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The quantum approximate optimization algorithm (QAOA) is one of the most
promising candidates for achieving quantum advantage through quantum-
enhanced combinatorial optimization. A near-optimal solution to the
combinatorial optimization problem is achieved by preparing a quantum state
through the optimization of quantum circuit parameters. Optimal QAOA
parameter concentration effects for special MaxCut problem instances have
been observed, but a rigorous study of the subject is still lacking. In this work
we show clustering of optimal QAOA parameters around specific values;
consequently, successful transferability of parameters between different QAOA
instances can be explained and predicted based on local properties of the graphs,
including the type of subgraphs (lightcones) from which graphs are composed as
well as the overall degree of nodes in the graph (parity). We apply this approach to
several instances of random graphs with a varying number of nodes as well as
parity and show that one can use optimal donor graph QAOA parameters as near-
optimal parameters for larger acceptor graphs with comparable approximation
ratios. This work presents a pathway to identifying classes of combinatorial
optimization instances for which variational quantum algorithms such as QAOA
can be substantially accelerated.
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1 Introduction

Quantum computing seeks to exploit the quantummechanical concepts of entanglement
and superposition to perform a computation that is significantly faster and more efficient
than what can be achieved by using the most powerful supercomputers available today
(Preskill, 2018; Arute et al., 2019). Demonstrating quantum advantage with optimization
algorithms (Alexeev et al., 2021) is poised to have a broad impact on science and humanity by
allowing us to solve problems on a global scale, including finance (Herman et al., 2022),
biology (Outeiral et al., 2021), and energy (Joseph et al., 2023). Variational quantum
algorithms, a class of hybrid quantum-classical algorithms, are considered primary
candidates for such tasks and consist of parameterized quantum circuits with parameters
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updated in classical computation. The quantum approximate
optimization algorithm (QAOA) (Hogg, 2000; Hogg and
Portnov, 2000; Farhi et al., 2014; Hadfield et al., 2019) is a
variational algorithm for solving classical combinatorial
optimization problems. In the domain of optimization on graphs,
it is most often used to solve NP-hard problems such as MaxCut
(Farhi et al., 2014), community detection (Shaydulin et al., 2019c),
and partitioning (Ushijima-Mwesigwa et al., 2021) by mapping
them onto a classical spin-glass model (also known as the Ising
model) and minimizing the corresponding energy, a task that in
itself is NP-hard.

In this work we demonstrate two related key elements of optimal
QAOA parameter transferability. First, by analyzing the distributions
of subgraphs from two QAOA MaxCut instance graphs, one can
predict how close the optimized QAOA parameters for one instance
are to the optimal QAOA parameters for another. Second, by
analyzing the overall parity of both donor-acceptor pairs, one can
predict good transferability between those QAOAMaxCut instances.
The measure of transferability of optimized parameters between
MaxCut QAOA instances on two graphs can be expressed through
the value of the approximation ratio, which is defined as the ratio of
the energy of the corresponding QAOA circuit, evaluated with the
optimized parameters γ, β, divided by the energy of the optimal
MaxCut solution for the graph.

While the optimal solution is not known in general for relatively
small instances (graphs with up to 256 nodes are considered in this
paper), it can be found by using classical algorithms, such as the Gurobi
solver (Gurobi Optimization, 2021)1. We first focus our attention on
similarity based on the subgraph decomposition of random graphs and
show that good transferability of optimized parameters between two
graphs is directly determined by the transferability between all possible
permutations of pairs of individual subgraphs. The relevant subgraphs of
these graphs are defined by theQAOAquantum circuit depth parameter
p. In this work we focus on the case p = 1; however, our approach can be
extended to larger values of p. Higher values of p lead to an increasing
number of subgraphs to be considered, but the general idea of the
approach remains the same. This question is beyond the scope of this
paper and will be addressed in our future work. We then move to
similarity based on graph parity and determine that we can predict good
optimal parameter transferability between donor-acceptor graph pairs
with similar parities. Here, too, more work remains to be done regarding
the structural effects of graphs on optimal parameter transferability.

Based on the analysis of the mutual transferability of optimized
QAOA parameters between all relevant subgraphs for computing
the MaxCut cost function of random graphs, we show good
transferability within the classes of odd and even random graphs
of arbitrary size. We also show that transferability is poor between
the classes of even and odd random graphs, in both directions, based
on the poor transferability of the optimized QAOA parameters
between the subgraphs of the corresponding graphs. When
considering the most general case of arbitrary random graphs, we
construct the transferability map between all possible subgraphs of

such graphs, with an upper limit of node connectivity dmax = 6, and
use it to demonstrate that in order to find optimized parameters for a
MaxCut QAOA instance on a large 64-, 128-, or 256-node random
graph, under specific conditions, one can reuse the optimized
parameters from a random graph of a much smaller size, N = 6,
with only a ~1% reduction in the approximation ratio.

This paper is structured as follows. In Section 2 we present the
relevant background material on QAOA. In Section 3 we consider
optimized QAOA parameter transferability properties between all
possible subgraphs of random graphs of degree up to dmax = 6. We
then extend the consideration to parameter transferability using
graph parity as a metric, and we demonstrate the power of the
proposed approach by performing optimal transferability of QAOA
parameters in many instances of donor-acceptor graph pairs of
differing sizes and parity. We find that one can effectively transfer
optimal parameters from smaller donor graphs to larger acceptor
graphs, using similarities based on subgraph decomposition and
parity as indicators of good transferability. In Section 4 we conclude
with a summary of our results and an outlook on future advances
with our approach.

