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We report on a quantum mechanics popularisation software, Eigengame,
developed to get general audiences to play with key concepts in quantum
mechanics, i.e., the wave function, the quantization of energy, the probability
density and, to some extent, the measurement problem. The software is
developed in python and is available online at github.
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1 Introduction

Quantum Technologies are nowadays a reality, with major advances being reported on a
regular basis on all fronts: communications, computation, materials, sensing and simulation, see
for instance the European Quantum Technologies roadmap Acín et al. (2018). These science and
technology efforts need to be complemented with high quality educational and popularisation
materials to ensure that our societies understand the main novel and revolutionary concepts that
are behind these technologies, an European example is the QTEDU project (www.qtedu.eu).

One of the key concepts in Quantum Mechanics is that of the wave function, Ψ( �r), and
the interpretation of its modulus squared as a probability density, ρ( �r) � |Ψ( �r)|2, see for
instance any classical quantum mechanics textbook such as Messiah (2014). These, together
with the Schrödinger equation, which governs the time evolution of the wave function, allow
for a complete quantum mechanical description of an isolated physical system.

Our goal with Eigengame is to bring general audiences in contact with such quantum
mechanical description of a system. To do so, we have developed a computer program with a
visually appealing user interface based on the problem of a confined electron in one dimension.
The program consists of a guided game in which the user designs a confining potential and
chooses one of the corresponding eigenfunctions of the electron with the aim of finding the
electron in a region randomly defined by the program when a measurement is made. By
playing the game the user develops an intuition on different key concepts of Quantum
Mechanics, namely, the spread-out nature of the wave function, the effect of the confining
potentials on its structure, the existence of different eigenfunctions associated with different
energy levels, the measuring process, etc. A more detailed examination permits a deeper
discussion on the meaning and structure of the wave function, from interpretation issues about
its meaning to technical features such as the number of nodes of the different eigenfunctions.

The full code can be found in Sabater (2022). Abuilt in version forwindows canbe downloaded1.
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There are several other quantum programs or games that serve as
tools to bring quantum science and technologies closer to the general
public. An exhaustive analysis of the most outstanding tools in this field
can be found in Seskir et al. (2022). In this review, quantum games such
as Hello Quantum, Particle in a Box Anupam et al. (2018), QPlayLearn,
Virtual Lab by Quantum Flytrap Migdał et al. (2022), Quantum
Odyssey Nita et al. (2021), ScienceAtHome and Virtual Quantum
Optics Laboratory La Cour et al. (2022) are discussed. All these
games deal with different technical aspects of quantum physics such
as quantum gates, quantum circuits, ultracold atoms or photons among
others. In this project, instead of focusing on a specific phenomenon or
application, we try to create a tool to grasp the most fundamental
aspects of quantum mechanics that one must understand as a basis for
exploring the many applications of quantum theory. Even though there
exists a variety of tools to bring quantum science and technologies to the
public, their didactic objectives are often not explicit or clear. In this
article we focus not only on the functioning and characteristics of the
game but we also specify and explain the concepts that should be
acquired by playing the game.

Even given the great variety of tools to bring quantum science
and technologies to the public, there is no criterion to discern if these
tools really fulfil their didactic objective, that is why in this article we
not only comment on the functioning and characteristics of the
game but also on those concepts that must be acquired by the player
after playing the game.

2 Game flow

The goal of the game is to measure an electron inside a random
region of space assigned by the program. To achieve this, the player
must set up the conditions for the electron such that the modulus of

its wave function squared is large in the target zone. This ensures a
high probability of finding the particle in the target region.

First, the player has to set up an adequate confining external
potential. Then, the energy level has to be chosen among five
possible ones: the ground, i.e., lowest energy, state and four
excited ones. At this point, the game displays the external
potential and the chosen energy level in a plot on the screen. If
the player is convinced with this set up, the next step is to calculate
the squared modulus of the wave function that is also displayed on
the screen. The player can calculate up to three wave functions
before being asked to perform a measurement. Once the player is
either satisfied with the wave function or has exhausted all three
attempts, it is time to measure the position of the electron.

