n is the number of
implementing qubits.

In order to reduce the complexity of the VQC, we only use Pauli
Y and Pauli Z rotations in the single-qubit-gate unitaries defined by
(15), which represents a set of rotation gates in a layer of W(θ)
in Figure 5,

U l( )
loc θl( ) � ⊗n

m�1U θm,t( ), (15)
where θl ∈ R2n, and θm,t ∈ R2, and U(θ) is defined as Eq. 16,

U θm,t( ) � ej
1
2θ

zZmej
1
2θ

yYm , (16)
where Ymmeans themth Pauli Ymatrix and Zmmeans themth Pauli
Z matrix.

To further simplify the construction of the ansatz, we can build
the entangling unitary based on the Ising model. The controlled-Z
gates are utilized as entanglement gates, which only entangle with
the neighboring qubits. The entanglement unitary is given by (17),
which represents the entangling unitary in a layer of W(θ)
in Figure 5.

FIGURE 5
The demonstration of layered parameterized quantum circuit.
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Uent � ∏
i,j( )∈E

CZ i, j( ), (17)

where E represents the collection of neighboring qubits,
and CZ (i, j) represents the controlled Z gates applied at
qubit i and j.

In this setting Eq. 14 can be expanded in a more detailed manner
Eq. 18, and the structure of the VQC used is shown in Figure 5,

W θ( ) � U l( )
loc θl( )Uent . . .U

2( )
loc θ2( )UentU

1( )
loc θ1( ), (18)

where U(l)
loc(θl) denotes the lth single-qubit-gate unitary, and Uent

represents the entangling unitary.
As the number of input qubits increases, the depth of the

proposed VQCs needs to be incrementally increased to meet the
demand for better expressivity. However, considering the rapid
increase in the number of parameters arising from deeper
quantum circuits, the number of layers in the ansatz is set to
2 in this paper, as detailed in Section 4.

3.3 Loss functions and optimizers of VQCs
for complex-valued data

3.3.1 Loss functions
For a complex-valued dataset with labels, such as power system

data with stable and unstable scenarios, the loss function is designed
in VQCs to learn the relationship between the power system data
and the stability characteristics, i.e., the label of each operational
scenario. Thus, we can assess power system stability from test data.
Thus, the choice of the loss function has a significant effect on the
optimization process, as it alters the landscape of the optimization
problem. Therefore, the loss function needs to be carefully selected.
For classification tasks, in general, the loss function can be defined as
the error between the true label and the expectation value under an
observable O. Basically, the observable O here serves as a bridge
between the final quantum states and the data label {+1, −1}.
Mathematically, the observable can be viewed as an operator and
has eigenvalues either +1 or −1, so the expectation value 〈Φ(xi)|
W†(θ)OW(θ)|Φ(xi)〉 under the observableO can be bounded by [−1,
+1]. It can be further utilized to assess the gap to labels by tuning the
parameters in the ansatz. In quantum physics, the observable O
measures the property of quantum states by means of successive
operations, e.g., applying electromagnetic fields, and eventually
reading a value in [−1, +1]. The general form of the loss function
can be given by Eq. 19,

L θ( ) � ∑
i

f yi, 〈Φ xi( )|W† θ( )OW θ( )|Φ xi( )〉( ), (19)

where f denotes the loss function, and yi is the label of ith sample.
In the field of traditional machine learning, various loss

functions with favorable capabilities have been proposed
(Alpaydin, 2010). Correspondingly, these loss functions can also
be utilized in VQCs to tackle classification problems effectively. Here
we provide examples for designing the loss function.

(1) l1 and l2 loss functions: The squared loss, also called l2 loss, is
frequently selected as the preferred loss function, and Eq. 19
can be reformulated as Eq. 20,

Ll2 θ( ) � ∑
i

yi − 〈Φ xi( )|W† θ( )OW θ( )|Φ xi( )〉( )2 (20)

Another typical loss function replaces (·)2 with absolute value |·|,
which is named l1 loss.

(2) Cross-entropy loss function: The cross-entropy loss based on
information theory is also popular in QML. It also exhibits the
property of convexity, akin to the square function, making it
well-suited for gradient descent optimization methods
(Murphy, 2012). The expression is defined as Eq. 21,

Lent θ( ) � ∑
i

−yilogpi − 1 − yi( )log 1 − pi( ), (21)

where pi = 〈Φ(xi)|W
†(θ)OW(θ)|Φ(xi)〉 in VQCs.

