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We investigate the dynamics of a maximally entangled mixed state (MEMS) under
the action of correlated noise channels. The channel acts in a way that its
successive uses are correlated. We have studied the MEMS properties,
including quantum coherence and entanglement. For partially correlated
channels, both the entanglement and coherence of MEMS are found to decay
much slower than those of the memoryless channels. Moreover, we observe a
freezing effect of coherence for phase damping as well as depolarizing channels
and freezing of entanglement for phase-damping channels with perfect memory.
For amplitude damping and depolarizing channels, memory helps in either
delaying the sudden death of entanglement or slowing the decay rate of
coherence. These observations suggest that memory channels perform better
thanmemoryless channels inmaintaining the integrity of quantum states and have
utility in quantum information processing protocols.
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1 Introduction

Coherence is a fundamental concept in physics that plays a pivotal role in the occurrence
of interference phenomena observed in nature (Mandel and Wolf, 1995). The concept of
quantum coherence lies at the heart of quantum theory, which plays a crucial role in
describing certain quantum physical phenomena, such as the single-particle interference
pattern observed in a double-slit experiment. In fact, quantum coherence arises as a
manifestation of the superposition principle that can occur either among a set of
quantum mechanical systems or between different energy levels of a single quantum
system. The former is known as inter-particle or global coherence, and the latter is
called intra-particle or local coherence. The early studies in quantum optics established
that quantum entanglement, a characteristic quantum correlation (Paulson et al., 2021), is
closely connected to inter-particle quantum coherence. Therefore, quantum coherence
(Mohanty et al., 2022) is considered more fundamental than quantum correlations such
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as entanglement (Streltsov et al., 2015) and discord, as it is one of the
important resources for creating them.

In classical physics, the visibility of the interference pattern is
used to quantify coherence using correlation functions that depend
on the product of field amplitudes. The investigation of quantum
coherence has been a focal point in various fields, including
quantum optics, where researchers have examined the
fundamental nature of coherence using techniques such as phase-
space distributions and higher-order correlation functions. For a
considerable time, a comprehensive theory of quantum coherence,
which holds profound importance as a physical resource, remained
elusive. Only recently was a rigorous mathematical framework
introduced by Baumgratz, Cramer, and Plenio to quantify
coherence (Baumgratz et al., 2014) and provide computable
measures of coherence. Such coherence measures include relative
entropy, l1-norm, and skew information. Following this, a resource
theory of quantum coherence (Winter and Yang, 2016; Streltsov
et al., 2017) was developed and enabled the study of operational
applications, dynamical evolution, interconversion, and
manipulation of quantum coherence (Wu et al., 2020).

Quantum entanglement, on the other hand, is a purely quantum
mechanical correlation that is considered to be a defining
characteristic of quantum mechanics. It is one of the most
important properties that differentiate the quantum world from
the classical one (Horodecki et al., 2009). The origin of entanglement
dates back to 1935 when Einstein, Podolsky, and Rosen questioned
the completeness of quantum mechanics through a Gedanken
experiment (Einstein et al., 1935) involving entangled particles.
Owing to the significance of entanglement in the foundations of
quantum mechanics and advanced quantum technologies, it
continues to be at the forefront of current research. Harnessing
the power of entanglement has enormous potential to revolutionize
fields from quantum computing to secure communications,
metrology, sensing, imaging, and precision measurements.
Entanglement is, in fact, an indispensable resource in quantum
information processing tasks (Horodecki et al., 2009) and has
applications ranging from the quantum key distribution (Ursin
et al., 2007), teleportation, remote state preparation (Bennett
et al., 2001), and dense coding (Jing et al., 2003) to quantum
computation (Nielsen and Chuang, 2010).