Upon performing a measurement, the electron appears at the
bottom of the screen in a randomly selected position, with
probability density ρ(x) = |ψ(x)|2. If the electron is within the
target region, the player earns one point, and another smaller
target appears in a new position. However, if the electron is
outside the target the player loses one of his/her initial five lives.
Lives can be regained during the game when a heart appears inside a
target. If the player hits this target, not only do they earn one point
but they also recover a life. The size of the target decreases each time
a point is scored until the player has made it to the next level.

Levels are characterised by the number of targets the player must
hit with the use of a specific configuration of the external potential
and energy level, i.e., with the use of the same wave function. For
example, in the second level, there are two targets, and the player
performs three different and independent measurements of the
position of the electron. To score, each target must be hit by the
electron at least in one of the measurements. This design compels
the player to use excited levels–with multiple peaks–to maximise the
probability density function over the different targets since different

FIGURE 1
Main screen of Eigengame with the different buttons numbered in red.
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targets in different positions must be hit with the use of the same
probability density function in various measurements.

The player is guided through all these steps with an initial tutorial
that should be overcome before playing the game. The main screen of
the game and the different buttons are displayed in Figure 1.

The different functionalities of the buttons numbered in Figure 1
are explained below:

1 Free case. Sets V(x) = 0 inside the box.
2 Harmonic potential well. Set V(x) � 1

2K(x − x0)2. K and x0
can be modified with their respective sliders.

3 Potential wall. Adds an energy potential wall to V(x). The center,
width, and height of the wall can be modeled by the sliders.

4 Potential well. Adds a potential well to V(x). The left and right
corners and height of the well can be modified with their
respective sliders.

5 Lives indicator. Displays the number of remaining lives the
player has. In Figure 1, the player still has all five lives available.

6 Level indicator.
7 Score indicator. Shows how many points the player has scored.
8 Maximum score indicator. Shows the current maximum
punctuation achieved in the game.

9 Energy level. For choosing the excited state. E0 corresponds to
the ground state, E1 to the first excited state, etc.

10 Wave function. Plots the squared modulus of the wave function
on the screen. The white number tells how many attempts are
left before measurement is enforced.

11 Eraser. Erases any defined external potentials or energy selected.
12 Target. The electron can appear in the black zone in the lower part.

The goal of the game is to make it appear inside the blue zone.
13 Measure. Performs measurement of the position of the electron

when pressed, i.e., the electron appears on the bottom of the
screen.

14 Menu. Goes back to the initial menu where one can select the
language (English, Spanish or Catalan) and access the tutorial if
needed.

3 Key learning concepts

This project serves an educational purpose, aiming to help
players learn new concepts in physics while also reinforcing their
understanding of familiar ones. The game is designed to be
accessible to the general public, including individuals without
prior knowledge of quantum physics. However, it can also be
valuable for bachelor students who are beginning to study
quantum physics and wish to solidify their understanding
through a practical and enjoyable experience.

There are various key concepts to learn and practice not only
while playing the game but also throughout the overall experience,
including the introduction, playtime, and potential discussions that
may arise. Some concepts are fundamental, while others are more
advanced. The importance given to these concepts during a workshop
depends on the type of audience. For example, when the audience
consists of high school students, the objective should be to ensure their
understanding of concepts like probability density function, external
potentials, and energy. The quantum nature of the game can serve as a
motivating factor for them. On the other hand, if the audience
comprises university students or individuals with a background in
physics who are already familiar with these concepts, the focus should
shift towards explanations and discussions centered on quantum
mechanics and its distinctions from classical mechanics.

3.1 Probability density function

The concept of probability is fundamental to the game. Even
before understanding what a wave function is, the player must grasp
the idea that there exists a probability density function that provides
information about the likelihood of the electron collapsing within a
specific region. Since position is a continuous variable, its associated
probability is described by a continuous function.

Given a probability density f(x) that describes the electron’s
position, the probability to find the electron between positions a and
b is given by:

FIGURE 2
Example with a confining potential which is the sum of a
harmonic potential and a central barrier. Its ground state energy and
squared ground state wave function are also plotted. The confining
potential V(x) is depicted in blue, the energy of the eigenstate is
plotted with a green line and the squared modulus of the wave
function is shown in purple.

