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Many have reported the use of quantum chemistry approaches for evaluating the
catalytic properties of iron carbide clusters. Unfortunately, structural energy
calculations are computationally expensive when using density functional
theory. The computational cost is prohibitive for high-throughput simulations
with large length and time scales. In this paper, we generate data from 177 k
clusters and choose state-of-the-art machine learning models within physical
chemistry to train the features of this data. The generated potential gives a very
high prediction accuracy on the order of the structure stability and achieves better
adaptability/tolerance to poor structures of clusters. In addition, we use the
machine learning potential to assist in high-throughput data collection and the
prediction of hydrogen adsorption sites on cluster surfaces. We achieve more
stable adsorption locations of the hydrogen atom more rapidly compared with
traditional quantum chemical calculations.
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1 Introduction

Iron-based catalysts have been widely adopted in many chemical processes such as
ammonia synthesis (Emmett and Brunauer, 1934; Emmett and Brunauer, 1937),
Fischer–Tropsch synthesis (FTS) (Fischer and Tropsch, 1923; Fischer and Tropsch,
1926), CO oxygenation (Li et al., 2003; Qiao et al., 2011), and propane dehydrogenation
(Sun et al., 2015; Tan et al., 2016). Among them, iron carbides are commonly utilized within
the catalyst systems. Particularly, in FTS, which converts syngas to hydrocarbons, iron
carbides (ε-Fe2C, ε′-Fe2.2C, χ-Fe5C2, θ-Fe3C, and Fe7C3) (de Smit andWeckhuysen, 2008; de
Smit et al., 2009; Liu et al., 2017) are usually regarded as the active phases. However, under
practical conditions, the catalysts are usually present as mixture phases and exhibit a wide
range of nanocluster size distributions (Herranz et al., 2006; Chang et al., 2018). Iron
particles are also active as catalysts for carbon nanotube preparation, which is a highly
promising material for application as catalyst substrates or energy conversion systems
(Baughman et al., 2002; Kumar and Ando, 2010; Pant et al., 2021).
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For the bulk iron carbides, the structures are usually observed as
a distorted metal lattice, with the carbon atoms located at interstitial
sites determined by geometric and electronic factors (Oyama, 1992).
In θ-Fe3C (cementite), χ-Fe5C2 (Hägg carbide), and Fe7C3, carbon
atoms are in the trigonal prismatic interstices (de Smit and
Weckhuysen, 2008), while ε-Fe2C and ε′-Fe2.2C possess structures
with carbon atoms occupying the octahedral interstices. For small
FexCy clusters [e.g., FeC, FeC2, FeCn (n = 3–6), and FenCm (n = 1, 2,
3 andm = 2–8)], extensive experimental work has found a variety of
compositions, structures, and even catalytic properties from the
mass spectra and gas phase ion chromatograph (Fan and Wang,
1994; Drechsler et al., 1995; von Helden et al., 1994; Steglich et al.,
2014; Pilgrim and Duncan, 1993). Computationally, the detailed
structures and bond strength of iron carbide clusters are determined
by energetic calculations (Nash et al., 1996; Tzeli andMavridis, 2002;
Gutsev and Bauschlicher, 2003; Noya et al., 2003; Ryzhkov et al.,
2005; Ryzhkov et al., 2008; Largo et al., 2009; Ryzhkov and Delley,
2012; Li et al., 2013; Chen and Xie, 2014). For example, the ground
states for FeC2~4 are fan-like structures, while linear and cyclic
geometries are more stable structures for FeC5 and FeC6~10,
respectively (Zhu and Li, 2009). Zheng et al. (2016) investigated
FexCy (x ≤ 8; y ≤ 8) clusters combining structure searching and
optimization by density functional theory and found that carbon
chains are energetically preferred in carbon rich clusters. In
addition, the catalytic reaction mechanisms on the clusters are
also estimated with calculated energies (Li et al., 2015). However,
in various catalysis systems, a huge class of iron carbides with
varying element numbers and configurations should be calculated
to fully represent the potential structures that exist, especially in FTS
where thousands of possible elementary reactions and complex
catalyst components occur. Fast and accurate methods are
desperately needed to reduce the expensive structural

explorations. The community needs an advanced high-
throughput calculator to explore metal carbide/oxide cluster
systems.