A recent advancement in the field of quantum information is the
study of the dynamics of quantum correlations and coherence in the
presence of environmental influences. Entanglement and coherence
are both invaluable yet delicate resources that degrade as a result of
the unavoidable interaction between the quantum system and its
environment. Several theoretical and experimental investigations
have revealed that entanglement can undergo a finite time decay
known as entanglement sudden death (ESD) (Yu and Eberly, 2004;
Almeida et al., 2007; Yu and Eberly, 2009), even in the presence of
noise that results in single-particle decoherence only asymptotically.
Decay of coherence and entanglement thus pose a serious threat to
quantum information processing tasks that require these physical
resources. Numerous studies have examined the measures of
entanglement and coherence to acquire deep knowledge of the
decoherence mechanism in an open quantum system. Several
methods have been proposed and experimentally demonstrated
to protect entanglement from decoherence, such as quantum
measurement reversal (Korotkov10 and Keane, 2010), using local

unitary operations (Singh et al., 2017; Singh, 2022; Singh and Sinha,
2022), feedback control (Doherty et al., 2000), and quantum Zeno
effect (Itano et al., 1990). It is always interesting to find newmethods
(Merkli et al., 2012) to protect entanglement and coherence from the
detrimental effects of the environment.

The assumption of an uncorrelated noise channel in real-world
quantum systems cannot be justified. Hence, the effect of memory
needs to be taken into account, and the development of a framework
encompassing uncorrelated and correlated noise channels is
desirable (Kretschmann and Werner, 2005). The concept of
memory was introduced by C. Macchiavello and G.M. Palma
(Macchiavello and Palma, 2002). The study of memory channels
has gained much attention while studying information transmission
over successive uses of quantum channels. Information backflow
due to memory plays a significant role in suppressing decoherence.
The objective of this work is to study the effect of quantum channels
with memory, such as an amplitude-damping channel (ADC), a
phase-damping channel (PDC), and a depolarizing channel (DC),
on the entanglement and quantum coherence of MEMS. In this
work, we have used two coherence measures, namely, the l1 norm
and the relative entropy of coherence, to quantify the quantum
coherence ofMEMS.We used concurrence as a computable measure
of entanglement to study entanglement dynamics.

This paper is organized as follows: In Section 1, we provide a
general introduction to concepts of quantum coherence,
entanglement, and how these properties of an open quantum
system get impacted by the environment. In Section 2, we
discuss the preliminaries and present an introduction to
entanglement and quantum coherence measures, followed by an
overview of the initial state and the memory channels. In Section 3,
we focus on the examination of entanglement in different correlated
noise channels, highlighting the distinction between Kraus operators
for the correlated and uncorrelated noise channels and
corresponding results. In Section 4, we provide the results related
to quantum coherence measures for different channels with memory
effect. Finally, in Section 5, we conclude the discussion with a future
outlook.

2 Preliminaries

In this section, we start by reviewing the measures of
entanglement and coherence for quantifying them. We provide a
basic description of the initial state and the noise model. The initial
state considered here is the maximally entangled mixed state
(MEMS), which has a mixedness parameter. This state was
investigated by Munro et al. (2001) and Munro and Nemoto
(2001), and it has been shown that MEMS’s entanglement is
higher than that of the Werner state. For the noise model, we
consider an ADC, a PDC, and a DCwith and without memory in the
successive uses of the channels.

2.1 Entanglement measure

Entanglement of two-qubit pure or mixed states can be
quantified by several entangled measures (Plenio and Virmani,
2007), and they are shown to be monotonic (Singh et al., 2020)
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with respect to each other. Here, we use concurrence as a
computable measure of entanglement that is also shown to be an
entanglement monotone for pure and mixed states for low-
dimensional systems. Concurrence was introduced by Hill and
Wootters (1997) for two-qubit pure states. Subsequently,
Wootters (1998) developed a closed-form expression for its
convex roof extension and provided a computable formula for
the entanglement of formation in the two-qubit case (Wootters,
2001). For a general two-qubit state represented by a density matrix
ρ, concurrence is given as follows:

C ρ( ) � max 0, λ1 − λ2 − λ3 − λ4{ }, (1)
where λi′s are the square roots of the eigenvalues of the matrix ρ~ρ in
decreasing order. Here, ~ρ is obtained by applying the spin-flip matrix
to ρ as follows:

~ρ � σy ⊗ σy( )ρ* σy ⊗ σy( ), (2)
where the complex conjugation (ρ*) is determined in the
computational basis {|00〉, |01〉, |10〉, |11〉}.

