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Here, we study the impact of non-Markovian evolution on prominent
characteristics of quantum thermodynamics such as ergotropy and power.
These are benchmarked by the behavior of the quantum speed limit time. We
make use of both geometric-based, particularly the quantum Fisher and
Wigner–Yanase information metric, and physical properties-based measures,
particularly the relative purity measure and relative entropy of coherence
measure, to compute the quantum speed limit time. A simple non-Markovian
model of a qubit in a bosonic bath exhibiting non-Markovian amplitude damping
evolution is considered, which, from the quantum thermodynamic perspective
with finite initial ergotropy, can be envisaged as a quantum battery. To this end, we
explore the connections between the physical properties-based measures of the
quantum speed limit time and the coherent component of ergotropy. The non-
Markovian evolution is shown to impact the recharging process of the quantum
battery. Furthermore, a connection between the discharging–charging cycle of
the quantumbattery and the geometricmeasures of the quantum speed limit time
is observed.
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1 Introduction

A realistic quantum system is subjected to the influence of the environment. The
dynamics of the system are altered by this, and as a consequence, information is lost from the
system to the external environment. A paradigm for examining how the ambient
environment affects a quantum system is provided by the theory of open quantum
systems (OQS) (Weiss, 1999; Breuer and Petruccione, 2002; Banerjee, 2018). Ideas
pertaining to open quantum systems are applicable to a number of scenarios (Caldeira
and Leggett, 1983; Grabert et al., 1988; Louisell, 1990; Hu and Matacz, 1994; Banerjee and
Ghosh, 2000; Banerjee and Ghosh, 2003; Srikanth and Banerjee, 2008; Hughes et al., 2009;
Huelga and Plenio, 2013; Iles-Smith et al., 2014; Banerjee et al., 2016; Omkar et al., 2016;
Banerjee et al., 2017; Naikoo et al., 2018; Dixit et al., 2019; Tanimura, 2020). A Markovian
approximation, which implies that the environment instantly recovers from its contact with
the system, can be used to describe the evolution of an OQS in many situations. This results
in a constant movement of information from the system to the environment. However,
research has been pushed into domains beyond the Markovian evolution due to increasing
technical and technological advancements. In many of these situations, a clean division
between system and environment timescales cannot be anticipated, leading to non-
Markovian behavior (Breuer et al., 2004; Laine et al., 2010; Lu et al., 2010; Rivas et al.,
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2010; Chruściński et al., 2011; Vasile et al., 2011; Breuer, 2012; Luo
et al., 2012; Fanchini et al., 2014; Hall et al., 2014; Haseli et al., 2014;
de Vega and Alonso, 2017; Bhattacharya et al., 2018; Kumar et al.,
2018; Shrikant et al., 2018; Filippov et al., 2020; Utagi et al., 2020;
Hakoshima et al., 2021; Li et al., 2023). Non-Markovian behavior,
such as that caused by strong system–bath coupling, can delay decay
and sometimes even cause a rebirth of quantum effects (Wang and
Chen, 2013; Kumar et al., 2018; Tiwari et al., 2023). The dynamics of
the quantum speed limit time, introduced below, can demonstrate
how the evolution of the system of interest might alter owing to the
nature of the bath (Pfeifer and Fröhlich, 1995; Deffner and
Campbell, 2017).

One of the cornerstones of quantum physics is Heisenberg’s
uncertainty principle. The uncertainty principle for position and
momentum demonstrates that it is impossible to measure both
position and momentum at the same time accurately; however, the
meaning of the energy–time uncertainty relation in this statement is
not immediately clear. The energy–time uncertainty principle (Δt ≥
Z/ΔE) is a statement about the intrinsic time in which a quantum
system develops, as demonstrated by Mandelstam and Tamm
(1945). Using the Fubini–Study metric on the space of quantum
pure states, the concept of the quantum speed limit (QSL) time, or
the speed at which a quantum system can evolve, was first presented
in (Anandan and Aharonov, 1990). Margolus and Levitin (1998)
gave a different QSL time depending on the mean energy.
Combining the MT and ML bounds results in a tighter QSL time
for unitary dynamics, limited to orthogonal pure states. QSL time
alludes to the shortest period of time needed for a quantum system
to evolve from one state to another. It plays a crucial role in the
development of quantum technologies such as quantum computing
and quantum communication. Over the years, many measures to
quantify the QSL time have emerged. Here, we use geometric-based
measures, particularly the Fisher and Wigner–Yanase (WY)
information metrics-based measures, and the inherent dynamics-
based measures, particularly relative entropy, as well as the entropy
of coherence-based measures to compute the QSL time. The design
and execution of quantum information processing algorithms are
significantly impacted by the expansion of the QSL time to open
quantum systems (Deffner and Campbell, 2017; Deffner and Lutz,
2013; del Campo et al., 2013; Pires et al., 2016). Due to its
applicability to other technical areas, this has been a subject of
considerable recent research (Wei et al., 2016; O’Connor et al., 2021;
Aggarwal et al., 2022; Mohan et al., 2022; Paulson and Banerjee,
2022; Baruah et al., 2023; Shahri et al., 2023; Tiwari et al., 2023).
Furthermore, the idea of the lower bound for the time required to
transform an initial state to a final state in a non-Markovian
environment is an important area to explore from the perspective
of quantum thermodynamics (Funo et al., 2019; Das et al., 2021).