Machine learning (ML) has emerged as a powerful new tool in
chemistry (Butler et al., 2018; Xie and Grossman, 2018; Ye et al.,
2018), driven in part by the advent of large material datasets from
high-throughput electronic structure calculations. To the best of our
knowledge, differently from some famous benchmarks in molecules
(such as QM9, with 134 k molecules) and crystals (such as
MatBench, which contains many datasets, with 132 k samples at
most), no cluster benchmark has been published for iron carbides.
Therefore, we must first develop a cluster dataset to provide the
necessary exploration framework.

The scientific community has developed a wide variety of
molecular representation methods for machine learning
approaches to structure optimization—for example, SIFF
(Structural Information Filtered Features) developed by Lewis
et al. (Zeledon et al., 2020), SMILES (Simplified Molecular Input
Line Entry Specification) (Weininger et al., 1989), SOAP (Smooth
Overlap of Atomic Positions) (Bartók et al., 2013), CM (Coulomb
Matrix) (Rupp et al., 2012), pymatgen (Python Materials Genomics)
(Ong et al., 2013), and others. As an integral part of the ML
architecture, the representation or defined features of molecular
entities play a vital role in how accurately the ML model predicts the
desired properties. Many machine learning approaches have been
developed with an aim toward drug discovery (Yang et al., 2019;
Chen et al., 2019; Feinberg et al., 2018; Schu€tt et al., 2018). Many
approaches have focused on organic molecules, which mainly
contain C, H, O, and N. However, for heterogeneous catalysis,
we need representations that are appropriate for clusters
containing transition metal atoms. Therefore, we evaluate the
performance on cluster prediction using state-of-the-art machine

FIGURE 1
Long and short axes calculation of a certain Fe4C4. The blue dotted line, the long axis, is the farthest distance between the two atoms. The red dotted
line, the short axis, is the farthest distance from the atom to the long axis. The central axis of the cylinder is the long axis, and the short axis is the radius. (B)
is a cross-section of (A).
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learning models such as graph networks, MEGNet (Chen et al.,
2019), or the continuous-filter convolutional neural network SchNet
(Schu€tt et al., 2018).

In this work, we use the structure generation software combined
with a first-principles calculator to search the structure of iron
carbide clusters. We generate an Fe-C machine learning potential
that is data driven from the high-throughput calculations of many
clusters. There are several advantages of machine learning potentials
compared to purely traditional quantum chemistry calculations for
cluster structure optimization. The relative energy will determine the
thermodynamic stability of different structures, and the equilibrium
geometric configurations are found more rapidly using machine
learning potentials. There is a demonstrated significant
improvement in calculation speed for machine learning
algorithms. Our work was released as an open-source code
within a GitHub repository located at https://github.com/tony-
dd/FeC_prediction.

2 Computational methodology

2.1 Clusters generation

In our dataset, we generate iron carbide clusters using the
Crystal Structure Analysis by Particle Swarm Optimization
(CALYPSO) code (Lv et al., 2012; Wang et al., 2012). The
geometry optimization and energy calculations come from the
Vienna Ab-initio Simulation Package (VASP) (Kresse and
Furthmüller, 1996a; Kresse and Furthmüller, 1996b). Within
these calculations, the electron–ion interactions are described
from projector augmented wave (PAW) (Blöchl, 1994; Kresse
and Joubert, 1999) potentials, and the electron exchange and
correlation energy are treated by the Perdew–Burke–Ernzerhof
(PBE) function, including spin polarization (Perdew et al., 1996).
All calculations are performed within a box size of 15 Å to simulate a
cluster calculation The cut-off energy of 400 eV and Gaussian
smearing with the width of 0.1 eV with the Gamma k-point
sampling ensure accurate energies for the Fe-C clusters.

2.2 Clusters energy prediction

We have generated over 177 thousand structures and
divided the entire dataset into nine parts according to the
stoichiometric count of the iron atoms within the cluster.
Detailed distributions of each group within the dataset are
provided in Table 1.