2.2 Quantum coherence measure

Quantum coherence (Streltsov et al., 2017), one of the basic
features of quantum physics and a key resource in the field of
quantum information processing, requires a quantitative measure
for studying its dynamical evolution under different quantum maps.
A broad range of coherence measures is utilized, often relying on the
off-diagonal terms of the density matrix. The primary justification
for employing these measures is typically based on physical
intuition. Recently, the characterization and quantification of
coherence have gained much attention, and a quantitative theory
of coherence as a resource was developed (Baumgratz et al., 2014)
using entanglement-based approaches (Vedral and Plenio, 1998;
Brandão and Plenio, 2008; Brandão and Plenio, 2010). These articles

suggested that any proper measure of coherence must satisfy several
criteria, some of which focused on the properties of specific
coherence measures based on entanglement (Napoli et al., 2016),
operation (Yuan et al., 2015), or convex roof construction (D’Arrigo
et al., 2013). In this work, we adopt two proper measures of
coherence that are computable and monotonic to study the
evolution of coherence in the presence of correlated noise
channels. The first measure is the l1-norm, and the second is the
relative entropy of coherence.

The l1-norm of coherence is based on the absolute sum of the
off-diagonal elements of the density matrix and is defined as

Cl1 ρ( ) � min D ρ, δ( ) � ∑
i≠j

|ρi,j|, (3)

where D(ρ, δ) = ‖ρ − δ‖ denotes the distance of ρ to a set of
incoherent states I(δ ∈ I), and ρi,j are the off-diagonal elements of ρ
(Baumgratz et al., 2014). Note that the l1-norm of coherence
depends on the basis in which the density matrix is expressed. In
general, for a d-dimensional system, 0≤Cl1(ρ)≤ d − 1, and the
maximum value is achieved for a maximally coherent state that
is in a uniform superposition of the basis states: |ψd〉≔ 1�

d
√ ∑d

i�1|i〉.
The relative entropy of coherence (CR) is defined as

CR ρ( ) � min S ρ‖δ( ) � S ρdiag( ) − S ρ( ), (4)

where ρdiag is the diagonal density matrix of ρ and S(ρ) indicates the
Von Neumann entropy (Breuer and Petruccione, 2002; Baumgratz
et al., 2014). For a given state ρ, the relative entropy is bounded as
CR ≤ S(ρdiag) ≤ log2(d) and, again, the maximum value is achieved for
the maximally coherent state.

2.3 Initial state and memory channel

Let us begin with a brief introduction of the initial state and the
noise channels in terms of memory and memoryless channels
(D’Arrigo et al., 2013; Paulson et al., 2022). We chose MEMS as
the initial state for our study as this is the class of mixed states that
are maximally entangled for a given purity. This state was

FIGURE 1
Concurrence vs. ADC parameter p and memory parameter μ for
MEMSwith γ=0.5. For μ=0,MEMS undergoes ESD, and μ > 0.63 leads
to ADE. MEMS retains more entanglement for the same p-value as the
memory parameter increases.

FIGURE 2
Concurrence vs. noise parameter p for ADC with memory (μ = 0,
0.5, 1) for MEMS with γ = 0.5.
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introduced by Munro et al. (2001) and Munro and Nemoto (2001);
its density matrix is given by

ρM �

g γ( ) 0 0
γ

2

0 1 − 2g γ( ) 0 0

0 0 0 0
γ

2
0 0 g γ( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (5)

where

g γ( ) �
1
3
, 0≤ γ< 2

3
,

γ

2
,

2
3
≤ γ≤ 1.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
From here onward, we will denote g(γ) simply as g, and its

dependence on γ is considered implied. The state (5) is entangled
for all values of γ > 0. Here, we discuss two different cases of
MEMS, that is., 0≤ γ< 2

3 and with 2
3≤ γ< 1. For comparison, the

Werner state (or W-state) (Werner, 1989) is another class of mixed
entangled states that are a mixture of a maximally entangled state
and the maximally mixed state: |W〉 � (1−γ4 )I2 ⊗ I2 + γ|ϕ+〉〈ϕ+|. It
is entangled for γ > 1/3 and maximally entangled for γ = 1. When
considering a specific level of mixture, the maximally entangled
mixed state is typically much more entangled than the Werner
state with an equivalent degree of mixture.