FIGURE 3
Example of a computed wave function that exhibits tunnel effect.
The confining potential V(x) is shown in blue, the energy of the
eigenstate is plotted with a green line and the squared modulus of the
wave function is shown in purple.
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P a≤X≤ b( ) � ∫b

a
f x( )dx. (1)

This can be easily explained by relating the area below the curve, f(x),
between a and b to the probability of finding the electron within that
region. Throughout the various stages of the game, the player
encounters multiple examples of probability density functions and
gains firsthand experience of their meaning and consequences by
making several measurements and observing where the electron
ultimately collapses or appears.

3.2 The electron

The very concept of the electron is also addressed in the game.
The electron serves as the central character since it is the particle
described by the wave function, measured by the player, and the
target of the game. Therefore, it is advisable to explain the concept of
the electron to the participants before they start playing.

Several key questions should be answered or at least raised for the
participants to consider. What is an electron? Does it exhibit a similar
behaviour to that of classical objects like balls? Where can electrons be
found? Can they be observed, and is it possible to track their trajectory?
How are electrons described in the context of quantum mechanics?

3.3 Potential energy

Another intrinsic notion of the game is the potential energy. The
potential energy is defined as the stored energy possessed by an
object due to its position or condition. It is a form of energy that an
object possesses by virtue of its relative position, composition, or
state. In classical systems, the potential energy is a function of the
position of the object, and, in absence of movement, the lowest
energy state of the system corresponds to one that minimizes the

potential energy. In quantummechanics, the position is probabilistic
and the situation is more intricate.

Figure 2 showcases an example of a confining potential landscape
created by combining a harmonic potential with a central barrier, along
with the corresponding ground state energy and probability density.
While in the classical case, the particle would be found in one of the two
minima of the potential well, in the quantum mechanical description
the probability extends way into the harmonic confinement and also
inside the central barrier. Through the process of constructing suitable
confining potentials, the player gains insight into the relation between
forces and potential energies. The player also learns how changes in the
confining potentials affect the probability distribution function of the
electron’s position. This direct feedback reinforces the understanding of
the impact of the confining potential on the behavior of the electron’s
wave function.

The player has access to various pre-defined basic confining
potentials, such as the harmonic potential, which can be adjusted by
modifying parameters such as the elastic constant k and the center
position x0. Additionally, the player has the ability to create custom
potential barriers and wells with varying attributes, including height,
width, and position. These elements can be combined to create a
wide range of confining potential landscapes V(x).

3.4 Energy quantization

So far, the concepts discussed have not been intrinsically related
to quantum phenomena. However, the essence of the game revolves
around the quantum states of the electron. One of the fundamental
quantum concepts that players can learn from the game is energy
quantization. Once the player defines a confining potential, they
have the option to select the energy level of the electron. However,
not all energy values are available for selection. The program
calculates the ground state energy of the system (determined by
the potential landscape created by the player) and the first four

FIGURE 4
Computed eigenstates, ϕ(x), symbols, compared to the analytically known eigenstates, ψ(x), continuous lines, for an electron trapped in a 1D box. We
only plot half of the computed points for clarity.
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excited state energies using the methods described in Section 5. The
player can then choose from these available energy levels.

This moment marks the player’s initial encounter with the concept
of energy quantization: energy is not continuous but rather exists in
discrete levels. When the player selects an energy level, it is represented
by a green horizontal line, as depicted in Figure 2. The player has the
freedom to explore different energy levels and observe how the energy
values vary, which may not necessarily be uniformly spaced. This
showcases the non-continuous nature of energy in quantum systems.

3.5 The wave function

The essence of the game lies in creating different wave functions
and its primary objective is to familiarize the player with the concept
of wave functions and how they vary for different confining potential
configurations and energy levels. At times, the behavior of the wave
function for a given confining potential may seem counterintuitive.
The game displays the squared modulus of the wave function, with
the shaded area underneath representing the physical interpretation
of the wave function as a probability density function, among other
things. It is important to note that all wave functions appearing in
the game are computed rigorously by solving the Schrödinger
equation, as is explained in Section 5.