MEGNet and SchNet are proven to work well with the QM9,
MD17, and ISO17 datasets; hence, we choose these methods to
predict our Fe-C clusters. The molecular representation, or features,
of MEGNet is in the pymatgen format. We label the molecular

representation of SchNetPack as ‘SchNet’, because SchNetPack does
not report the format of its molecular representation. We first use
the ASE package to process each cluster structure and then fit
structural representations of all the clusters to the two different
feature representations—pymatgen and SchNet. During the training
of our data, we use the default parameters that are found within
MEGNet and SchNetPack. A cross-validation training strategy
yields the best results by randomly shuffling and training all but
one of the nine datasets and testing on the final dataset. This
approach reduces the influence of the data proximity and thereby
generalizes the performance of the models. The validation error is
monitored, and the training is stopped when the validation error
does not improve for 20 consecutive epochs. The models are trained
on Nvidia RTX 3080 GPUs. Most models reach convergence within
500 epochs. On average, the training process takes 50 s and 80 s per
epoch for each model, respectively. All chemistry structure
calculations are handled using the Atomic Simulation
Environment (ASE) (Larsen et al., 2017). Finally, we get nine
trained models, and we develop the average predicted results to
fit the final potential function.

2.3 Hydrogen adsorption prediction

The machine learning models need retraining from a new
dataset when modeling the location of hydrogen absorption on
the Fe-C clusters. We apply the SchNet model to assist VASP in
optimizing structures to generate a new dataset, which reduces a lot
of the computing and time cost. More specifically, we select two
structures with the largest variation in shape for each stoichiometry
of the FexCy structure. The variation is defined by comparing the
proportions of the long and short axes of the cluster. Figure 1 shows
the calculation of the long and short axes of one structure. The
convex hulls of the selected structures are calculated using SciPy. We
introduce hydrogen atoms randomly on the planes parallel to the
convex hulls and at 1 Å, as shown in Figure 2. The potentials of Fe
and C are trained from the previous models, so the machine learning
models can be used to optimize iron and carbon atoms in the new
Fe-C clusters. The models optimize the structures, which
significantly shortens the optimization calculation time. Finally,
the structures processed by the models are optimized by VASP
to obtain the final dataset.

The final trained models from the new datasets will predict the
adsorption position of hydrogen atoms on the surface of the Fe-C
clusters. As a demonstration of our approach, we have selected a
stable Fe5C2 cluster from our initial dataset and randomly
introduced a hydrogen atom on the surface. Fixing iron and
carbon atoms in the structure, we conduct the following
computational steps:

(I) Optimize the hydrogen absorption by VASP.

TABLE 1 Classification of Datasets.

Clusters FeCx Fe2Cx Fe3Cx Fe4Cx Fe5Cx Fe6Cx Fe7Cx Fe8Cx Fe9Cx

Counts 29,181 32,806 26,508 27,442 23,452 19,280 14,853 3,659 155

Number of structures located in each grouping of the composite dataset. The dataset is divided according to the stoichiometric count of iron atoms within the cluster.
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(II) Optimize it next by SchNet and VASP and use the conjugate
gradient method for SchNet local optimization.

(III) Optimize it also by SchNet and VASP but use the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm and
SchNet local optimization

We utilize both the conjugate gradient and BFGS to show the
influence of different optimization algorithms on the results.

3 Results and discussion

The distribution of the difference between the predicted values
and actual values will provide an evaluation of the predicted

accuracy of our machine learning models. We plot these results
in Figure 3. The different colors represent the different testing sets.
The average errors between the predicted values and the actual value
are within 0.5 eV. In addition to the absolute values of prediction,
the relative order accuracy (ROA) of the results represents a more
significant evaluation of the model accuracy. The relative order
accuracy evaluates the final optimized structure directly by using
energy as a convergence condition. We sort the test data according
to the DFT calculated values, shown in Figure 3, and assign each
dataset an identifier: m1, m2, . . ., etc. We reorder the test data
according to the potential energy predicted by the model and
calculate the inversion number I of each set and rearrange each
set according to the inversion number (as discussed in the
Supplementary Material).