A quantum channel can be broadly classified into two categories:
a memoryless channel and a memory channel. In the case of a
memoryless channel, the environmental correlation time is smaller
than the time between successive uses of the channel over two
qubits. Conversely, in the case of a memory channel, the
environmental correlation time is greater than the time between
two consecutive uses of the channel. Mathematically, a quantum
channel can be defined as a completely positive trace-preserving
(CPTP) map between input and output states (density matrices),

and the action of the channel (ϵ) on a quantum state ρ can be
expressed as follows:

ϵ ρ( ) � ∑
i

EiρE
†
i , (6)

where Ei are the Kraus operators of the channel satisfying the
completeness condition ∑iEiE

†
i � 1, and Ei � �����

Pi1 ...iN

√
Ai. Here,

Pi1 ...iN is the joint probability distribution for a random sequence
of operations applied to N qubits passing through quantum
channels. Kraus operators are obtained by tracing the
environmental degrees of freedom from the global unitary
operation between the system and the environment. When
Pi1 ....iN � Pi1Pi2 . . .PiN, these operations are said to be
independent, and the corresponding channel is called
memoryless. However, for memory channels, Pi1...iN �
Pi1Pi2 |i1 . . .PiN|iN−1 are correlated, and PiN|iN−1 � (1 − μ)PiN +
μδiN,iN−1 is the conditional probability with the memory
parameter of the channel 0 ≤ μ ≤ 1 (Guo et al., 2017; Awasthi
et al., 2022). The evolution of an initial state ρ under two successive
uses of a memory channel can be written as follows (Yeo and Skeen,
2003; Sharma and Gerdt, 2020):

ϵ ρ( ) � 1 − μ( )∑
i,j

Eu
i,jρE

u†
i,j + μ∑

k

Ec
k,kρE

c†
k,k. (7)

It can be seen from the aforementioned expression that the
action of the correlated noise is specified by the Kraus operator Ec

k,k

with probability μ, and the action of the uncorrelated noise is
specified by the Kraus operator Eu

i,j with probability (1 − μ).

3 Action of correlated channels with
memory on the entanglement of MEMS

In this section, we analyze the effect of amplitude damping,
phase damping, depolarizing channel, and bit-flip channel with
memory on the entanglement and quantum coherence of
the MEMS.

FIGURE 3
Concurrence vs. ADC parameter p and memory parameter μ for
MEMS with γ = 0.9. MEMS retains more entanglement for the same
p-value as the memory parameter increases.

FIGURE 4
Concurrence vs. noise parameter p for ADC with memory (μ = 0,
0.5, 1) for MEMS with γ = 0.9.
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3.1 Amplitude-damping channel with
memory

ADC can be conceptualized as a simplified representation of the
decay of the energy of an excited state in a two-level atom over time
due to the emission of a photon through spontaneous decay. The
ADC Kraus operators (Preskill, 1998) for a single qubit are given as

Eu
0 �

�����
1 − p

√
0

0 1
( ), Eu

1 � 0 0��
p

√
0( ), (8)

where p = 1 − exp(−λt) is the probability of decay (0 ≤ p ≤ 1) of the
qubit from the excited state to the ground state, which we call the
noise parameter for ADC, and λ is the decay rate of the excited state.
The Kraus operators governing the evolution of a two-qubit
quantum system are given as

Eu
ij � Eu

i ⊗ Eu
j , i, j � 0, 1( ). (9)

In contrast, the Kraus operators for the correlated part of the
ADC are given as

Ec
00 �

�����
1 − p

√
0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, Ec
11 �

0 0 0 0
0 0 0 0
0 0 0 0��
p

√
0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (10)

where the value of p ranges between 0 and 1 (Yeo and Skeen, 2003).
Substituting Eqs 5, 8–10 into Eq. 7, the density matrix of MEMS after
evolution through correlated ADC is given as

ρMA �

g 1 − μ( ) 1 − p( )2 + gμ 1 − p( ) 0 0
1
2
γ 1 − μ( ) 1 − p( ) + 1

2
γμ

�����
1 − p

√
0 1 − 2g( )μ + 1 − μ( ) 1 − 2g( ) 1 − p( ) + gp 1 − p( )( ) 0 0

0 0 g 1 − μ( ) 1 − p( )p 0

1
2
γ 1 − μ( ) 1 − p( ) + 1

2
γμ

�����
1 − p

√
0 0 1 − μ( ) gp2 + 1 − 2g( )p + g( ) + μ gp + g( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(11)

FIGURE 5
Concurrence vs. PDC parameter p and memory parameter μ for
MEMS with γ = 0.5. MEMS retains more entanglement for the same
p-value as the memory parameter increases.