(3) Misclassification-based loss function: This loss function is
formulated to assess the performance of VQCs by evaluating
the probability of occurrence of misclassified samples.
Havlíček et al. (2019) introduces a loss function for binary
classification, which shows a good result in their classification
tasks. Here we provide a brief overview of it. By evaluating the
ratio of misclassified samples, the loss function can be defined
as Eq. 22,

Perr � 1
|T| ∑

y

∑
s∈Ty

Pr ~mT s( ) ≠ y | s ∈ Ty( )⎛⎝ ⎞⎠, (22)

where |T| is the total number of samples. Ty is the sample subset
labeled by y. ~mT(s) is the measurement result for the samples of
the subset Ty.

The estimation of misclassifying ratio can be thought of as
carrying out experiments R times for each sample, which follow a
binomial distribution. Thus, the probability of misclassification is
given by Eq. 23,

Pr ~mT s( ) ≠ y | s ∈ Ty( ) � ∑R2
i�0

R
i

( )pi
y 1 − py( )R−i, (23)

whereR/2means that a sample ismisclassifiedwhen less than half of the
measurements in R experiments are not the state corresponding to the
true label. The probability of classification labels y is expressed as Eq. 24,

py � 1
2

1 + y〈Φ x( ) W† θ( )OW θ( )∣∣∣∣ ∣∣∣∣Φ x( )〉( ), (24)

In practice, py can be estimated by py � ry
R , where ry is the

number of occurrences of samples labeled by y.
When R is very large, the probability of misclassification can be

further expressed as Eq. 25. See (Havlíček et al., 2019) for details.

Pr ~mT s( ) ≠ y | s ∈ Ty( ) ≈ sig
��
R

√ 1
2 − py����������

2 1 − py( )py

√⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ (25)

3.3.2 Optimzers for VQCs
In order to obtain the optimal parameters of ansatz, an

optimizer implemented in classical computers makes queries to
the quantum device repeatedly and searches for a set of parameters
better than the current one. Optimizers can be divided into two
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FIGURE 6
A microgrid system containing renewable energy sources and power loads.

FIGURE 7
Data visualization for active power and reactive power of stable and unstable scenarios. The label of the x-axis indicates 10 different sets of samples,
each containing 10 features. For each sample, it induces dynamic behavior in the system, leading to either convergence or divergence, similar to the
trajectories shown in the right panel.
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categories based on whether or not analytical gradients are required,
as gradients are usually used to speed up finding the minimum value
of loss functions.

(1) The first category of optimizers is the gradient-free
optimizers, e.g., the Simplex algorithm and simultaneous
perturbation stochastic approximation (SPSA). The
Simplex algorithm is an optimizer designed to find the
minimum value when the derivative of the objective
function is unknown, making it a gradient-free and easy-
to-implement method. Constrained optimization by linear
approximations (COBYLA) is one of the most widely used
approaches based on the Simplex method, especially in the
optimization of ansatz (Powell, 2007). The COBYLA is a
sequential trust-region optimization technique that relies on
linear approximations. These approximations are constructed
using linear interpolation at n + 1 points in the variable space,
ensuring the maintenance of a well-formed simplex
throughout the iterations. It is particularly suitable for
solving non-smooth and nonlinear optimization problems
with a moderate number of variables.

There is an alternative optimization approach that does not rely
on accessing the gradient. If the derivative of the cost function is
difficult to access, numerical methods can be used to approximate
the gradient. A typical example of such an algorithm is SPSA
introduced in Spall (2005). Although it does not require the

analytical expression of gradients, it approximates the gradient by
perturbing the parameters of the optimization problem in a
stochastic way, thereby adjusting the direction of optimization.
By utilizing random and simultaneous perturbation, SPSA can
process noisy and non-differentiable objective functions with a
relatively fast convergence speed.