FIGURE 2
Convex hull of a certain Fe4C4 from two perspectives. The red circles are on the convex hull, and the gray circle is inside the convex hull. The blue
planes are parallel to the surfaces of the convex hull, and the quantity is equal to the number of convex hull surfaces. The hydrogen atoms are randomly
selected on the blue planes.

FIGURE 3
Error distribution histogram. The difference refers to the difference between the predicted value and the DFT calculated values for each structure.
The mi (1 ≤ i ≤ 9) means FeiCy for test and others for training.
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Table 2 shows the comparison of the prediction results with the
DFT calculated values, including the mean absolute errors (MAEs)
and ROAs for MEGNet and SchNet. The average MAEs of the
results are below 0.8 eV, and the average ROAs of prediction are
above 95%. It can be seen that the ability of machine learning models
to predict the ROA is excellent, which can ensure the reliability of
the structural optimization. It is interesting that potential energy
prediction MAE of m3 is the smallest. We suggest the deviation of
potential energy prediction is related to the average atoms count in
the test and the coverage of the training set on the test set. Inmi (i ≤
3), we output the intermediate vectors predicted by MEGNet to
verify the relationship between the MAEs and the coverage of the
training set on the test set. Figure 4 shows the results after the

intermediate vector dimension reduction. Through comparison, we
find that the coverage ofm3 training data on the test data exceeds m1

significantly, which can explain the previous observation to a certain
extent. In mj (j ≥ 4), the deviation of potential energy prediction
increases with the average number of atoms. When the average
number of atoms in the test set exceeds 8, the MAEs are mainly
affected by that.

The high accuracy of the relative order shows that machine
learning models have excellent performance in judging structural
stability. To further demonstrate this point, we apply models to
predict the relationship between the potential energy and the Fe-C
distances, comparing the results with the calculation results of
VASP. Detail information is shown in Figure 5. The distance

TABLE 2 Energy Prediction Results.

Id Train Test CNT MEGNet SchNet

E (eV) ROA (%) E (eV) ROA (%)

m1 Fe2Cx ~ Fe9Cx Fe1Cx 7.597 0.722 97.8 0.507 98.5

m2 Fe1Cx, Fe3Cx ~ Fe9Cx Fe2Cx 7.253 0.571 98.1 0.513 98.4

m3 Fe1Cx ~ Fe2Cx, Fe4Cx ~ Fe9Cx Fe3Cx 7.598 0.546 98.0 0.465 98.1

m4 Fe1Cx ~ Fe3Cx, Fe5Cx ~ Fe9Cx Fe4Cx 7.880 0.581 97.8 0.597 97.9

m5 Fe1Cx ~ Fe4Cx, Fe6Cx ~ Fe9Cx Fe5Cx 8.387 0.628 97.3 0.659 97.1

m6 Fe1Cx ~ Fe5Cx, Fe7Cx ~ Fe9Cx Fe6Cx 8.713 0.721 96.2 0.792 95.9

m7 Fe1Cx ~ Fe6Cx, Fe8Cx ~ Fe9Cx Fe7Cx 9.099 0.847 94.8 0.868 94.5

m8 Fe1Cx ~ Fe7Cx, Fe9Cx Fe8Cx 9.396 0.930 91.8 1.017 91.7

m9 Fe1Cx ~ Fe8Cx Fe9Cx 10.000 1.310 86.2 1.545 86.4

AVG 0.776 95.3 0.773 95.4

CNTmeans the average atoms count in each sub-dataset, E (eV) is the prediction error (MAEs) in eV, and ROA is the percentage of successful order prediction between any test case pair in each

test dataset.