FIGURE 6
Concurrence vs. noise parameter p for PDC with memory (μ = 0,
0.5, 1) for MEMS with γ = 0.5.

FIGURE 7
Concurrence vs. noise parameter p for PDC with memory (μ) for
MEMS with γ = 0.9. MEMS retains more entanglement for the same
p-value as the memory parameter increases.

FIGURE 8
Concurrence vs. noise parameter p for PDC with memory (μ = 0,
0.5, 1) for MEMS with γ = 0.9.
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3D plots of concurrence (C) vs. ADC parameter (p) and memory
parameter (μ) forMEMSwith γ = 0.5 and 0.9 are shown in Figures 1, 3,
respectively. Two-dimensional projections of these plots in the (C − p)
plane for different memory parameters are shown in Figures 2, 4.

According to Eq. 5, we have bifurcated the study of MEMS into
two ranges of the g(γ) parameter: (i) when 0≤ γ< 2

3 and (ii) 2
3≤ γ< 1.

It is evident from Figures 1, 3 that MEMS undergoes ESD for both
choices of γ parameter (γ = 0.5 & 0.9) in the presence of pure
memoryless ADC (μ = 0). It can be easily verified from Eq. 5 that the
higher the value of γ, the higher the entanglement in MEMS. Figures
1–4 show that as the value of the memory parameter (μ) increases
from zero, MEMS contains a higher amount of entanglement for the
same value of ADC parameter (p). As the value of μ increases, there
is a delay in the sudden death of entanglement (Ficek and Tanaś,
2008). Moreover, ESD can be completely avoided for sufficiently

high memory parameters for a given γ as MEMS undergoes
asymptotic decay of entanglement (ADE). Further increase in μ

increases the amount of entanglement for a given p.

3.2 Phase-damping channel with memory

PDC is a unital channel that describes the loss of quantum
information without the loss of energy. The single-qubit Kraus
operators for a memoryless PDC are given as

��
Pi

√
σ i, where

i = {0, 3}, P0 = 1 − p/2, P3 = p/2, and 0 ≤ p ≤ 1. For two
successive uses of channels, no correlation is generated for
memoryless channels. The uncorrelated or memoryless Kraus
operators for two qubits (Datta et al., 2018; D’Arrigo et al., 2007)
are given as

FIGURE 9
Concurrence vs. depolarizing parameter p and memory
parameter μ for MEMS with γ = 0.5. MEMS retains more entanglement
for the same p-value as the memory parameter increases. In
particular, MEMS undergoes ESD for μ = 0, whereas μ = 1 leads
to ADE.

FIGURE 10
Concurrence vs. noise parameter p for DC with memory (μ = 0,
0.5, 1) for MEMS with γ = 0.5.

FIGURE 11
Concurrence vs. depolarizing parameter p and memory
parameter μ for MEMS with γ = 0.9. MEMS retains more entanglement
for the same p-value as the memory parameter increases. In
particular, for μ = 0, MEMS undergoes ESD, whereas μ = 1 leads
to ADE.

FIGURE 12
Concurrence vs. noise parameter p for DC with memory μ = 0,
0.5, 1 for MEMS with γ = 0.9.
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Eu
i,j �

����
PiPj

√
σ i ⊗ σj, i, j � 1, 3{ }. (12)

In the presence of memory, two uses of channels generate some
correlation, and the correlated Kraus operators (Datta et al., 2018;
D’Arrigo et al., 2007) for two qubits are given as

Ec
k,k �

���
PK

√
σk ⊗ σk, k � 0, 3{ }, (13)

where P0 = 1 − p/2, P3 = p/2. Substituting Eqs 5, 12, 13 into Eq. 7, the
final density matrix of the MEMS can be expressed as

ρMP �

g 0 0
1
2

γ − γ μ − 1( ) p − 2( )p( )
0 1 − 2g 0 0

0 0 0 0
1
2

γ − γ μ − 1( ) p − 2( )p( ) 0 0 g

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(14)

3D plots of concurrence (C) vs. PDC parameter (p) and memory
parameter (μ) for γ = 0.5 and 0.9 are shown in Figures 5, 7. Two-
dimensional projections of these plots in the (C − p) plane for
different memory parameters are shown in Figures 6, 8.