(2) Another category of optimizers is the gradient-based
optimizers. Gradient-based optimizers require the
calculation of analytical derivatives to tune the ansatz in
VQCs. The most common algorithm is the gradient
descent, which is given by Eq. 26,

θ̂
k+1 � θ̂

k − αk∇L θ̂
k( ), (26)

where θ̂
k
means the current parameters, αk is the learning rate and

∇L(θ̂k) is the estimated gradient at kth iteration.
Computing the analytical gradients of a loss function always

involves the derivatives of quantum circuit operators. The phase
shift strategy can be further utilized to compute derivatives with little
computing resources (Schuld et al., 2019). Among the popular
gradient-based optimizers in the quantum domain, well-known
ones include Conjugate Gradient Optimizer (CG) and Analytic
Quantum Gradient Descent (AQGD), etc.

We compared the performance of different optimization
algorithms in the data set of the power system in the following
numerical examples.

FIGURE 8
The designs of angle encoding: (A) Angle encoding A, (B) Angle encoding B.

TABLE 1 The number of quantum gates used for different data encoding methods.

Data encoding method Single-qubit gates Two-qubit gates Circuit depth

Angle encoding A 40 0 4

Angle encoding B 40 0 4

Pauli feature map 40 40 53

PCA + Angle encoding A 12 0 4

PCA + Angle encoding B 12 0 4

PCA + Pauli feature map 18 12 22

Splitting amplitude encoding 15 14 26

Coupling amplitude encoding 21 6 21
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4 Results

In this section, we obtain complex-valued data from a microgrid
system to validate the effectiveness of the VQC developed in this
paper, as shown in Figure 6. All power system simulations are
conducted using the Power System Analysis Toolbox (PSAT) in the
MATLAB environment. The microgrid system contains 10 buses,
5 renewable energy sources, and 5 power loads. Since changing
generator power and load power may lead to power system
instability, this system can operate at various equilibrium points
by setting different active and reactive power demands of loads and
generations of renewable energy sources. Time-domain simulations

were employed to identify the stability of the power system
operating at different equilibrium points (Milano, 2005). A total
of 366 stable samples and 602 unstable samples were created for the
experiment. Each equilibrium point contains various features (e.g.,
bus voltage, frequency, active power flow, reactive power flow, etc.)
under both stable and unstable scenarios. In this paper, only active
power and reactive power (a total of 10 real-valued features) in the
renewable energy sources buses are selected as the key features to
input into the VQC, which can be combined to form complex power
as the input of complex-valued amplitude encoding. The label of
unstable samples is set to −1 and the label of stable samples is set to 1.
The generated dataset is divided into the training set and the test set,

TABLE 2 Numerical result for different data encoding methods.

Data encoding method Qubit count Accuracy (%) Precision (%) Recall (%) F1-score (%) Loss function value

Angle encoding A 10 66.5 63.8 98.2 77.3 0.367

Angle encoding B 10 73.2 73.6 84.1 78.5 0.315

Pauli feature map 5 85.1 80.0 99.1 88.5 0.250

PCA + Angle encoding A 3 86.6 81.3 100 89.7 0.268

PCA + Angle encoding B 3 82.5 77.6 98.2 86.7 0.292

PCA + Pauli feature map 3 81.4 77.3 96.5 85.8 0.302

Splitting amplitude encoding 4 88.6 85.8 96.5 90.8 0.250

Coupling amplitude encoding 3 92.3 89.5 98.2 93.7 0.185

FIGURE 9
Stable and unstable samples distribution processed by PCA.
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and the training set data accounts for 80% of the total dataset. We
selected 10 stable samples and 10 unstable samples to visualize their
features, shown in Figure 7. For each sample, active power and
reactive power in 5 power source buses (total 10 features) are
selected for data visualization. The unstable samples will lead to
power oscillations with increasing amplitude, which could make the
power system crash eventually. The stable samples will cause power
oscillations with decreasing amplitude, and the oscillations will
disappear finally and the power system will be running at a new
equilibrium point normally.

In our experimental study, all related quantum circuits
associated with the data encoding methods and the VQCs are
formulated using the Qiskit simulator. A random initialized VQC
built in Section 3.2 is employed to execute the classification task. The

objective of the VQC is to directly distinguish the unstable samples
of equilibrium points from those stable ones based on the features
generated. This section investigates the impact of data encoding
methods, loss functions, and optimizers on the final classification
results of VQCs when applied to the power system dataset.