2 QAOA

The quantum approximate optimization algorithm is a hybrid
quantum-classical algorithm that combines a parameterized
quantum evolution with a classical outer-loop optimizer to
approximately solve binary optimization problems (Farhi et al.,
2014; Hadfield et al., 2019). QAOA consists of p layers (also
known as the circuit depth) of pairs of alternating operators,
with each additional layer increasing the quality of the solution,
assuming perfect noiseless execution of the corresponding quantum
circuit. With quantum error correction not currently supported by
modern quantum processors, practical implementations of QAOA
are limited to p ≤ 3 because of noise and limited coherence of
quantum devices imposing strict limitations on the circuit depth
(Zhou et al., 2020). Motivated by the practical relevance of results,
we focus on the case p = 1 in this paper.

2.1 QAOA background

Consider a combinatorial problem defined on a space of binary
strings of length N that has m clauses. Each clause is a constraint
satisfied by some assignment of the bit string. The objective function
can be written as C(z) � ∑m

α�1Cα(z), where z = z1z2/zN is the bit
string andCα(z) = 1 if z satisfies the clause α, and 0 otherwise. QAOA
maps the combinatorial optimization problem onto a 2N-
dimensional Hilbert space with computational basis vectors |z〉
and encodes C(z) as an operator C diagonal in the computational
basis.

At each call to the quantum computer, a trial state is prepared by
applying a sequence of alternating quantum operators

| �β, �γ〉p ≔ UB βp( )UC γp( ) . . .UB β1( )UC γ1( )|s〉, (1)

where UC(γ) = e−iγC is the phase operator; UB(β) = e−iβB is the mixing
operator, with B defined as the operator of all single-bit σx operators;
B � ∑N

j�1σ
x
j ; and |s〉 is some easy-to-prepare initial state, usually

1 The Gurobi solver provides classically optimal MaxCut solutions in a
competitive speed with known optimization gap. For the purpose of
this work, there is no particular reason to choose Gurobi over IPOPT or
other similarly performing solvers.
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taken to be the uniform superposition product state. The
parameterized quantum circuit (1) is called the QAOA ansatz.
We refer to the number of alternating operator pairs p as the
QAOA depth. The selected parameters �β, �γ are said to define a
schedule, analogous to a similar choice in quantum annealing.

Preparation of the state (1) is followed by a measurement in the
computational basis. The output of repeated state preparation and
measurement may be used by a classical outer-loop algorithm to
select the schedule �β, �γ. We consider optimizing the expectation
value of the objective function

〈C〉p � 〈 �β, �γ|pC| �β, �γ〉p,
as originally proposed in (Farhi et al., 2014). The output of the overall
procedure is the best bit string z found for the given combinatorial
optimization problem. Figure 1 presents a schematic pipeline of the
QAOA algorithm. We emphasize that the task of finding good QAOA
parameters is challenging in general, for example, because of encountering
barren plateaus (Wang et al., 2021; Anschuetz and Kiani, 2022).
Acceleration of the optimal parameters search for a given QAOA
depth p is the focus of many approaches aimed at demonstrating
quantum advantage. Examples include warm- and multistart
optimization (Shaydulin et al., 2019a; Egger et al., 2020), problem
decomposition (Shaydulin et al., 2019b), instance structure analysis
(Shaydulin et al., 2021), and parameter learning (Khairy et al., 2020).

2.2 MaxCut

For studying the transferability of optimized QAOA parameters,
we consider the MaxCut combinatorial optimization problem.
Given an unweighted undirected simple graph G = (V, E), the

goal of the MaxCut problem is to find a partition of the graph’s
vertices into two complementary sets such that the number of edges
between the two sets is maximized. In order to encode the problem
in the QAOA setting, the input is a graph with |V| = N vertices and |
E| = m edges, and the goal is to find a bit string z that maximizes

C � ∑
jk∈E

Cjk, (2)

where

Cjk � 1
2

−σzjσzk + 1( ).

It has been shown in (Farhi et al., 2014) that on a 3-regular
graph, QAOAwith p = 1 produces a solution with an approximation
ratio of at least 0.6924.

2.3 QAOA simulator and classical MaxCut
solver

Calculating the approximation ratio for a particular MaxCut
problem instance requires the optimal solution of the
combinatorial optimization problem. This problem is known to be
NP-hard, and classical solvers require exponential time to converge.
For our experiments, we use the Gurobi solver (Gurobi Optimization,
2021) with the default configuration parameters, running the solver
until it converges to the optimal solution. For our QAOA simulations,
we use QTensor (Lykov et al., 2021), a large-scale quantum circuit
simulator with step-dependent parallelization. QTensor simulates
circuits based on a tensor network approach, and as such, it can
provide an efficient approximation to certain classes of quantum
states (Biamonte and Bergholm, 2017; Kardashin et al., 2021).