It is evident from Figures 5, 7 that MEMS undergoes ADE for
both choices of γ parameter (γ = 0.5& 0.9) in the presence of a pure
memoryless ADC (μ = 0). As soon as the value of μ becomes non-
zero, MEMS retains a non-zero entanglement even at p→ 1. Figures
5–8 show that as the value of the memory parameter (μ) increases
from zero, MEMS contains a higher amount of entanglement for a
non-zero p-value. For a perfectly correlated channel (μ = 1), the
entanglement of MEMS (for arbitrary γ values) freezes at the same
value as the initial state for all values of p.

In Awasthi and Joshi (2023), we studied the effect of memory and
memoryless channels on entanglement for different values of noise
andMEMS parameters in the context of ADCs and PDCs. In previous

FIGURE 13
l1-norm vs. ADC parameter p andmemory parameter μ for MEMS
with γ = 0.5. MEMS has a higher amount of quantum coherence for
p ∈ (0, 1) as the memory parameter increases.

FIGURE 14
l1-norm vs. noise parameter p for ADCwithmemory (μ=0, 0.5, 1)
for MEMS with γ = 0.5.

FIGURE 15
Relative entropy of coherence (CR) vs. noise parameter p for ADC
with memory (μ = 0, 0.5, 1) for MEMS with γ = 0.5.

FIGURE 16
l1-norm vs. PDC parameter p andmemory parameter μ for MEMS
with γ=0.5. MEMS has a higher amount of quantum coherence for the
higher values of the memory parameter for the noise parameter p ∈
(0, 1). In particular, for μ = 1, the quantum coherence freezes at
the initial value for p ∈ [0, 1].
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work, a delay in the sudden death of entanglement in two different
cases was observed. Motivated by our previous work, we explored our
results for other channels on entanglement and quantum coherence.
We again bifurcated our calculations into two cases based on the γ
parameter of MEMS. Here, our main focus is on two noise channels,
that is, depolarizing and bit-flip channels, and how they compare with
the ADC and PDC channels with memory.

3.3 Depolarizing channel with memory

A depolarizing channel describes how the density matrix is
dynamically replaced by the state I2/2, where I2 denotes the identity
matrix. The Kraus operators for a single qubit (Macchiavello et al.,
2004) are given as

Ai �
��
Pi

√
σ i, (15)

whereP0 = 1− p,P1 =P2 =P3 = p/3, and p= 1− e
−λt. TheKraus operators

of the depolarizing channel without memory, where no correlation is
generated by successive uses of channels, can be written as

Eu
i,j �

����
PiPj

√
σ i ⊗ σj. (16)

The case of two successive uses of a channel with partial memory
that generates some correlation is given as

Ec
k,k �

��
Pk

√
σk ⊗ σk, (17)

where i, j, k = {0, 1, 2, 3}.
Substituting Eqs 5, 16, 17 into Eq. 7, the final density matrix of

MEMS can be expressed as

ρMD �

gμ − 1
9

μ − 1( ) g 3 − 4p( )2 + 2p 3 − 2p( )( ) 0 0
1
18

γ 9 − 8 μ − 1( )p 2p − 3( )( )
0

1
9

2p − 3( ) g 8 μ − 1( )p + 6( ) − 2 μ − 1( )p − 3( ) 0 0

0 0
2
9
p 3 − 6g( )μ − 2 μ − 1( ) g 3 − 4p( ) + p( )( ) 0

1
18

γ 9 − 8 μ − 1( )p 2p − 3( )( ) 0 0 gμ − 1
9

μ − 1( ) g 3 − 4p( )2 + 2p 3 − 2p( )( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (18)

FIGURE 18
Relative entropy of coherence (CR) vs. the noise parameter p for
PDC with memory (μ = 0, 0.5, 1) for MEMS with γ = 0.5.