4.1 Comparison of data encoding methods

Different data encoding methods could have different abilities to
characterize the features in datasets. In this section, the coupling
data encoding strategy and the splitting data encoding strategy were
explored on the microgrid dataset. The active power and the reactive
power generation of renewable energy sources were used as the input

TABLE 3 Numerical result for different loss functions on testing dataset.

Loss function Accuracy (%) Precision (%) Recall (%) F1-score (%) Loss function value

l1 loss function 88.1 58.9 100 74.1 0.645

l2 loss function 92.3 89.5 98.2 93.7 0.185

Cross-entropy loss function 89.1 85.4 98.2 91.4 0.501

Misclassification-based loss function 92.3 89.5 98.2 93.7 0.109

FIGURE 10
Optimization landscapes of the second two parameters θ2,1 and θ2,2 in Figure 5 when other parameters are optimal: (A) l1 loss function, (B) l2 loss
function, (C) cross-entropy loss function, (D) misclassification-based loss function.
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of VQC. In order to reflect which data encoding method is more
suitable for power system data, here we adopted the squared error as
the loss function and the COBYLA as the optimizer for each
training. Besides, we used the same two layers in the
parameterized quantum circuit to compare the experimental
results of different data encoding methods.

Five types of data encoding methods were applied to encode the
power system features, including two angle encoding methods, Pauli
feature map, splitting amplitude encoding, and coupling amplitude
encoding. The designs of the angle encoding circuits adopted are
shown in Figure 8, and the Pauli feature maps are constructed as the
structure in Section 3.1.2. They all consist of the Hadamard gates
and the Pauli rotation gates, and they have two same repetitions to
strike a balance between performance and circuit depth. In addition,
in order to achieve better performance on angle encoding methods
and the Pauli feature map, we used a data dimensionality reduction
method to reduce the dimension of the features before performing
the classification of VQCs. Hence, in this section, we utilized both
the original data and the data processed by principal component
analysis (PCA) as the input features of VQCs to obtain
comprehensive experimental results. The principal components
corresponding to the largest three eigenvalues were selected as
the input features. Considering the active power and the reactive
power can be represented as a vector on the complex plane, the
proposed complex-valued amplitude encoding is used for encoding

the complex power. The number of quantum gates used for different
data encoding methods is shown in Table 1.

In this section, to better evaluate the classification model, we use
four types of indexes, including accuracy, precision, recall, and F1-
score, which are widely used in binary classification. They are
defined as Eqs 27–30,

Accuracy � TP + TN

TP + TN + FP + FN
, (27)

Precision � TP

TP + FP
, (28)

Recall � TP

TP + FN
, (29)

F1 − Score � 2*Precision*Recall
Precision + Recall

, (30)

where TP denotes the number of true positives, TN the number of
true negatives, FP the number of false negatives, and FN the number
of false negatives. The results of VQCs on the test dataset for
different data encoding methods are shown in Table 2. The data
distribution processed by PCA is shown in Figure 9.

From Table 2, we can see that,

• The coupling amplitude encoding can achieve 92.3% accuracy
on the microgrid dataset, which performs better than the other
data encoding methods. Angle encoding A, Angle encoding B,

FIGURE 11
Training process of different optimizers: (A) COBYLA, (B) SPSA, (C) CG, (D) AQGD.
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the Pauli feature map and the splitting amplitude encoding
can not achieve over 90% accuracy on the test data.

• Angle encoding A and Angle encoding B yield notably
unfavorable outcomes, a consequence attributed to the
increase of qubits count in VQCs, thereby rendering
optimization challenging.

• After applying PCA to the data, the performance of the
method has been improved overall, due to the shallow
depth of the parameterized quantum circuit. The barren
plateau issue would become more intractable with
increasing size of qubit count. We find that there is also a
decrease in the accuracy of the VQC model when the qubit
count has to be increased due to different coding methods
used in the numerical results.

4.2 Comparison of loss functions

The choice of loss function directly influences the optimization
landscape of VQCs. Choosing appropriate loss functions can aid in
the development of a more effective and efficient classification
model. In this section, four types of loss functions are
investigated, including l1 loss, l2 loss, cross-entropy loss, and the
misclassification-based loss function proposed in Havlíček et al.
(2019). To showcase which loss function performs better for this
problem, we use the dimensional-reduced microgrid system data
processed by PCA, and fix the data encoding method as the coupling
amplitude encoding and employed the COBYLA as the optimizer.
The numerical results for the four loss functions are shown in
Table 3, and optimization landscapes are shown in Figure 10.