The fundamental laws of thermodynamic equilibrium and non-
equilibrium in the quantum regime are the subject of quantum
thermodynamics (Gemmer et al., 2004; Vinjanampathy and Anders,
2016; Binder et al., 2019; Deffner and Campbell, 2019; Ali et al.,
2020). The emerging field of quantum thermodynamics has grown
rapidly over the last decade. The main objective of quantum
thermodynamics is to extend classical thermodynamics to
incorporate quantum effects and tiny ensemble sizes. This is
facilitated by the rapid experimental control of quantum systems
and the engineering of small environments. Effect of memory on a

quantum thermodynamic system has been a recent area of interest
(Thomas et al., 2018; Whitney, 2018; Czartowski et al., 2023). The
extraction of maximal work from a system is an old problem in
thermodynamics. It was shown (Allahverdyan et al., 2004; Çakmak,
2020) that in quantum systems, this can be quantified by the
ergotropy of the system. Ergotropy has been established as an
important quantity in the emerging field of quantum
thermodynamics (Kosloff, 2013; Goold et al., 2016; Mitchison,
2019; Francica et al., 2020; Sone and Deffner, 2021) and has
recently been measured experimentally (Van Horne et al., 2020;
von Lindenfels et al., 2019).

Quantum batteries are quantum mechanical energy storage
devices (Alicki and Fannes, 2013; Binder et al., 2019). The role of
quantum effects on the issue of energy storage has been extensively
studied in recent years (Binder et al., 2015; Andolina et al., 2018;
Ferraro et al., 2018; Le et al., 2018; Kanti Konar et al., 2022; Konar
et al., 2022; Mazzoncini et al., 2023). The problem of quantum
battery charging and discharging has been studied in an open
quantum system setting (Farina et al., 2019) along with the
impact of non-Markovian evolution (Thomas et al., 2018; Kamin
et al., 2020). In recent years, research on quantum batteries has
gained much attention, and various methods have been employed to
realize a practical quantum battery (Seah et al., 2021; Salvia et al.,
2023). To this end, we aim to study a simple OQS model exhibiting
non-Markovian behavior, viz., a non-Markovian amplitude
damping (NMAD) evolution. We exploit characterizers of
quantum thermodynamics, particularly ergotropy, along with
instantaneous and average powers, to study this model from the
perspective of a quantum battery. This is benchmarked by the QSL
time of the evolution of the system, where we use geometric and
inherent dynamics-based measures of QSL time.

This paper is organized as follows. In Section 2, we discuss the
preliminaries used throughout the paper, including the discussion of
QSL time, an OQS model with NMAD evolution, and ergotropy, as
well as instantaneous and average powers. Section 3 discusses a
direct connection between the physical properties-based measure of
QSL time and the coherent component of ergotropy. We study the
connection of geometrical-based measures of QSL time with
ergotropy, instantaneous and average powers, and the impact of
non-Markovian evolution on the discharging–charging process of
quantum batteries in Section 4. This is followed by conclusion.

2 Preliminaries

This section briefly discusses the different bounds on the
quantum speed limit time, a single qubit model with non-
Markovian evolution modeled by the non-Markovian amplitude
damping (NMAD) master equation, and ergotropy, followed by
instantaneous and average powers.

2.1 Quantum speed limit (QSL) time

Here, we discuss four forms of the quantum speed limit (QSL)
time. The first two are related to the geometric QSL time, where we
use the quantum Fisher information and Wigner–Yanase (WY)
information metrics for the geodesic distance between the initial and
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final state at time t. The other two measures depend on the inherent
dynamics of the system, one of which is a definition of QSL time
using the relative purity measure of a quantum state between the
initial and final states, and the other is a QSL time based on the
coherence of the initial and final states.

2.1.1 Using quantum Fisher information metric
Mandelstam and Tamm (MT)-and Margolus and Levitin (ML)-

type bounds on speed limit time (Mandelstam and Tamm, 1945;
Margolus and Levitin, 1998) are estimated by using the geometric
approach, using the Bures angle, to quantify the closeness between
the initial and final states. This approach is used to provide a bound
for the initial pure state ρ0 = |ψ0〉〈ψ0| on the quantum speed limit
time (τQSL) (Deffner and Lutz, 2013) as

τQSL � max
1
Λop

t

,
1
Λtr

t

,
1

Λhs
t

{ }sin2 B[ ], (1)

where B(ρ0, ρt) � arccos( Tr[ �����������
ρ0

√
ρt
��
ρ0

√√ ]{ }2), and
Λop,tr,hs

t � 1
t
∫t

0
ds||L ρs( )||op,tr,hs. (2)

The three norms ||·||op, ||·||tr, and ||·||hs are the operator, trace, and
Hilbert–Schmidt norms, respectively. L is the Liouvillian
superoperator acting on ρ. From the norm inequalities, it can be
shown that the operator norm of the generator provides a tighter
bound on the quantum speed limit time.

2.1.2 Using Wigner–Yanase information metric
Here, we make use of the Wigner–Yanase information metric

given by

B ρ0, ρt( ) � arccos Tr
��
ρ0

√ ��
ρt

√[ ]( ), (3)

in the expression of the QSL time given in Eq. 1. The QSL time
obtained using this metric is ~τQSL. In (Pires et al., 2016), it was shown
that by using this metric, one can obtain an upper bound on the QSL
time in the case of mixed states.