FIGURE 19
l1-norm of coherence vs. depolarizing channel parameter p and
memory parameter μ for MEMS with γ = 0.5. MEMS retains more
coherence for the same p-value as the memory parameter increases.
It is further observed that the l1 norm of coherence freezes for
μ = 1.

FIGURE 20
l1-norm of coherence vs. noise parameter p for DC with memory
(μ = 0, 0.5, 1) for MEMS with γ = 0.5. The l1-norm of coherence freezes
for μ = 1.

FIGURE 17
l1-norm vs. noise parameter p for PDCwithmemory (μ=0, 0.5, 1)
for MEMS with γ = 0.5.
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3D plots of concurrence (C) vs. depolarizing channel
parameter (p) and memory parameter (μ) for γ = 0.5 & 0.9 are
shown in Figures 9, 11. Two-dimensional projections of these plots
in the (C − p) plane for different memory parameters are shown in
Figures 10, 12.

It is evident from Figures 9, 11 that MEMS undergoes ESD for
both choices of γ parameter (γ = 0.5& 0.9) in the presence of a pure
memoryless depolarizing channel (μ = 0). In Figures 9–12, one can
see that as μ increases from zero, MEMS contains a higher amount of
entanglement for the same value of p. Furthermore, as the value of μ
increases, there is a delay in the sudden death of entanglement.
Moreover, ESD can be completely avoided for sufficiently high
memory parameters for a given γ as MEMS undergoes ADE.
Further increase in μ increases the amount of entanglement for a
given p.

4 Quantum coherence in correlated
noise channels

In this section, we provide the results of the quantum coherence
dynamics of MEMS under the action of correlated noise channels
with memory. We use the density matrices for ADC, PDC, and DC
with memory, as given in Eqs 11, 14, 18, respectively, and coherence
measures defined in Eqs 3, 4 to study the dynamics of quantum
coherence in these channels. Here, we have chosen γ = 0.5 for
MEMS. A 3D plot of the l1-norm of coherence (Cl1) vs. the damping
channel parameter (p) and the memory parameter (μ) for ADC is
given in Figure 13. The plot of Cl1 vs. p for different μ values is given
in Figure 14. The plot of relative entropy of coherence (CR) vs. p is
shown in Figure 15. The analytical expression of the l1-norm of
coherence for ADC with memory is given as

l1 � γ μ − 1( )p + μ
�����
1 − p

√ − 1( ) + 1( )∣∣∣∣ ∣∣∣∣, (19)
where |X| indicates the absolute value or modulus of X. Eq. 19 and
these plots indicate that MEMS asymptotically loses coherence, and
as the memory parameter increases, MEMS retains a higher amount
of coherence for the same value of p.

Figure 16 shows the plot of the l1-norm of coherence (Cl1) vs. p
and μ for PDC. The plot of Cl1 vs. p for different μ values is given in
Figure 17 whereas Figure 18 shows a plot of relative entropy of
coherence (CR) vs. p for different μ. Both plots indicate that MEMS
asymptotically loses coherence for μ = 0. The analytic expression of
the l1-norm of coherence for PDC with memory is given as

l1 � |γ − γ μ − 1( ) p − 2( )p|. (20)
It is clear from Eq. 20 that for μ > 0, MEMS ends with a non-zero
coherence as p →, 1, and coherence completely freezes for μ = 1.

Figure 19 shows the plot of the l1-norm of coherence (Cl1) vs. p and
μ for the depolarizing channel. The plot ofCl1 vs. p for different μ values
is given in Figure 20, whereas Figure 21 shows a plot of relative entropy

FIGURE 21
Relative entropy of coherence (CR) vs. the noise parameter p for
DC with memory (μ) for MEMS with γ = 0.5.

FIGURE 22
Capacity of dense coding of MEMS with γ = 0.5 under a
correlated ADC for μ = 0, 0.5, and 1.