FIGURE 1
Schematic pipeline of a QAOA circuit. A parametrized ansatz is initialized, followed by series of applied unitaries that define the depth of the circuit.
Finally, measurements are made in the computational basis, and the variational angles are classically optimized. This hybrid quantum-classical loop
continues until convergence to an approximate solution is achieved.
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3 Parameter transferability

Solving a QAOA instance calls for two types of executions of
quantum circuits: iterative optimization of the QAOA
parameters and the final sampling from the output state
prepared with those parameters. While the latter is known to
be impossible to simulate efficiently for large enough instances
using classical hardware instead of a quantum processor (Farhi
et al., 2014), the iterative energy calculation for the QAOA circuit
during the classical optimization loop can be efficiently
performed by using tensor network simulators for instances of
a wide range of sizes (Lykov et al., 2020), as described in the
preceding section. This is achieved by implementing considerable
simplifications in how the expectation value of the problem
Hamiltonian is calculated by employing a mathematical
reformulation based on the notion of the reverse causal cone
introduced in the seminal QAOA paper (Farhi et al., 2014).
Moreover, in some instances, the entire search of the optimal
parameters for a particular QAOA instance can be circumvented
by reusing the optimized parameters from a different “related”
instance, for example, for which the optimal parameters are
concentrated in the same region.

Optimizing QAOA parameters for a relatively small graph,
called the donor, and using them to prepare the QAOA state
that maximizes the expectation value 〈C〉p for the same problem
on a larger graph, called the acceptor, is what we define as successful
optimal parameter transferability, or just transferability of
parameters, for brevity. The transferred parameters can be used
either directly without change, as implemented in this paper, or as a
“warm start” for further optimization. In either case, the high
computational cost of optimizing the QAOA parameters, which
grows rapidly as the QAOA depth p and the problem size are
increased, can be significantly reduced. This approach presents a
new direction for dramatically reducing the overall runtime
of QAOA.

Optimal QAOA parameter concentration effects have been
reported for several special cases, mainly focusing on random
3-regular graphs (Brandao et al., 2018; Streif and Leib, 2020;
Akshay et al., 2021). Brandao et al. (2018) observed that the
optimized QAOA parameters for the MaxCut problem
obtained for a 3-regular graph are also nearly optimal for all
other 3-regular graphs. In particular, the authors noted that in
the limit of large N, where N is the number of nodes, the
fraction of tree graphs asymptotically approaches 1. We note
that, for example, in the sparse Erdös–Rényi graphs, the trees
are observed in short-distance neighborhoods with very high
probability (Newman, 2018). As a result, in this limit, the
objective function is the same for all 3-regular graphs, up to
order 1/N.

The central question of this manuscript is under what
conditions the optimized QAOA parameters for one graph
also maximize the QAOA objective function for another
graph. To answer that question, we study transferability
between subgraphs of a graph, since the QAOA objective
function is fully determined by the corresponding subgraphs
of the instance graph, as well as transferability between graphs of
similar parities, in order to determine structural effects of graphs
on effective transferability.

3.1 Subgraph transferability analysis

It was shown in the seminal QAOA paper (Farhi et al., 2014) that
the expectation value of the QAOA objective function, 〈C〉p, can be
evaluated as a sum over contributions from subgraphs of the original
graph, provided its degree is bounded and the diameter is larger than
2p (otherwise, the subgraphs cover the entire graph itself). The
contributing subgraphs can be constructed by iterating over all edges
of the original graph and selecting only the nodes that are p edges
away from the edge. Through this process, any graph can be
deconstructed into a set of subgraphs for a given p, and only
those subgraphs contribute to 〈C〉p, as also discussed in Section 2.

We begin by analyzing the case of MaxCut instances on 3-regular
random graphs for QAOA circuit depth p = 1, which have three possible
subgraphs (Farhi et al., 2014; Brandao et al., 2018). Figure 2 (top row)
shows the landscapes of energy contributions from these subgraphs,
evaluated for a range of γ and β parameters. We can see that all maxima
are located in the approximate vicinity of each other. As a result, the
parameters optimized for any of the three graphswill also be near-optimal
for the other two. Because any random 3-regular graph can be
decomposed into these three subgraphs, for QAOA with p = 1, this
guarantees that optimized QAOA parameters can be successfully
transferred between any two 3-regular random graphs, which is in full
agreement with (Brandao et al., 2018).

The same effect is observed for subgraphs of 4-regular; see Figure 2
(middle row). The optimized parameters are mutually transferable
between all four possible subgraphs of 4-regular graphs. Notice,
however, that the locations of exactly half of all maxima for the
subgraphs of 4-regular graphs do not match with those for 3-regular
graphs. This means that one cannot expect good transferability of
optimized parameters across MaxCut QAOA instances for 3- and 4-
regular random graphs if these optimal parameters are to be transferred
directly. It has been recently shown in (Basso et al., 2022) that gamma
parameters can be rescaled in order to generalize between different
random d-regular graphs.

Focusing now on all five possible subgraphs of 5-regular graphs,
Figure 2 (bottom row), we notice that, again, good parameter
transferability is expected between all instances of 5-regular
random graphs. Moreover, the locations of the maxima match
well with those for 3-regular graphs, indicating good
transferability across 3- and 5-regular random graphs.

We discuss parameter concentration for instances of random
graphs in a later section; similar discussions can be found in
(Brandao et al., 2018) and (Wurtz and Lykov, 2021) in the
context of 3-regular graphs.