2.1.3 QSL time using relative purity measure
A bound on the QSL time for the open quantum systems can be

given based on the relative purity measure given in (del Campo et al.,
2013). The bound to the required time of evolution, in this case, is
given as

t≥ τQSL′ � 4θ2 Tr ρ20( )
π2
����������
Tr L†ρ0( )2[ ]√ , (4)

where θ = cos−1[f(t)]. f(t) � Tr(ρtρ0)/Tr(ρ20) is the relative purity
measure, ρ0 is the initial state, and ρt is the state evolved to time t. In
the denominator, we have (·) � t−1 ∫t

0
(·)ds.

2.1.4 QSL time for the coherence
There are several widely known (basis dependent) quantum

coherence measures, such as the relative entropy of coherence, the l1
norm of coherence, the geometric coherence, and the robustness of
coherence. The relative entropy of coherence is used because of its
operational meaning as distillable coherence. In addition, it is also
easier to work and compute compared to some other measures of

coherence. For a given state ρ, the relative entropy of coherence C(ρ)
defined as

C ρ( ) � S ρD( ) − S ρ( ), (5)
where ρD = ∑i〈i|ρ|i〉|i〉〈i| is the density operator that is diagonal in
the reference basis, obtained by dephasing off-diagonal elements of
ρ, and S(ρ) = − Tr[ρ log ρ] is the von Neumann entropy of the
state ρ.

For an arbitrary quantum dynamics of a finite-dimensional
quantum system describable as the time evolution of its state, the
minimum time needed for the state ρt to attain coherence C(ρt),
starting with the initial coherence C(ρ0), is lower bounded by the
quantum speed limit time for coherence (τCSL) given by (Mohan
et al., 2022)

t≥ τCSL � |C ρt( ) − C ρ0( )|
Λrms,D

t || ln ρDs ||2HS + Λrms
t || ln ρs||2HS

, (6)

where Λrms,D
t �

���������������
1
t ∫t0 ||Ls(ρDs )||2HSds
√

, Λrms
t �

���������������
1
t ∫t0 ||Ls(ρs)||2HSds
√

,

|| ln ρDs ||2HS �
��������������
1
t ∫t0 || ln ρDs ||2HSds
√

, and || ln ρs||2HS �
�������������
1
t ∫t0 || ln ρs||2HSds
√

.

||·||HS is the Hilbert–Schmidt norm, and Ls is the Liouvillian

superoperator acting on ρ.

2.2 The model

We consider an example of the decay of a two-state atom into a
bosonic reservoir (Breuer, 2012). The general form of the total
Hamiltonian is given as

H � HS ⊗ IB + IS ⊗ HB +HI, (7)
where HS is the system’s Hamiltonian, HB is the Hamiltonian of the
reservoir, and the interaction between the system and the reservoir is
given by the Hamiltonian HI. The form of the system’s
Hamiltonian is

HS � ω0σ+σ−, (8)
where σ+ = |1〉〈0| and σ− = |0〉〈1| are the atomic raising and
lowering operators, respectively, with |0〉(|1〉) denoting the ground
(excited) state. The environment is represented by a reservoir of
harmonic oscillators given as

HB �∑
k

ωka
†
kak, (9)

where ak and a
†
k are the bosonic creation and annihilation operators,

respectively, satisfying the commutation relation [ak, a†k′] � δk,k′.
The form of the interaction Hamiltonian can be given as

HI �∑
k

gkσ+ ⊗ ak + gk*σ− ⊗ a†k( ), (10)

where gk is the coupling constant. In this case, the total number of
excitations in the system N � σ+σ− + ∑ka

†
kak is a conserved

quantity due to the rotating wave approximation. The dynamical
map of the evolution of the reduced state of the system, with the bath
initially in the vacuum state, was derived in (Breuer et al., 1999) and
is given by the quantum master equation

d

dt
ρs t( ) � −i

2
S t( ) σ+σ−, ρs[ ] + γ t( ) σ−ρsσ+ −

1
2

σ+σ−, ρs{ }[ ], (11)
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where γ(t) � −2R( _G(t)
G(t)), S(t) � −2I( _G(t)

G(t)), and R and I represent
the real and imaginary parts of the quantity inside the brackets,
respectively. For a Lorentzian spectral density of the environment in
resonance with the transition frequency of the qubit, the expression
for the function G(t) can be given as

G t( ) � e−λt/2 cosh
lt

2
( ) + λ

l
sinh

lt

2
( )[ ], (12)

where l �
��������
λ2 − 2γ0λ
√

. Here, γ0 describes the strength of the
system–environment coupling, and λ is the spectral width related
to the environment. The quantities S(t) and γ(t) in Eq. 11 provide the
time-dependent frequency shift and decay rates, respectively.
Furthermore, the quantity −2( _G(t)

G(t)) can be written as

−2 _G t( )
G t( ) � 2

γ0������������������������
1 − 2γ0

λ coth 1
2 λt

�����
1 − 2γ0

λ

√( ) + 1

√⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (13)

In the limit λ < 2γ0, the decay rate becomes negative for certain
intervals, giving rise to non-Markovian evolution, referred to as the
non-Markovian amplitude damping (NMAD) evolution. In the
limit λ > 2γ0, the dynamics become time-dependent Markovian.
It can also be noted that for λ≫ γ0, the decay rate γ(t) = γ0, that is, it
becomes time independent, and the evolution corresponds to the
standard AD channel. Furthermore, using the Bloch vector
representation of the single qubit density matrix, we can write
the density matrix of the system at any time t as

ρ t( ) � 1
2

1 + z t( ) x t( ) − iy t( )
x t( ) + iy t( ) 1 − z t( )( ), (14)

where x(t) = Tr[σxρ(t)], y(t) = Tr[σyρ(t)], and z(t) = Tr[σzρ(t)]. For
the case considered above, the analytical expression for the
dynamical map was derived in (Breuer et al., 1999), which is
given by