The game provides the opportunity to explore various wave
functions by manipulating the parameters that define the confining
potentials. This allows the player to observe different wave function
patterns, including some that exhibit intriguing phenomena such as
the tunnel effect, as illustrated in Figure 3. The figure shows that
despite the barrier having higher energy than the electron, there is
still a small but nonzero probability of finding the electron on the left
side of the barrier. This observation challenges the intuition derived
from classical mechanics, where a particle would never be able to
cross a barrier with higher energy than its own. If a player constructs
a wave function that exhibits the tunnel effect, it is advisable for the
workshop coordinator to intervene and explain the concept of the
tunnel effect, emphasizing why it cannot be observed within the
framework of classical mechanics.

3.6 The measurement

The game incorporates the concept of measuring an observable,
specifically the position of the electron. After pressing the
measurement button, the electron randomly appears at a specific
position sampled from the density probability of the eigenstate
selected by the user. This measurement process highlights two
fundamental concepts in quantum mechanics:

• First, the position of the electron is not predetermined or defined
until a measurement is performed. Unlike in classical mechanics,
in which the particles’ positions can be known even when not
observed, the position of the electron is only determined at the
moment of measurement. Without measurement, all our
knowledge about the position of the electron is its probability
density. The game incorporates this concept by revealing the
position to the player only when they perform a measurement.

• Second, the game intends to convey the physical interpretation
of the squared modulus of the wave function as a probability
density. When ameasurement is made, the program randomly
selects the electron’s position based on the probability density
function dictated by the squared modulus of the wave
function. The random selection process is done by the
following method: The space is discretized into a finite
number of points, each assigned a weight corresponding to
the squared modulus of the wave function at that point. These
weights are used to construct a cumulative distribution, which
assigns a range to each choice based on its probability. This
range is determined by the cumulative sum of the probabilities
up to that point. For example, if there are three choices with
normalized probabilities of 0.2, 0.3, and 0.5, the cumulative
distribution would be 0.2, 0.5, and 1.0. A random value
between 0 and 1 is then generated, and this value is used to
select the corresponding choice based on the cumulative
distribution. For instance, if the random value is 0.25, it
falls within the range of the second choice (0.2–0.5), so the
second choice is selected. Throughout the game, the player can
make multiple measurements to experience the direct

FIGURE 5
Relative error in percentage between the computed energy and the analytical one as a function of the state number i for an electron trapped in a 1D
box using 250 and 500 steps in the discretisation of x. In (A)we show the relative error corresponding to the first one hundred eigenstates. In (B) only the
relative error of the first five is shown.
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relationship between the wave function they have created and
the actual position of the electron.

4 Specific teaching experience

The game starts with a tutorial that guides the player through the
different steps described in Section 2. In principle, the player should be
able to play the game and make progress with the explanation and
examples of the tutorial. However, the tutorial does not include
explanations of the physical phenomena and learning concepts of the
game. If one is already familiar with some of the concepts covered in the
game, they can play the game individually and get to experience the
consequences of the various quantum phenomena. However, if the
player is not familiar with quantum physics, playing the game is not
enough to learn the concepts presented in Section 3, and the intervention
of an instructor or teacher is essential. In this Section we give an example
of how a teaching workshop using the game can be organized.

We recommend starting the session with a brief presentation to
the participants. In this presentation, the need for a quantum
mechanical description of the world should be motivated. A
possible way to do it is by exposing the quantum technological
revolution we are experiencing today. Then, the instructor should
introduce some–all if possible–of the key concepts presented in
Section 3 that the player needs to understand in order to succeed in
the game. We recommend doing so using examples and screenshots
of the game in order to already familiarize the public with the game.
Finally, the presentation should include a demonstration or
explanation of the steps that must be followed during the game.

Once the presentation is finished the participants should start
trying and exploring the game, always beginning with the tutorial.
Having one computer per participant is ideal, but if this is not
possible, participants can be split into groups of two or three people.
While the participants play, the instructor or instructors should be
checking that no one is having any problems with the game. As the
participants advance through the game technical and quantum-
related questions will emerge. The instructor should be able to
answer these questions and share them with the rest of the group if
considered. Some of these questions can be debated or left open for
further investigation by the participant. We recommend having one
or two assistant instructors for every 5 to 10 participants since when
the participants start playing there are many questions that arise.
The game includes a feature that keeps track of the highest score
achieved on each computer. This serves as a form of challenge
among the participants, providing motivation. A suggested activity
could be to encourage players to strive for the highest score.