FIGURE 4
Structural information coverage projected onto two-dimensional space after dimension reduction. Scatter points in the test set are drawn first, and
information on the training set is drawn on the upper layer. More exposure to the test points means less coverage of the training dataset.
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between Fe and C is 0–5 Å, and the step length is 0.01 Å. Therefore,
there are 500 points in each curve that show the relationship
between the Fe-C distance and the potential energy. We focus on
the trend of the curves and the lowest points representing the most
stable distances. The trend and the lowest points of the curves
predicted by MEGNet and SchNet are roughly the same throughout
Figures 5A, B. We average the results of the MEGNet and SchNet
models and visualize this average in Figure 5C. The result of the
VASP calculation is shown in Figure 5D as a reference. According to
the calculation of VASP, the change of the potential energy is no
longer apparently regular when the distance of Fe-C exceeds 3 Å.
The most stable distance of Fe-C predicted by MEGNet and SchNet

differs from VASP by 0.1 Å and 0.05 Å, respectively, as observed in
Figures 5C, D.

We randomly generate 100 Fe5C5 poor initial structures to
investigate the adaptability of models in structural optimization.
These initial structures are considered poor in that VASP cannot
optimize these structures. Traditional quantum chemical calculators
such as VASP can effectively predict cluster geometries with a high
level of accuracy. However, poor guesses from the user will add
costly computational cycles in the performance, and these quantum
chemistry tools struggle with out-of-the-box initial geometries. We
test these 100 Fe5C5 poor initial structures so that we can obtain an
understanding of the performance of VASP in extreme cases and

FIGURE 5
Fe-C two-body potential from trained model and VASP.

TABLE 3 Structural Optimization Results.

Id TSchNet (s) TVASP (s) ESchNet (eV) EVASP (eV)

(Ⅰ) 2.05 × 103 1.62

(Ⅱ) 4.30–16.07 1.27 × 103–2.33 ×103 5.44–7.30 0.79–2.81

(Ⅲ) 16.89–321.04 1.63 × 103–1.92 × 103 3.94–7.10 0.99–3.19

TSchNet (s) means the time consumed by the SchNet model optimization, and TVASP (s) means the time consumed by VASP optimization. ESchNet (eV) means the decrease of potential energy after

the SchNet model optimization, and EVASP (eV) means the decrease of potential energy after VASP optimization. All potential energy reductions are achieved by a single-point calculation of

VASP.
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compare them with our machine learning approach. We also
generate several typical Fe5C5 clusters to verify the performance
of the structure optimization of the SchNet machine learning
models. The SchNet model is treated as a ‘calculator’ of ASE, and
BFGSLineSearch is used for local optimization. After about 100 steps
of optimization, the potential energy of structures decreases rapidly
by more than 10 eV while each step takes less than one second (as
seen in Supplementary Figure S4). We find stable structures in a
short time without expensive first-principles calculations.

Based on this, we generate 10 k new FexCyH data by the method in
Section 2.3 and use VASP to perform a single point calculation for most
of these structures with the same parameters as Section 2.1. We
continue to train previous machine learning models with the new
dataset to predict the adsorption position of hydrogen atoms. Table 3
shows the results of structural optimization of the hydrogen absorption
calculations with iron and carbon atoms fixed in Section 2.3. In (Ⅰ), the
potential energy of the structure is reduced by 1.62 eV. In (Ⅱ), the
SchNet model can more rapidly reduce the potential energy of the
structure by more than three times in less than 1% optimization time
compared with VASP. In (Ⅱ) and (Ⅲ), the difference of the final
structural potential energy is within 1 eV after VASP optimization to
convergence. As a result, different local optimization algorithms have
little effect on the results. Meanwhile, our results show that the model
will optimize the structure to a more stable state than VASP in a much
shorter time, and SchNet can also assist VASP in finding themost stable
adsorption position by improving the initial guesses.

4 Conclusion

To conclude, we use CALYPSO and VASP for iron carbide cluster
generation and apply state-of-the-art molecular properties prediction
networks to the potential energy prediction of clusters and structural
optimization. Although there are errors between machine learning
models and DFT calculation methods in cluster potential energy
prediction, the performance of models in judging structural stability
is excellent. As a result, machine learning models can provide reliable
structural optimization. In terms of cluster structure optimization, the
machine learningmodels can obtain amore stable structure than VASP
in a shorter time. Further, they can be used to assist VASP in finding the
most stable adsorption position on the cluster surface in the catalytic
process. This work is helpful in exploring the essential control factors of
catalytic reaction activity and selectivity and realizing the regulation of
catalyst activity and selectivity.
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