ρ00 t( ) � 1 − |G t( )|2( )ρ11 0( ) + ρ00 0( ),
ρ01 t( ) � ρ01 0( )G* t( ),
ρ10 t( ) � ρ10 0( )G t( ),
ρ11 t( ) � ρ11 0( )|G t( )|2,

(15)

where ρij is the element of the density matrix ρ(t), which we obtain as
the solution of Eq. 11 A straightforward comparison between Eqs.
15, 14 gives us x(t), y(t), and z(t) in terms of the function G(t). Thus,
the Bloch vectors are given by

x t( ) � 2R ρ10 0( )G t( )[ ],
y t( ) � −2I ρ10 0( )G t( )[ ],
z t( ) � 2ρ11 0( )|G t( )|2 − 1.

(16)

One may note that the function G(t) in Eq. 12 produces only real
values due to its structure in both regimes when l is real or
imaginary. Therefore, the value of y(t) in the above equation is
zero for a real initial state ρ(0).

We can envisage the system as a quantum battery in the model
studied here. The battery discharges when the ergotropy (discussed
in the next subsection) of the system dissipates to the environment.
We start with a state with finite ergotropy, and the ergotropy
vanishes due to interaction with the environment during the
evolution of the system. However, due to the system’s
P-indivisible non-Markovian evolution (Utagi et al., 2020), the

battery recharges again as the ergotropy revives. This is
highlighted in the subsequent sections.In Figure 1, we compare
the QSL time obtained using the Fisher information metric (τQSL),
Wigner–Yanase (WY) information metric (~τQSL), and the relative
purity measure (τQSL′ ). The evolution of the quantum state is
through the NMAD master equation defined in Eq. 11 Here, we
note that the QSL time using the Fisher information metric for this
model was studied in (Deffner and Lutz, 2013; Paulson et al., 2022).
The initial state, in this case, is subsequently taken to be ρ(0) =
|ψ0〉〈ψ0|, where |ψ0〉 �

�
3

√
2 |0〉 + 1

2|1〉, with |0〉 and |1〉 being the
ground and excited state of the system, respectively. It can be
observed that qualitatively the QSL times obtained using the WY
and Fisher information metrics are similar, with WY information
giving a tighter bound on the QSL time. This is consistent with the
comparison of both metrics in (Pires et al., 2016).

2.3 Ergotropy and instantaneous and
average power

Here, we define the ergotropy, followed by the instantaneous
and average powers. The categorization of ergotropy as a sum of
incoherent and coherence ergotropies is also defined.

2.3.1 Ergotropy
Ergotropy refers to the maximum amount of work that can be

extracted from a quantum system through a cyclic unitary
transformation of the initial state. The problem of maximal
extraction of work was discussed in (Allahverdyan et al., 2004).
For a state governed with a time-dependent Hamiltonian HS + V(t),
the time-dependent potential V(t) corresponds to the transfer of
work to external sources. The process is cyclic when the external
source is connected at time t = 0 and disconnected at time t = t0,
i.e., the time-dependent potential has the form V(0) = V(t0) = 0. One
then looks out for the maximumwork that can be extracted from the
system for an arbitrary V(t). To this effect, among all final states ρt0
reached from the initial state ρ0, we look for the state with the lowest

FIGURE 1
Comparison between QSL time obtained using Fisher
information metric (τQSL), WY information metric (~τQSL), and relative
purity measure (τQSL′ ) under the evolution of state through NMAD
master equation. The parameters are ω0 = 1, λ = 0.5, and γ0 = 10.
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final energy Ef � Tr[ρt0HS]. The thermal equilibrium state ρeqt0 �
exp(−βHS)/Tr[exp(−βHS)] (where β = T−1, with T being the
Temperature) under invariant von Neumann entropy is the
standard answer to this problem. The largest amount of work
that can be extracted in this case is Wth � E(ρ0) − TS(ρ0) +
T log(Z) (Allahverdyan et al., 2004), where S(·) is the von
Neumann entropy, and Z = Tr[exp(−βHS)] is the partition function.

Above, two arguments are made: one where we assume that the
initial state can be brought to a thermal equilibrium state, and the
other is that the entropy of the system is invariant during this
evolution. This is allowed for the macroscopic systems where
dissipative processes within the system may occur while the
system evolves under the influence of V(t). However, in the case
of the finite systems, in general, the action of only the potential V(t)
is not sufficient for a state to reach the thermal state in time t0. Here,
for the unitary evolution of the finite systems, not only the von
Neumann entropy but also the eigenvalues of ρ are conserved.
Unlike thermodynamic systems, finite systems have the memory
of their initial state, and relaxation mechanisms are not involved.
Therefore, in these systems, the maximum amount of work
extracted W, called ergotropy, is generally smaller than Wth.
Below, we outline the method to obtain ergotropy of the system.
We assume that we are given a quantum state ρ0 with its internal
Hamiltonian HS such that they have the following spectral
decomposition:

ρ0 �∑
i

ri|ri〉〈ri|, (17)

and

HS �∑
i

εi|εi〉〈εi|, (18)

where ordering of the eigenvalues for ρ0 and HS is in the decreasing,
r1 ≥ r2 ≥. . ., and increasing, ε1 ≤ ε2 ≤ . . ., order, respectively. Since
unitary dynamics is considered, any decrease in the internal energy
of the system at hand, with respect to its self-HamiltonianHS, will be
extracted as work. Thus, in order to find the ergotropy, one aims to
minimize the internal energy of the final state:

W ρ0( ) � Tr ρ0HS( ) −min Tr UρU†HS( ){ }, (19)
where minimization is performed over all possible unitaries.