5 Methods

The main problem to be solved in the course of the game is to
solve the time-independent Schrödinger equation in one dimension,

Ĥϕi x( ) � Eiϕi x( ). (2)
where ϕi(x) are the Hamiltonian eigenstates and Ei their corresponding
eigenvalues. We obtain the Hamiltonian eigenstates and eigenvalues by
solving the 1D time-independent Schrödinger equation. The
Hamiltonian consists of a kinetic term and an external potential term,

Ĥ � −Z2
2m

∂2x + Vext x( ). (3)

the problem is solved for an electron, thus m = me. The external
potential is formed by two terms: a potential that can be modulated
by the player V(x) and a fixed infinite wall-type potential Vwall(x) so
that the electron is confined in a segment of a given size d,

Vext x( ) � V x( ) + Vwall x( ). (4)
beyond the infinite walls, all eigenstates are exactly zero. Therefore, we
are only interested in solving Eq 2 within the region where Vwall(x) = 0
and Vext(x) = V(x). The interval is discretized in n subintervals, n + 1
points, of width δx, such that xk = x0 + k δx, and we note, ϕk ≡ ϕ(xk),Vk

≡ V (xk). The discrete version of Schrödinger equation reads,

−Z2
2me

∂2xϕk + Vkϕk �
−Z2
2me

ϕk+1 − 2ϕk + ϕk−1
δx2

+ Vkϕk � Eϕk, (5)

where the second derivative of the eigenstate at point xk has been
approximated using the values of ϕ at three points: ϕk+1, ϕk, ϕk−1. The
boundary conditions beyond the endpoints of the interval are given by

ϕn+1 � 0 ϕ−1 � 0. (6)
Eq 5 can be expressed in matrix form,

Z2

meδx
2 + V0

−Z2

2meδx
2 0 0 . . . . . . . . .

−Z2

2meδx
2

Z2

meδx
2 + V1

−Z2
2meδx

2 0 . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . 0
−Z2

2meδx
2

Z2

meδx
2 + Vk

−Z2

2meδx
2 0 . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . 0
−Z2

2meδx
2

Z2

meδx
2 + Vn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ϕ0

ϕ1

. . .

ϕk

. . .

. . .

ϕn
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(7)

To obtain the eigenstates and self energies, we diagonalize the
tridiagonal matrix obtained from the discretized Schrödinger
equation. To do that efficiently we use the method from the SciPy
library ”linalg.eigh_tridiagonal”, specifically designed to handle
tridiagonal matrices Virtanen et al. (2020). In Eigengame,
Schrödinger’s equation is solved in an interval d = 10 Å, with x
going from -5 Å to 5 Å. The interval is then discretized in 250 steps
of width δx = 0.04 Å.

6 Accuracy of the method

The case V(x) = 0 is used as a reference to discuss the accuracy of
the methods presented in Section 5. This case corresponds to a
trapped electron in a 1D interval and is well-studied. The
Hamiltonian eigenstates are known analytically for any x inside
the one-dimensional box,
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ψ x( ) �

		
2
d

√
cos

iπx

d
( ) odd i		

2
d

√
sin

iπx

d
( ) even i .

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (8)

And ψ(x) = 0 for any i when x is outside the box. The correspondent
self-energies are,

Ei � i2h2

8md2
i � 1, 2, 3 . . . (9)

In Figure 4, we show a comparison between the five lowest energy
eigenstates obtained and the analytical ones. The calculated results
follow accurately the expected results. When playing the game, only
the five lowest energy eigenstates are relevant since the higher energy
states are not available to the player. This choice aims to simplify the
playing experience by excluding the higher energy states.

Regarding the energy of the states, in Figure 5, we illustrate the
relative error in percentage by comparing the calculated energy with the
analytical one for each analytic state i using 250 and 500 space steps.
When employing 500 steps, a significantly lower error is achieved;
however, the computation time increases. Considering the gaming
experience, it is crucial to minimize computation time to ensure a
fluent and uninterrupted interaction between the player and the game,
without any waiting times. Consequently, despite a larger error, the
discretization of 250 steps is utilized. It can be seen that the relative error
increases with the excitation level. When using 250 steps, we obtain a
sizeable relative error of approximately 12% for the excited state i = 100.
Nonetheless, it is important to note that during the game, only the
ground state and the first four excited states are implemented. For these
initial five states, using 250 steps yields a relative error smaller than
0.04%, as depicted in Figure 5B. Based on these observations, we
conclude that the employed method with 250 steps provides
sufficient accuracy for the purposes of the game.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary material, further inquiries can be directed
to the corresponding authors.