To further investigate transferability among regular graphs, we
evaluate the subgraph transferability map between all possible
subgraphs of d-regular graphs, d ≤ 8; see Figure 3. The top panel
shows the colormap of parameter transferability coefficients between
all possible pairs of subgraphs of d-regular graphs (d ≤ 8, 35 subgraphs
total). Each axis is split into groups of d subgraphs of d-regular graphs, and
the color values in each cell represent the transferability coefficientT(D,A)
computed for the corresponding directional pair of subgraphs D, A,
defined as follows. For every subgraph G, we performed numerical
optimization with 200 steps, repeated 20 times with random initial
points. This process results in 20 sets of optimal parameters of the
form (γGi

, βGi
) pairs, the best of which we will denote as (γG*, βG*). Doing

so for the donor subgraph D and the acceptor subgraph A, the
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transferability coefficient T(D, A) averages over the QAOA energy
contribution of each (γDi

, βDi
) on the acceptor subgraph A as follows:

T D,A( ) � 1
20

∑
20

i�1

A γDi
, βDi

( )
A γA*, βA*( )

, (3)

where A(γ, β) is the QAOA MaxCut energy of subgraph A as a
function of parameters (γ, β).

Instead of averaging over the 20 optimal parameters of the donor
subgraph, we could have considered only the contribution of the
donor’s best optimal parameters (γD*, βD*) in the above equation.
For most donors, however, these best parameters were universal and
hence yielded high transferability to most acceptors. However, in
practice, because of a lack of iterations or multistarts, we may
converge to non-universal optimal parameters, resulting in the
donor’s poor transferability with some acceptors. The likelihood
of converging to these non-universal optima for random graphs is
discussed in Supplementary Section SA. Universal and nonuniversal
optimal parameters are discussed in detail in Section 4.

This inconsistency was discussed for 3-regular and 4-regular
subgraphs earlier in this section. For example, half of the local optima
of 3 regular subgraphs have good transferability to 4-regular subgraphs
while the half yield poor transferability, as shown in Figure 2. Thus, to
reflect practical considerations and avoid such inconsistency, we average
over the contributions of 20 optimal parameters of the donor subgraph in

Eq. 3. It is worth noting here that this averaging over 20 optimal
parameters can result in poor transferability, as seen for donor
subgraph #0 to acceptor subgraphs #2, #9, #20, and #35. For these
cases, there is a considerable subset of the donor’s optimal parameters that
lead to poor transferability. All considered subgraphs are shown in the
bottom panel of Figure 3. Note that parameter transferability is a
directional property between (sub) graphs, and good transferability
from (sub) graph D to (sub) graph A does not guarantee good
transferability from A to D. This general fact can be easily understood
by considering two graphs with commensurate energy landscapes, for
which every energy maximum corresponding to graph D also falls onto
the energy maximum for graph A, but some of the energy maxima for
graph D do not coincide with those of graph A.

The regular pattern of alternating clusters of high- and low-
transferability coefficients in Figure 3 illustrates that the parameter
transferability effect extends from 3-regular graphs to the entire family
of odd-regular graphs, as well as to even-regular graphs, with poor
transferability between the two classes. For example, the established
result for 3-regular graphs is reflected at the intersection of columns
and rows with the label “(3)” for both donor and acceptor subgraphs. The
fact that all cells in the 3 × 3 block in Figure 3, corresponding to parameter
transfer between subgraphs of 3-regular graphs, have high values,
representing high mutual transferability, gives a good indication of
optimal QAOA parameter transferability between arbitrary 3-regular
graphs (Brandao et al., 2018).

FIGURE 2
Landscapes of energy contributions for individual subgraphs of 3- (top row), 4- (middle row), and 5-regular (bottom row) random graphs, as a
function of QAOA parameters β ∈(0, π) and γ ∈ (0, 2π). All subgraphs of 3- and 5- regular graphs havemaxima located in the relative vicinity of one another.
Subgraphs of 4-regular graphs also have closely positioned maxima between themselves; however, only half of them match with the maxima of
subgraphs of odd-regular random graphs.
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3.2 General random graph transferability

Having considered optimal MaxCut QAOA parameter
transferability between random regular graphs, we now focus on
general random graphs. Subgraphs of an arbitrary random graph
differ from subgraphs of random regular graphs in that the two
nodes connected by the central edge can have a different number of
connected edges, making the set of subgraphs of general random

graphs much more diverse. The upper panel of Figure 4 shows the
transferability map between all possible subgraphs of random
graphs with node degrees d ≤ 6, a total of 56 subgraphs,
presented in the lower panel. The transferability map can serve
as a lookup table for determining whether optimized QAOA
parameters are transferable between any two graphs.

Figure 4 reveals another important fact about parameter
transferability between subgraphs of general random graphs.

FIGURE 3
Transferability map between all subgraphs of random regular graphs with maximum node degree dmax = 8, for QAOA depth p = 1. High (blue) and
low (red) values represent good and bad transferability, respectively. Good transferability among even-regular and odd-regular random graphs and poor
transferability across even- and odd-regular graphs in both directions are observed.
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Subgraphs labeled as (i, j), where i and j represent the degrees of the
two central nodes of the subgraph, are in general transferable to any
other subgraph (k, l), provided that all {i, j, k, l} are either odd or

even. This result is a generalization of the transferability result for
odd- and even-regular graphs described above. Figure 4, however,
shows that a number of pairs of subgraphs with mixed degrees (not

FIGURE 4
Transferability map between all subgraphs of random graphs with maximum node degree dmax = 6, for QAOA depth p = 1. Subgraphs are visually
separated by dashed lines into groups of subgraphs with the same degrees of the nodes forming the central edge. Solid black rectangles correspond to
optimized parameter transferability between subgraphs of random regular graphs (Figure 2).
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only even or odd) also transfer well to other mixed-degree
subgraphs, for example, subgraph #20 (3, 4) → subgraph #34 (4,
5). The map of subgraph transferability provides a unique tool for
identifying smaller donor subgraphs, the optimized QAOA
parameters for which are also nearly optimal parameters for the

original graph. The map can also be used to define the likelihood of
parameter transferability between two graphs based on their
subgraphs. As was the case for random regular graphs (see
Figure 2), we see clustering of optimal parameters for subgraphs
of random graphs in Figure 5.