From Table 3, we can find that,

• The l1 loss function exhibits poor optimization performance
for the proposed VQC. Figure 10A shows the minimum of the
landscape is close to 0.5. Compared to l2 loss function in
Figure 10B, the l1 loss function yields a significantly higher
minimum value.

• Among the tested loss functions, the performance of the l2 loss
function and themisclassification-based loss function excels in
the classification tasks, both achieving the highest accuracy
92.3%. The l1 loss function and the cross-entropy loss function
yield comparatively low accuracy.

• These loss functions may exhibit barren plateaus. If gradient-
based optimizers are utilized to find the minimum of the loss
function, barren plateaus may be a daunting challenge for
optimization. Furthermore, they all exhibit landscapes with
multiple local optimums that could hinder the optimizer from
finding the global optimum.

4.3 Comparison of optimizers

Optimizers play a pivotal role in optimization problems. In
this section, we examined four common types of optimizers used
for VQC optimization, aiming to investigate the performance of
various optimization methods. The tested optimizers not only
include the gradient-free methods, i.e., COBYLA and SPSA, but
also gradient-based methods, i.e., AQGD and CG. We also utilize
the data processed by PCA as the input features. Since we found
that the difference in results between different optimizers was
small when using the coupling amplitude encoding, the two kinds
of angle encoding methods and the Pauli feature maps are
employed as the data encoding methods in the test. The l2
loss function is utilized as the loss function. Figure 11 shows
the training process of different optimizers by using the Angle
encoding A. Uniform distribution was employed to realize the
random initialization of the VQC training. More specifically,
random numbers from −π to π are drawn uniformly as the initial
parameters of the VQC. The maximum number of iterations is set
to 2000, 500, 100 and 70, corresponding to COBYLA, SPSA, CG
and AQGD respectively. The gradient norm tolerance of CG is set
to 10–5 and the learning rate of AQGD is set to 1.0. Table 4 shows
the accuracy of the proposed VQC under different optimizers
and encoding methods.

From Figure 11 and Table 4, we can find that,

• The tested optimizers have comparable capabilities to find the
optimal parameters of the VQC. The gradient-based methods
slightly outperform the gradient-free methods in terms of
classification accuracy. Specifically, the gradient-based
method AQGD and CG show better performance than
gradient-free methods for searching the optimal parameters
of VQCs. Furthermore, the training process of SPSA
fluctuates, leading to a slight accuracy decrease compared
other three optimizers.

• The COBYLA took less time to find the optimum because the
parameter count is limited in this experiment. With the
growth of the number of qubits and variational parameters,
the gradient-based methods are expected to exhibit
higher efficiency.

5 Conclusion

This study introduces a new type of VQC designed
specifically for data in the complex domain. Research focuses
on a comparative analysis of various factors that have the
potential to impact VQC performance. Leveraging the

TABLE 4 Numerical result for different optimizers.

Data encoding method Angle encoding A (%) Angle encoding B (%) Pauli feature map (%)

COBYLA 84.5 86.6 80.4

SPSA 78.9 83.0 79.9

CG 84.5 88.7 80.4

AQGD 82.9 88.1 85.6
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inherent information of quantum states, the coupling amplitude
encoding approach exhibits a greater ability to capture the
intrinsic nature of complex numbers, surpassing the efficacy of
traditional splitting data encoding methods. To operationalize
these insights, the research proceeds to implement the VQC
framework, employing the coupling data encoding method to
achieve a highly accurate classification of labeled complex-valued
data. To further elevate the performance of VQCs, this study
evaluates and compares several techniques, including data encoding,
loss function, and optimizer, all tailored to the demands of power
system tasks. This in-depth assessment not only offers valuable insights
but also serves as a guide for selecting optimal methods to effectively
train themodel. The comprehensive evaluations conducted in this study
consistently underscore the advance of coupling amplitude encoding in
complex-valued data classification within the VQC framework. The
results highlight its superiority over alternative data encoding methods,
reinforcing its potential to significantly enhance VQC performance.
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