FIGURE 23
Capacity of dense coding of MEMS with γ = 0.9 under correlated
ADC for μ = 0, 0.5, and 1.
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of coherence (CR) vs. p for different μ. The analytical expression for
the l1-norm of coherence for a DC with memory is given as

l1 � 1
9
|γ||9 − 8p 2p − 3( ) μ − 1( )|. (21)

Eq. 21 and these plots indicate that in the presence of a DC
with memory, the MEMS loses coherence slowly, reaches a
minimum value for a given μ, and regains coherence, ending
with a non-zero coherence at p → 1. Similar to PDC, for μ = 1,
coherence also completely freezes for DC. Furthermore, while the
l1-norm and the relative entropy of coherence offer distinct
measures of coherence, they exhibit a monotonic relationship
with one another.

5 Conclusion and future outlook

In the present study, we have investigated two features of
MEMS: the quantum entanglement and quantum coherence in
the presence of decoherence channels, such as amplitude
damping, phase damping, and depolarizing channels with
memory. The fundamentals of quantum channels with memory
and the evolution of the state have been discussed in detail.
Quantum coherence is quantified using the l1-norm and relative
entropy of coherence, whereas entanglement is quantified using
concurrence. A generic observation for all these channels is that as
the memory parameter increases, MEMS contains a higher amount
of coherence and entanglement. For μ = 1,MEMS undergoes ADE in
the presence of ADC, whereas for PDC, entanglement freezes. On
the other hand, for DC, while the entanglement of MEMS degrades a
little, it ends with a non-zero entanglement at p → 1. Likewise, for
quantum coherence, the higher the value of μ, the higher the
coherence of MEMS for the same values of γ and p. Specifically,
for perfectly correlated channels (μ = 1), MEMS shows asymptotic
decay of coherence in the presence of ADC. In contrast, for PDC and
DC, the coherence completely freezes at the same value contained in
the initial state. These results establish that the non-zero memory
parameter of the channel makes MEMS robust against the
detrimental effects of the noise channels. In a more general
setting, memory channels perform better than memoryless
channels in maintaining the integrity of quantum states and their
utility in quantum information processing protocols. The future
scope of this work could involve an investigation of the efficacy of
entanglement protection schemes in the presence of memory
channels on MEMS.

Like entanglement and coherence, the Markovian noise
channels also degrade the utility of quantum states in quantum
information processing protocols (Nielsen and Chuang, 2010), such
as dense coding and teleportation. Once again, channels with
memory are found to improve the capacity of dense coding and
the fidelity of teleportation (Tian and Zhang, 2018; Wang et al.,
2023) of MEMS. To illustrate this further, plots of the capacity of
dense coding vs. ADC parameter (p) for different memory
parameters (μ) for MEMS with γ = 0.5 & 0.9 are shown in
Figures 22, 23, respectively. The horizontal line at 1 shows the
classical bound of dense coding. Even though the memory
parameter improves the capacity of dense coding at intermediate
values of the decoherence parameter, it does not exceed the classical
bound for γ = 0.5. From Figure 23, it is clear that the non-zero
memory parameter increases the range of decoherence parameters,
for which MEMS offers the quantum advantage.

Plots of the fidelity of quantum teleportation vs. the ADC
parameter (p) for different memory parameters (μ) for MEMSs
with γ = 0.5 & 0.9 are shown in Figures 24, 25, respectively. The
horizontal line at 2/3 shows the classical bound for teleportation
fidelity. It is evident from these plots that a non-zero memory
parameter not only increases the fidelity of quantum teleportation
for a given p but also increases the range for which MEMS offers a
quantum advantage in teleportation.

A future direction of this line of study could involve the
investigation of single and two-qubit weak measurement reversal

FIGURE 25
Fidelity of quantum teleportation of MEMS with γ = 0.9 under
correlated ADC for μ = 0, 0.5, and 1.

FIGURE 24
Fidelity of quantum teleportation of MEMS with γ = 0.5 under
correlated ADC for μ = 0, 0.5, and 1.

Frontiers in Quantum Science and Technology frontiersin.org10

Awasthi et al. 10.3389/frqst.2023.1207793

https://www.frontiersin.org/journals/quantum-science-and-technology
https://www.frontiersin.org
https://doi.org/10.3389/frqst.2023.1207793


protocols (Kim et al., 2012) on the protection of coherence,
entanglement, and capacity of quantum information protocols
such as dense coding and teleportation for MEMS in the
presence of ADC with memory. We are exploring this line of
study and plan to present these results in a future article.
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