FIGURE 5
Distribution of optimal parameters of subgraphs with node degrees of central nodes ranging from 1 to 6 (total 56). Each subgraph was optimized
with 20 multistarts, each of which is plotted in the figure above.

FIGURE 6
Demonstration of optimized parameter transferability between N = 6 donor and N = 256 acceptor random graphs. Using optimized parameters
from the donor graph for the acceptor leads to the reduction in approximation ratio of 1.0%, 2.6%, and 1.0% for the three examples (top to bottom,
compared with optimizing the parameters for the acceptor graph directly, for p = 1).
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3.3 Parameter transferability examples

Wewill now demonstrate that the parameter transferability map
from Figure 4 can be used to find small-N donor graphs from which
the optimized QAOA parameters can be successfully transferred to a
MaxCut QAOA instance on a much larger acceptor graph. Initially,
we consider three 256-node acceptor graphs to be solved and three

6-node donor graphs; see Figure 6. Table 1 contains the details of the
donor and acceptor graphs, including the total number of edges,
their optimized QAOA energies, the energy of the optimal classical
solution, and the approximation ratio. Graphs 1 and 4 consist
exclusively of odd-degree nodes, graphs 2 and 5 contain roughly
the same amount of both odd- and even-degree nodes, and graphs
3 and 6 contain exclusively even-degree nodes. The optimized

TABLE 1 Details of donor and acceptor graphs, including number of nodes, number of edges, and both QAOA, and classically optimized energies, along with their
corresponding approximation ratios.

Graph Nodes Edges QAOA energy Energy (Opt) Approx. Ratio

#1 6 7 4.6481 6.0 0.7746

#2 6 6 4.1272 5.0 0.8254

#3 6 9 5.7050 6.0 0.9508

#4 256 405 269.1192 363.0 0.7413

#5 256 461 301.7699 400.0 0.7544

#6 256 502 327.4132 430.0 0.7614

FIGURE 7
Approximation ratios for QAOA parameter transferability between lists of 6- to 20-node donor graphs and (A–C) 64-node acceptor graphs, (D–F)
128-node acceptors, and (G–I) 256-node acceptors. The 64-node acceptors (top row) have the following parities: (A) 0.00, (B) 0.53, and (C)
1.00 eveness; 128-node acceptors (middle row) have the following parities: (D) 0.093, (E) 0.5, and (F) 0.98 evenness; and, 256-node acceptors (bottom
row) have the following parities: (G) 0, (H) 0.49, and (I) 1.0 eveness.
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QAOA parameters for the donor and acceptor graphs were found by
performing numerical optimization with 20 restarts, and
200 iterations each. Additionally, we use a greedy ordering
algorithm and an RMSprop optimizer, with a learning rate of
0.002. Table 2 shows the results of the corresponding transfer of
optimized parameters from the donor graphs ##1–3 to the acceptor
graphs ##4–6, correspondingly. The approximation ratios obtained
as a result of the parameter transfer in all three cases show only a
1%–2% decrease compared with those obtained by optimizing the
QAOA parameters for the corresponding acceptor graphs directly.
These examples demonstrate the power of the approach introduced
in this paper.

To extend our analysis of parameter transferability between
QAOA instances, we perform transferability of optimal parameters
between large sets of small donor graphs to a fixed, larger acceptor
graph. In particular, we transfer optimal parameters from donors
ranging from 6 to 20 nodes to 64-, 128-, and 256-node acceptor
graphs. Figure 7 shows the approximation ratio as we increase the
number of donor graph nodes. These donor graphs were generated
starting with graphs of exclusively odd-degree nodes and sequentially
increasing the number of even-degree nodes until graphs of
exclusively even-degree nodes were obtained. For each increasing
number of node in a graph, 100 donor graphs were generated and
each of their 20 sets of optimal parameters (20 multistarts) were
transferred to the acceptor graph. We see that there are a few cases for
which we achieve an approximation ratio that is comparable to the

native approximation ratio for each of the acceptor graphs. Most
notably, we can achieve good transferability of optimal parameters to
larger (i.e., 256-node) acceptor graphs without having to increase the
size of our donor graph. Each row of Figure 7 corresponds to an
increasing acceptor graph size, while each column corresponds to the
parity of the acceptor graph (a formal definition and study of parity
follow in the next section), with a transition from odd to even parity in
graphs going from left to right. For the fully odd and fully even
acceptor graphs, we notice a bimodal distribution in approximation
ratios. Remarkably, for even acceptor cases, the bimodal distribution
has one mode centered around the mean (white dot) and one above
themean. This points to the fact that, regardless of donor graph parity,
one can achieve better parameter transferability when transferring
optimal parameters to acceptor graphs with even parity. We see this
transition from odd to even acceptor graphs in the way the bimodal
distribution shifts, there being a monomodal distribution for the cases
where the acceptor graphs are neither even nor odd.