It can be shown that the final state, ρt0 � ρf � UρU†, that
achieves this minimum should commute with HS and have the
same eigenvalues as ρ0, that is, ρf = ∑jrj|εj〉〈εj|. This is known as the
passive state because no work can be extracted from this state. The
intuition for the order of eigenvalues comes from the interpretation
that the highest occupation fraction r1 of ρ0 should occupy the lowest
level. A unitary operator that performs such a transformation is U =∑j|εj〉〈rj|. Now we can rewrite Eq. 19 as

W ρ0( ) �∑
j,i

rjεi |〈rj
∣∣∣∣εi〉|2 − δij( ). (20)

The ergotropyW depends only on the initial state and Hamiltonian
of the system. The upper bound on ergotropy is given by
Wth ≥W ≥ 0, where Wth is equal to W when rj = −βεj − log(Z).
Furthermore, ergotropy has already been studied for open quantum
systems in (Kamin et al., 2020; Çakmak, 2020; Touil et al., 2021). In
the previous section, we discussed a simple open quantum system

modeling a non-Markovian amplitude damping channel. To
calculate the ergotropy of the system, we make use of the
solution ρ(t) obtained after solving Eq. 11 for any time t, and we
supply it as the initial state in the Eq. 19 to find the maximum work
that can be extracted from this state after a cyclic unitary
transformation. Physically, the work is extracted from the system
after it is detached from the bath and is now subjected to the
transformation stated above.

For the state ρ(t) given in Eq. 14, one can analytically calculate the
ergotropy of the systemwith the inherent systemHamiltonianHS defined
by Eq. 8. To this end, the eigenvalues of the state ρ(t) are 1

2 (1 ±|a(t)|),
where |a(t)| �

�����������
x(t)2 + z(t)2
√

. Note that we have dropped y(t) from
the calculations because it is zero for the case considered here, as given in
Eq. 16 The spectral decomposition of theHS � ω0|1〉〈1| + 0|0〉〈0| can
nowbe used tofind the passive state ρf(t) � r1|0〉〈0| + r2|1〉〈1|, where
2r1 � 1 + |a(t)|≥ 1 − |a(t)| � 2r2. The ergotropy of the system now
boils down to

W ρ t( )( ) � Tr ρ t( )HS( ) − Tr ρf t( )HS( ),
� ω0

1 + z t( )
2

( ) − ω0
1 − |a t( )|

2
( ) � ω0

2
|a t( )| + z t( )[ ],

� ω0

2

�����������
x t( )2 + z t( )2
√

+ z t( )( ).
(21)

In the above equation, z(t) denotes the population terms, and x(t)
denotes the coherence terms of the state at any time t Eq. 14 The
value of the ergotropy is non-zero whenever the coherence term x(t)
is present in the state. It becomes zero only when x(t) is zero and z(t)
is less than or equal to zero. Using the Eq. 16 and the initial state
ρ(0) = |ψ0〉〈ψ0|, where |ψ0〉 �

�
3

√
2 |0〉 + 1

2|1〉, we can write the
ergotropy in terms of the function G(t) as

W ρ t( )( ) � ω0

4
−2 + G t( )2 +

���������������
4 − G t( )2 + G t( )4
√( ). (22)

It was recently recognized (Francica et al., 2020; Sone and
Deffner, 2021) that quantum ergotropy can be separated into two
different (coherent and incoherent) contributions:

W � W i +Wc. (23)
The incoherent ergotropyW i denotes the maximal work that can be
extracted from ρ without changing its coherence, which is defined as

W i ρ( ) � Tr ρ − σ( )HS{ }, (24)
where σ is the coherence invariant state of ρ, which has property:

Tr σHS{ } � min
U∈ U i( )

Tr UρU†HS{ }, (25)

where U(i) is the set of unitary operations without changing the
coherence of ρ. Alternatively, the incoherent ergotropy can be
calculated using the state ρ after erasing all its coherence terms
by applying a dephasing map and then using the same method
used in calculating the full ergotropy for this dephased state.
That is, consider the state ρD = ∑i〈i|ρ|i〉|i〉〈i|; the incoherent
ergotropy W i(ρ) for state ρ is equivalent to the ergotropy W of
the state ρD. The passive state ρDf , in this case, can be found in a
similar way to that done previously for the calculation of
ergotropy. Therefore,
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W i ρ( ) � W ρD( ) � Tr ρD − ρDf( )HS[ ]. (26)

The dephased state ρD(t) for the state ρ(t) in Eq. 14 is given by
1
2 [(1 + z(t))|1〉〈1| + (1 − z(t))|0〉〈0|], and the corresponding
passive state ρDf(t) depends on the sign of z(t). Considering the case
z(t)< 0, we find that 1 + z(t) is lesser than 1− z(t). To this end, the passive
state ρDf(t) is found to be the same as ρD(t); therefore, the incoherent
ergotropyW i(ρ(t)) becomes zero. However, if z(t) ≥ 0, then 1 + z(t) is
greater than 1 − z(t) and ρDf (t) � 1