Author contributions

FS, CC, and BJ-D discussed the main lines of the game and its
practical implementation. All programming aspects have been done
entirely by FS. All authors contributed to the article and approved
the submitted version.

Funding

This work has been financially supported by the Ministry of
Economic Affairs and Digital Transformation of the Spanish
Government through the QUANTUM ENIA project call – Quantum
Spain project, and by the European Union through the Recovery,
Transformation and Resilience Plan – NextGenerationEU within the
framework of the Digital Spain 2026 Agenda.

Acknowledgments

We thank AnnaMoreso, Abel Rojo, andMarti de Ferrer for their
feedback during the completion of this work.

Conflict of interest

The authors declare that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Acín, A., Bloch, I., Buhrman, H., Calarco, T., Eichler, C., Eisert, J., et al. (2018). The
quantum technologies roadmap: a european community view. New J. Phys. 20, 080201.
doi:10.1088/1367-2630/aad1ea

Anupam, A., Gupta, R., Naeemi, A., and JafariNaimi, N. (2018). Particle in a box: an
experiential environment for learning introductory quantum mechanics. IEEE Trans.
Educ. 61, 29–37. doi:10.1109/TE.2017.2727442

La Cour, B. R., Maynard,M., Shroff, P., Ko, G., and Ellis, E. (2022). “The virtual quantum
optics laboratory,” in 2022 IEEE International Conference on Quantum Computing and
Engineering (QCE) (IEEE), 677–687.

Messiah, A. (2014). Quantum mechanics. Newburyport, United States: Dover
Publications: Dover Books on Physics.

Migdał, P., Jankiewicz, K., Grabarz, P., Decaroli, C., and Cochin, P. (2022).
Visualizing quantum mechanics in an interactive simulation – virtual Lab by
quantum Flytrap. Opt. Eng. 61, 081808. doi:10.1117/1.OE.61.8.081808

Nita, L., Chancellor, N., Smith, L. M., Cramman, H., and Dost, G. (2021).
Inclusive learning for quantum computing: supporting the aims of quantum
literacy using the puzzle game quantum odyssey. arXiv preprint arXiv:
2106.07077.

Sabater, F. (2022). Eigengame. Available at: https://github.com/brunojulia/
quantumlabUB/tree/master/eigengame.

Seskir, Z. C., Migdał, P., Weidner, C., Anupam, A., Case, N., Davis, N., et al.
(2022). Quantum games and interactive tools for quantum
technologies outreach and education. Opt. Eng. 61, 081809. doi:10.1117/1.OE.
61.8.081809

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,
Cournapeau, D., et al. (2020). SciPy 1.0: fundamental algorithms for scientific
computing in Python. Nat. Methods 17, 261–272. doi:10.1038/s41592-019-
0686-2

Frontiers in Quantum Science and Technology frontiersin.org07

Sabater et al. 10.3389/frqst.2023.1249325

https://doi.org/10.1088/1367-2630/aad1ea
https://doi.org/10.1109/TE.2017.2727442
https://doi.org/10.1117/1.OE.61.8.081808
https://github.com/brunojulia/quantumlabUB/tree/master/eigengame
https://github.com/brunojulia/quantumlabUB/tree/master/eigengame
https://doi.org/10.1117/1.OE.61.8.081809
https://doi.org/10.1117/1.OE.61.8.081809
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://www.frontiersin.org/journals/quantum-science-and-technology
https://www.frontiersin.org
https://doi.org/10.3389/frqst.2023.1249325

	Eigengame: a primer to introduce wave functions and probabilities
	1 Introduction
	2 Game flow
	3 Key learning concepts
	3.1 Probability density function
	3.2 The electron
	3.3 Potential energy
	3.4 Energy quantization
	3.5 The wave function
	3.6 The measurement

	4 Specific teaching experience
	5 Methods
	6 Accuracy of the method
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