The reason for this increased likeliness of good transferability to
even acceptor graphs will be explored in future work. For now, we
turn our focus to parity in graphs as an alternative metric for
determining good transferability between donor-acceptor graph
pairs, one that does not involve subgraph decomposition (and
parameter transferability between individual subgraphs).

3.4 Parity and transferability

As mentioned previously, the transferability maps of regular and
random subgraphs suggest that the parity of graph pairs may affect
their transferability. Here, we define parity of a graph G = (V, E) to
be the proportion of nodes of G with an even degree:

πG � neven
|V| , (4)

where neven is the number of even nodes in graph G. For this and
upcoming sections, we focus on transferability between 20-node
random graphs. That is, we perform optimal parameter

FIGURE 8
Transferability between 20-node random graphs as a function of the parity of degree of their vertices. The color of each block represents the
average transferability of 100 graph pairs. As shown, graph pairs consisting of graphs of similar parity transfer well, while those of different parity transfer
poorly.

TABLE 2 QAOA, energies from transferred optimal parameters from 6-node
donor graphs to 256-node acceptor graphs, along with their corresponding
approximation ratios. The values in parenthesis show the reduction in the
approximation ratio.

Transfer QAOA energy Approx. Ratio

#1 → #4 226.2350 0.7334 (−1.0%)

#2 → #5 293.8988 0.7347 (−2.6%)

#3 → #6 323.8726 0.7753 (−1.0%)
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transferability between 20-node donor and 20-node acceptor
graphs. For every possible number of even-degree nodes (0, 2, 4,
. . . , 20), we generated 10 graphs with distinct degree sequences,
resulting in a total of 110 20-node random graphs, with maximum
node degree restricted to 6.

The computed transferability coefficients among each graph pair,
sorted by their parity, are shown in Figure 8. Each block in the heatmap
represents the average transferability coefficient of 100 graph pairs
constructed from 10 distinct donor graphs and 10 distinct acceptor
graphs. We can see that even graphs, those with πG = 0.8–1, and odd
graphs, those with πG = 0–0.2, transfer well among themselves.
However, the transferability between even donors and odd
acceptors, as well as between odd donors and even acceptors, is poor.

This heatmap also suggests that the mutual transferability of a
donor graph is not necessary for its good transferability with other

random graphs, where mutual transferability of a graph G is a
measure of how well the subgraphs of G transfer among themselves.
Formally, it is defined as

MT G( ) � ∑
d∈ G{ }

∑
a≠d∈ G{ }

nG d( )nG a( )T d, a( )
TG

, (5)

where {G} is the set of distinct subgraphs of graph G, nG(i) is the
number of edges in G having subgraph i, and

TG � ∑
d∈ G{ }

∑
a≠d∈ G{ }

nG d( ) · nG a( )

is the total number of subgraph pairs consisting of distinct
subgraphs within G. Graphs with low mutual transferability are
those whose subgraphs transfer poorly among themselves. This is

FIGURE 9
Energy landscapes of some 20-node graphs sorted by parity. Each subplot is the average energy landscape of 10 20-node random graphs with the
specified parity.

FIGURE 10
Energy landscapes ofmost 20-node randomgraphs had either localminima ormaxima at one of these 6 centers. Herewe label those points for later
reference in the text.

Frontiers in Quantum Science and Technology frontiersin.org11

Galda et al. 10.3389/frqst.2023.1200975

https://www.frontiersin.org/journals/quantum-science-and-technology
https://www.frontiersin.org
https://doi.org/10.3389/frqst.2023.1200975


true for graphs with a nearly equal number of odd-parity and even-
parity subgraphs since subgraph pairs of different parity report poor
transferability coefficients, as shown in Figures 2, 3. In our case, such
graphs are likely to be mixed-parity graphs, in other words, those
with πG = 0.4–0.6. However, the results in Figure 8 show that these
graphs have good transferability to nearly all random graphs in the
data set.

This trend can be explained by analyzing the energy landscapes
of subgraphs. Most even- and odd-regular subgraphs have
4 maxima, two of which are universal for all regular subgraphs,
as discussed in Section 3.1; the same trends were also observed in
random subgraphs (see Figure 9). Since energy landscapes of
random graphs are sums of the energy landscape of its
subgraphs, most 20-node random graphs share the same points,
centers 1,2 in Figure 10, as their local or global optima, as shown in
Figure 11. On the other hand, the remaining two nonuniversal
optimal parameters of regular subgraphs are shared only across
regular subgraphs of similar parity. This property is also emergent in
random graphs. In Figure 11, only odd random graphs share centers
3, 4 as their local optima, while only even graphs share centers 5, 6 as
their local optima. However, mixed parity contained a nearly equal
number of odd and even subgraphs. Since nonuniversal maxima of
even subgraphs are minima for odd subgraphs and vice versa, these
nonuniversal local optima blur on the energy landscapes of mixed-
parity graphs. As a result, these graphs’ landscapes contain only
universal maxima, as shown in the fourth energy landscape in
Figure 9. With only universal parameters as their optimal
parameters, mixed-parity graphs should indeed transfer well to
all random graphs, as shown in the middle columns of Figure 8.