2 [(1 − z(t))|1〉〈1| + (1 + z(t))|0〉〈0|].
In this case, for the system Hamiltonian HS = ω0|1〉〈1|, the incoherent

ergotropy is given by

W i ρ t( )( ) � ω0z t( ). for z t( )≥ 0
0. for z t( )< 0
{ (27)

Upon comparing the above equation with Eq. 21, we observe that for
the positive z(t) and zero coherence term x(t)/2, the incoherent
ergotropy W i becomes equal to the ergotropy W. Furthermore, the
incoherent ergotropy is always positive here and obtains
contribution only from the population terms of ρ(t). The
incoherent ergotropy in terms of the function G(t) and the initial
state ρ(0) defined above Eq. 22 is given by

W i ρ t( )( ) � ω0
G t( )2 − 2

2
. forG t( )2 ≥ 2

0. forG t( )2 < 2

⎧⎪⎪⎨⎪⎪⎩ (28)

Moreover, it is straightforward now to obtain the expression for
the coherent ergotropy Wc � W −W i for the state ρ(t) given in Eq.
14 and system Hamiltonian HS in Eq. 8. This is given by

Wc ρ t( )( ) �
ω0

2

�����������
x t( )2 + z t( )2
√

− z t( )( ). for z t( )≥ 0

ω0

2

�����������
x t( )2 + z t( )2
√

+ z t( )( ). for z t( )< 0

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (29)

The coherent ergotropyWc is the work that is exclusively stored in the
coherence. This can be verified from the above equation.We note here
that whenever the coherence term x(t)/2 of the state ρ(t) is zero, the
coherent ergotropy of the system also becomes zero. Moreover, the
coherent ergotropy becomes the full ergotropy for the negative values
of z(t). The expression of coherent ergotropy Wc in terms of the
function G(t) and for the initial state ρ(0) can be obtained in a similar
manner to that for ergotropy and incoherent ergotropy using Eq. 16
Furthermore, we outline the relationship between the coherent
ergotropy and the relative entropy of coherence C(ρ) defined in
Eq. 5. The expression was derived in (Francica et al., 2020) and
can be given via quantum relative entropy as

βWc ρ( ) � C ρ( ) +D ρDf ||ρeq( ) −D ρf||ρeq( ), (30)

where D(σ‖ρ) � Tr[σ(log σ − log ρ)] is the quantum relative
entropy, ρDf is the passive state of the dephased state ρD, and ρf is
the passive state of ρ. The state ρeq is the Gibbs state

ρeq � exp −βHS( )
Z

with Z � Tr exp −βHS( ){ }, (31)

and β = 1/kBT, with T being the temperature. Despite the fact that in
Eq. 30, temperature T is present explicitly, upon substituting the
values of all the terms in the right-hand side using Eq. 14 and
dividing with β, we get the same expression as in Eq. 29, i.e., free of T.

We next establish a relation between the coherent ergotropy and
another quantifier of the coherence of a quantum state given by the
l1 norm of coherence (Streltsov et al., 2017), defined as

Cl1 ρ( ) � ∑
i,j,i≠j

|ρi,j|, (32)

For the state of the form of Eq. 14 with y(t) being zero, the value of
Cl1(ρ(t)) is given by

Cl1 ρ t( )( ) � |x t( )|. (33)
Using the above equation and Eq. 29, for the case studied here, we
can write a coherent ergotropy Wc in terms of Cl1(ρ(t)) as

Wc ρ t( )( ) �
ω0

2

���������������
Cl1 ρ t( )( )2 + z t( )2
√

− z t( )( ). for z t( )≥ 0

ω0

2

���������������
Cl1 ρ t( )( )2 + z t( )2
√

+ z t( )( ). for z t( )< 0

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(34)

We note that in case the value of z(t) becomes zero, the coherent
ergotropyWc becomes directly proportional to the value of Cl1(ρ(t)).

2.3.2 Average and instantaneous power
The instantaneous charging power is defined by available work

in the battery as

P t( ) � lim
Δt→0

W t + Δt( ) −W t( )
Δt � dW

dt
. (35)

Using Eq. 21, we can write the instantaneous power P(t) as

P t( ) � ω0

2
x t( ) _x t( ) + z t( ) _z t( )�����������

x t( )2 + z t( )2
√ + _z t( )⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠. (36)

It is also possible to define the average power-to-energy transfer
given by

Pav � W t( ) −W t0( )
t − t0

, (37)

where t − t0 refers to the charging time of the battery.
We will now see the connection between various forms of the

quantum speed limit, particularly the QSL time for coherence and
using the relative purity measure, and the ergotropy, with the
dynamics being generated by the NMAD model.

3 Connection of the quantum speed
limits with the coherent ergotropy

This section first discusses the connection between the QSL for
coherence and coherent ergotropy. Furthermore, we connect the
QSL time obtained using the relative purity measure and the
coherent ergotropy.