The distribution of optimal parameters also explains poor
transferability across random graphs of different parity. In
Figure 11, the nonuniversal optimal parameters that maximize
the MaxCut energy of odd random graphs, centers 3, 4 also
minimize that of even random graphs. Similarly, the
nonuniversal optimal parameters that maximize the MaxCut

energy of even random graphs, centers 3, 4 also minimize that of
odd random graphs. Consequently, transferring nonuniversal
optimal parameters of even random graphs to odd random
graphs and vice versa would result in poor approximation ratios,
as evident in Figure 8.

Furthermore, above-average transferability for all graph pairs
can be attributed to universal parameters. As shown in Figure 12, all
graph pairs have a true similarity or transferability coefficient greater
than 0.60. Such a high lower bound can be attributed to universal
parameters. Going back to Eq. 3, good transferability depends on
whether the donor’s optimal parameters (γDi

, βDi
) optimize the

acceptor graph as well. If most of the donor’s optimal parameters
are universal, in other words, are in the vicinity of centers 1, 2 in
Figure 10, then the transferability coefficient will be high, regardless
of the acceptor graph. In fact, Supplementary Figure S2 shows that,
on average, all graphs reported at least half of their 20 optimal
parameters as universal. As a result, they transfer well to other
random graphs.

3.5 Predicting transferability using
subgraphs

We have used the transferability coefficient to test whether an
acceptor shares the same optimal parameters as its donor. In
practice, this quantity is unknown because it requires knowledge
of the acceptor’s maximum energy. In earlier examples, we used the
parity of graphs to explain transferability among random graphs, but
the parity of a graph is just one emergent property from its
subgraphs. Using subgraphs directly, we devise a subgraph
similarity metric SS to predict the transferability ratio between a
donor graph D = (VD, ED) and an acceptor graph A = (VA, EA) as
follows:

SS D,A( ) � ∑
d∈ D{ }

∑
a∈ A{ }

nD d( )nA a( ) T d, a( )
|ED| · |EA|, (6)

FIGURE 11
Approximation ratios of the 110 20-node graphs at the 6 points in
parameter space identified in Figure 9. Parity, or the number of even-
degree nodes in a graph, affects which centers correspond with
minima and maxima. The first two centers, however, maximize
every graph in the data set.

FIGURE 12
Comparison of subgraph similarity metric SS with true similarity
for 1102 graph pairs consisting of 20-node graphs. The color indicates
the density of points. For most graph pairs, SS underestimates the true
similarity.
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where {G} is the set of distinct p = 1 subgraphs of G, nG(g) is the
number of edges in G that share the subgraph g, and |ED|·|EA| is the
total number of subgraph pairs across graphs D and A. Hence, this
similarity metric states that the transferability coefficient of a donor
and acceptor is the average transferability coefficient of donor
subgraph-acceptor subgraph pairs.

In Figure 12 we compare this similarity metric with the true
similarity or transferability coefficient. While this result does
reveal a linear correlation between the two quantities, the
metric clearly underapproximates the transferability
coefficient by 0.05 units on average. In fact, Figure 13 shows
that graph pairs with mixed-parity graphs as donors report the
highest inconsistencies. This poor performance results from
their constituent subgraphs. As discussed in Section 3.4, mixed-
parity graphs consist of a nearly equal number of odd and even

subgraphs. When optimized, these donor subgraphs may have
nonuniversal optimal parameters. When transferred to an
acceptor subgraph, the resulting transferability coefficient
may be either poor or good, depending on the parity of that
acceptor subgraph. While these nonuniversal optima do affect
the subgraph similarity metric SS, they do not affect true
similarity. As shown in Figure 9, mixed-parity graphs’
optimal parameters are universal. Thus, they transfer well to
any random graph, regardless of its parity. Therefore, the
subgraph similarity metric underestimates true similarity
because it fails to capture that most optimal parameters of
mixed-parity graphs are universal.

FIGURE 13
Differences between subgraph similarity metric SS and true
similarity sorted by parity of donors and acceptors. SS largely
underestimates true similarity for graph pairs consisting of graphs of
the same parity.

FIGURE 14
Sorting of parity similarity metric PS for graph pairs based on the
parity of the donor and the acceptor. Since PS assumes that graphs of
similar parity transfer well, the diagonal reports the highest PS.

FIGURE 15
Comparison of parity similarity metric PS with true similarity for
1102 graph pairs consisting of 20-node graphs. The discrete columns
occur because we cannot generate 20-node graphs with an arbitrary
number of even-degree nodes.

FIGURE 16
For an increasing number of donor graph nodes, we see that
parity can determine good transferability. For the case with subgraph
transferability, we see that this does not depend on the number of
nodes of the donor graph.
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3.6 Predicting transferability using parity

Another approach to predicting transferability or similarity
between two graphs is using their parity. In Section 3.4 we
observed that two graphs of similar parity have a high
transferability ratio. If this correlation was ideal, then results
shown in Figure 8 would resemble those in Figure 14. The parity
similarity metric PS corresponding to the latter figure is easy to
compute:

PS D,A( ) � 1 − 0.29 · |Parity D( ) − Parity A( )|. (7)
Thus, this metric penalizes graph pairs consisting of different

parity graph pairs. Note that the lowest value of this metric is ≈ 0.71,
which is consistent with results from Figure 8. Figure 15 illustrates
the performance of this new similarity metric. The plot contains
discrete columns because it is not possible to generate 20 node
graphs with an arbitrary number of even degree nodes. To ensure
that the sum of a degree sequence is even, the associated graphs only
vary in even degree nodes in increments of two, resulting in parity of
0.0, 0.1, 0.2, . . . 1.0. This discretization is also reflected in the
similarity metric.