3.1 Connection between the QSL for
coherence and the coherent ergotropy

We can rewrite Eq. 30 for the relative entropy of coherence in
terms of coherent ergotropy as
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C ρ( ) � βWc ρ( ) −D ρDf ||ρeq( ) +D ρf||ρeq( ). (38)

Plugging the above equation in Eq. 6 for the state ρ(t) at time t and at
time t = 0, we obtain the following relation between the QSL time for
coherence τCSL and the coherent ergotropy Wc:

τCSL �
|βWc ρ t( )( ) −D ρDf t( )||ρeq( ) +D ρf t( )||ρeq( ) − C ρ 0( )( )|

Λrms,D
t || ln ρDs ||2HS + Λrms

t || ln ρs||2HS

,

(39)
where C(ρ(0)) � βWc(ρ(0)) −D(ρDf(0)||ρeq) +D(ρf(0)||ρeq).
Here and in the next sections, we take the initial state to be
ρ(0) = |ψ0〉〈ψ0|, where |ψ0〉 �

�
3

√
2 |0〉 + 1

2|1〉. The value of C(ρ(0))
for this initial state is around 0.56. Using the Bloch vector
representation of the state ρ(t) Eq. 14, the relative entropy of
coherence C(ρ(t)) is given by

C ρ t( )( ) � − 1 + z t( )
2

( )log 1 + z t( )
2

( ) − 1 − z t( )
2

( )log 1 − z t( )
2

( )
+ 1 + |a t( )|

2
( )log 1 + |a t( )|

2
( ) + 1 − |a t( )|

2
( )log 1 − |a t( )|

2
( ),

(40)

where |a(t)| �
�����������
x(t)2 + z(t)2
√

, as y(t) is zero for the case considered
here. We note here that for the given initial state ρ(0) above, the
value of z(t) remains negative for the whole dynamic. Interestingly,
in this case, the values of ergotropy W and coherent ergotropy Wc

are exactly the same. Therefore, the relationship between the
coherent ergotropy Wc and τCSL corresponds to a relationship
between ergotropy W and τCSL too. Furthermore, the relative
entropy of coherence C(ρ(t)) vanishes whenever x(t) is zero, and
at those points in time, the ergotropy W and coherence ergotropy
Wc are also zero. This is depicted in Figure 2. At these points in time,
the τCSL achieves a local maximum, which is intuitive because the
numerator of τCSL is locally maximum.In Figure 2, we can see the
variation of the QSL time for coherence (τCSL) and the characterizers
of quantum thermodynamics, particularly ergotropy (W), coherent

ergotropy (WC), and instantaneous (P(t)) and average (Pav)
powers. The region in the ergotropy curve is denoted by the
brown “+” symbols, which indicate the battery’s charging
process, while the black “|” symbols depict the discharging
process in the given cycle from time t = 1 to 3. During the
charging process, the instantaneous power is positive and
negative while the battery is discharging. Furthermore, in this
case, we observe that the maxima and minima of the τCSL are in
contrast with the ergotropy and coherent ergotropy’s maxima and
minima. This shows that the speed of evolution of the coherence of
the state during the discharging process is getting slower. This speed
hits its minimum when the ergotropy is zero. However, during the
charging process, when ergotropy again becomes non-zero, the
speed of evolution of the coherence increases and reaches its
maximum when the battery is fully charged. We also point out
here that one can take a different initial state ρ(0) and obtain some
contribution to the ergotropy from the incoherent ergotropy too.
However, the dynamics of the system characterized by the NMAD
master equation quickly drive the system’s state in such a way that
the value of z(t) becomes negative. In this case, at longer times, the
coherent ergotropy eventually becomes equal to the ergotropy of the
system.

3.2 QSL time for relative purity measure and
coherent ergotropy

Here, we start with Eq. 4 using the initial state ρ(0) used in the
previous section and the Bloch vector form of the system’s state ρ(t)
given in Eq. 14 at any time t. To this end, the value of Tr[ρ(0)2] is one
as we have considered an initial pure state. The value of the relative
purity f(t) = Tr[ρ(t)ρ(0)]/Tr[ρ(0)2] is now given by

f t( ) � 1
4

2 − z t( ) + �
3

√
x t( )( ). (41)

FIGURE 2
Variation of the QSL time for coherence τCSL, ergotropy W,
coherent ergotropyWC , instantaneous and average powers, P(t) and
Pav with time. The state is evolved through the NMAD master
equation. The parameters are chosen to be ω0 = 1, λ = 0.5, and
γ0 = 10.

FIGURE 3
Variation of QSL time with relative purity measure (τQSL′ ),
ergotropy (W), coherent ergotropy (Wc), and instantaneous (P(t))
and average (Pav ) powers with evolution time t. The evolution is
through the NMADmaster equation. The parameters are taken to
be ω0 = 1, λ = 0.5, and γ0 = 10. Note that we have scaled the value of
τQSL′ bymultiplying a constant factor of 5 for a better comparison of its
variation with other quantities in the figure.
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Furthermore, the value of the term
������������
Tr[(L†ρ(0))2]
√

present in the
denominator of Eq. 4 becomes

��
11
8

√
|G(s)_G(s)|, where the function G(s) is

given in Eq. 12 Now, the QSL time obtained using the relative purity
measure τQSL′ boils down to

τQSL′ �
8
��
2
11

√
cos−1 1

4 2 − z t( ) + �
3

√
x t( )( )( )[ ]2

π2

t ∫t0 G s( )
_G s( )
∣∣∣∣∣ ∣∣∣∣∣dt . (42)

Here, we again mention that the value of z(t) for the given initial
state ρ(0) is always negative. Therefore, the incoherent ergotropy is
zero, and the coherent ergotropy is equal to the ergotropy of the
system. Furthermore, we observe that in contrast to τCSL’s variation
of the numerator, in this case, when the coherence term x(t), and the
ergotropy and coherent ergotropy goes to zero, the numerator
obtains a minimum value.