To test our similarity metric for the data set shown in Figure 7,
we compare our metric with the approximation ratio. Figure 16
shows that as parity between donor-acceptor pairs approaches 1
(i.e., the donor and acceptor graphs have the same parity), we
achieve a higher approximation ratio. Noticeably, we see that we
can have a good approximation ratio even if our parity similarity
does not dictate so. This can be attributed to the fact that we are
exploiting only one structural feature from our graphs.

These results indicate that one can use a parity approach to
determine good transferability between donor-acceptor pairs.
Furthermore, one can generate a parity metric that caters to
specific graphs (please refer to Supplementary Material).

4 Conclusion and outlook

Finding optimal QAOA parameters is a critical step in solving
combinatorial optimization problems by using the QAOA approach.
Several existing techniques to accelerate the parameter search are
based on advanced optimization and machine learning strategies. In
most works, however, various types of global optimizers are
employed. Such a straightforward approach is highly inefficient
for exploration because of the complex energy landscapes for
hard optimization instances.

An alternative effective technique presented in this paper is
based on two intuitive observations: 1) The energy landscapes of
small subgraphs exhibit “well-defined” areas of extrema that are not
anticipated to be an obstacle for optimization solvers (see Figure 2),
and 2) structurally different subgraphs may have similar energy
landscapes and optimal parameters. A combination of these
observations is important because, in the QAOA approach, the
cost is calculated by summing the contributions at the subgraph
level, where the size of a subgraph depends on the circuit depth p.

With this in mind, the overarching idea of our approach is
solving the QAOA parameterization problem for large graphs by
optimizing parameterization for much smaller graphs and reusing it.
We started with studying the transferability of parameters between

all subgraphs of random graphs with a maximum degree of 8. Good
transferability of parameters was observed among even-regular and
odd-regular subgraphs. At the same time, poor transferability was
detected between even- and odd-regular pairs of graphs in both
directions, as shown in Figures 2, 3. This experimentally confirms
the proposed approach.

A remarkable demonstration of random graphs that generalizes
the proposed approach is the transferability of the parameters from
6-node random graphs (at the subgraph level) to 256-node random
graphs, as shown in Figure 6. The approximation ratio loss of only
1%–2% was observed in all three cases. Furthermore, we
demonstrated that one need not increase the size of the donor
graph to achieve high transferability, even for acceptor graphs with
256 nodes.

Following the subgraph decomposition approach, we showed
that one can determine good transferability between donor-acceptor
graph pairs by exploiting their similarity based on parity. We see a
good correlation between subgraph similarity and parity similarity.
In the future, we wish to address the exploitation of graph structure
to determine good donor candidates, since subgraph similarities
involve overhead calculations of QAOA energies for each pair of
donor-acceptor subgraphs.

One may notice that we studied parameter transferability only
for p = 1, where the subgraphs are small and transferability is
straightforward. However, our preliminary work suggests that this
technique will also work for larger p, which will require advanced
subgraph exploration algorithms and will be addressed in our
following work. In particular, we wish to explore the idea of
generating a large database of donor graphs and, together with a
graph-embedding technique, obtain optimal QAOA parameters for
transferability. We hope that by training a good graph-embedding
model, we will be able to apply our technique to various sets of
graphs and extend our approach to larger depths. A machine
learning approach has been used to determine optimal QAOA
parameters (Khairy et al., 2020), but a study of machine learning
for donor graph determination is still an open question.

Another future direction is to determine whether the effects of
parity of a graph hold for p > 1. In particular, we found that the
parity of a graph affects the distribution of optimal parameters, as
shown in Figure 10; Supplementary Figure S2. It remains to be seen
whether parameters concentrate for p > 1 and, if so, how parity
affects their distribution. Analysis of these trends will be critical for
the applicability of PS for p > 1.

This work was enabled by the very fast and efficient tensor
network simulator QTensor developed at Argonne National
Laboratory (Lykov et al., 2021). Unlike state vector simulators,
QTensor can perform energy calculations for most instances with
p ≤ 3, d ≤ 6 and graphs with N ~ 1, 000 nodes very quickly, usually
within seconds. For this work we computed QAOA energy for 64-
node graphs with d ≤ 5 at p = 1, a calculation that took a fraction of a
second per each execution on a personal computer. With state vector
simulators, however, even such calculations would not have been
possible because of the prohibitive memory requirements for storing
the state vector.

As a result of this work, finding optimized parameters for some
QAOA instances will become quick and efficient, removing this
major bottleneck in the QAOA approach and potentially removing
the optimization step altogether in some cases, eliminating the
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variational nature of QAOA. Moreover, our approach will allow
finding parameters quickly and efficiently for very large graphs for
which it will not be possible to use simulators or other techniques.
Our method has important implications for implementing QAOA
on relatively slow quantum devices, such as neutral atoms and
trapped-ion hardware, for which finding optimal parameters may
take a prohibitively long time. Thus, quantum devices will be used
only to sample from the output QAOA state to get the final solution
to the combinatorial optimization problem. Our work will
ultimately bring QAOA one step closer to the realization of
quantum advantage.
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