Figure 3 depicts the connection between the QSL time using the
relative purity measure (τQSL′ ) with ergotropy (W), coherent
ergotropy (Wc) and the instantaneous (P(t)) and average
(Pav) powers. It can be observed that, in this case, the peaks
and valleys of τQSL′ are in contrast with the peaks and valleys of
instantaneous power. This indicates that changes in the τQSL′ pick
up the maximal rate of charging or discharging of the
battery—with a maximum in τQSL′ corresponding to the
maximum discharging rate of the battery and a minimum in
τQSL′ corresponding to the maximum charging rate—in a given
charging and discharging cycle.

4 Quantum speed limit and ergotropy
in non-Markovian evolution

Now, we discuss the impact of the non-Markovian evolution on
the charging and discharging process of the quantum battery
together with its impact on the QSL time, particularly those
obtained using geometric measures. In Figure 4, the evolution of
the system under Markovian evolution is depicted.Here, we observe

that the system (qubit) keeps on discharging, but due to the
Markovian evolution, there is no revival in the ergotropy or
charging of the battery. This brings out the fact that in the
present qubit–bath setup, the non-Markovian nature of the
evolution plays a crucial role in highlighting the role of the
system as a battery. Furthermore, the QSL time obtained using
the Fisher information metric (τQSL) is also monotonically
increasing; that is, the speed of evolution of the system keeps
slowing down with time.

Figures 5, 6 show the variation of the QSL time obtained using
the geometric measures (using Fisher and Wigner–Yanase
information metrics), ergotropy, and instantaneous and average
powers with time.Qualitatively, the QSL times obtained using the
Fisher (τQSL) and WY (~τQSL) information metrics show a similar
pattern. In both cases, we observe that either of the peaks or valleys

FIGURE 4
Variation of QSL time using Fisher information metric (τQSL),
ergotropy (W), and instantaneous (P(t)) and average (Pav ) powers
with time. The evolution of the state is through the Markovian AD
channel. The parameters are taken to be ω0 = 1, λ = 0.5, and
γ0 = 0.1.

FIGURE 5
Variation of QSL time using Fisher information metric (τQSL),
ergotropy (W), and instantaneous (P(t)) and average (Pav ) powers
with time. The evolution of the state is through the NMAD channel.
The parameters are taken to be ω0 = 1, λ = 0.5, and γ0 = 10.

FIGURE 6
Variation of QSL time using Wigner–Yanase information metric
(~τQSL), ergotropy (W), and instantaneous (P(t)) and average (Pav )
powers with time. The evolution of the state is through the NMAD
channel. The parameters are taken to be ω0 = 1, λ = 0.5, and
γ0 = 10.

Frontiers in Quantum Science and Technology frontiersin.org08

Tiwari and Banerjee 10.3389/frqst.2023.1207552

https://www.frontiersin.org/journals/quantum-science-and-technology
https://www.frontiersin.org
https://doi.org/10.3389/frqst.2023.1207552


of the τQSL and ~τQSL occurs exactly at the points when a cycle of
complete discharging and recharging to a maximum value is
completed. This coincides with the points where the average
power is calculated. The revivals in the ergotropy (or recharging
of the battery) are completely due to the non-Markovian nature of
the system in both figures. This also brings out a difference between
the QSL time obtained using the inherent dynamics of the system,
particularly the QSL time for coherence (τCSL in Figure 2) and the
relative purity measure (τQSL′ in Figure 3), and the QSL time
obtained using geometric measures in Figures 5, 6. The peaks
and valleys of the τCSL and τQSL′ specify the discharging and
charging processes, being exact for τCSL. However, the peaks and
valleys of τQSL and ~τQSL specify the completion of a
discharging–charging cycle. This thus brings out a difference
between the geometric and physical properties-based measures of
the QSL time from the perspective of discharging–charging
processes. It can also be seen that the speed of evolution first
decreases and then increases, oscillating around a fixed point
later. This again benchmarks the non-Markovian nature of the
system.

5 Conclusion

Here, we have studied the impact of non-Markovian evolution
on the quantities characterizing quantum thermodynamics,
particularly ergotropy and its components and instantaneous and
average powers. We explored the connection of these quantities with
the quantum speed limit (QSL) time of evolution. The
characterization of the QSL time was performed using both
geometric and physical properties-based measures. Fisher and
Wigner–Yanase information metrics were used for the geometric-
based measures (τQSL and ~τQSL, respectively), and relative purity and
relative entropy of coherence were used for the physical properties-
based measure (τCSL and τQSL′ , respectively) of the QSL time. We
considered the evolution of a single qubit system interacting with the
bosonic bath through the non-Markovian amplitude damping
(NMAD) master equation. Having an initial finite ergotropy, we
proposed that the system could be envisaged as a quantum battery
discharging into the bosonic environment.

The coherent and incoherent components of ergotropy were
discussed. It was observed that due to the nature of the non-
Markovian amplitude damping evolution of the state, the
contribution to the ergotropy in the form of incoherent
ergotropy quickly vanishes, and the coherent ergotropy becomes
equivalent to the ergotropy of the system. Furthermore, direct
connections between the coherent ergotropy and QSL time using
relative purity and relative entropy of coherence measures were
explored. It was observed that the QSL time obtained using physical
properties-based measures identified the discharging and charging
process of the quantum battery. This was different from the
geometric-based measures that brought out the connection
between the completion of the discharging–charging cycle and
the change in the speed of evolution of the system. The revivals

in the ergotropy of the system (or recharging of the battery) only
occurred in the non-Markovian limit. It was observed that in the
Markovian limit, the battery only discharged, and the speed of
evolution was monotonically decreasing (the QSL time was
monotonically increasing). Therefore, the non-Markovian
evolution is crucial when modeling the system as a quantum battery.
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