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Entropic uncertainty relations (EURs) have been examined in various contexts,
primarily in qubit systems, including their links with entanglement, as they
subsume the Heisenberg uncertainty principle. With their genesis in the
Shannon entropy, EURs find applications in quantum information and quantum
optics. EURs are state-dependent, and the state has to be reconstructed from
tomograms (which are histograms readily available from experiments). This is a
challenge when the Hilbert space is large, as in continuous variable (CV) systems
and certain hybrid quantum (HQ) systems. A viable alternative approach therefore
is to extract as much information as possible about the unknown quantum state
directly from appropriate tomograms. Many variants of EURs can be extracted
from tomograms, even for CV systems. In earlier work we have defined many
tomographic entanglement indicators (TEIs) that can be readily calculated from
tomograms without knowledge of the density matrix, and have reported on their
efficacy as entanglement indicators in various contexts in both CV and HQ
systems. The specific objectives of the present work are as follows: (i) To use
the tomographic approach to investigate the links between EURs and TEIs in CV
and HQ systems as they evolve in time. (ii) To identify the TEI that most closely
tracks the temporal evolution of EURs. We consider two generic systems. The first
is a multilevel atom modeled as a nonlinear oscillator interacting with a quantized
radiation field. The second is the Λ-atom interacting with two radiation fields. The
formermodel accomodates investigations on the role of the initial state of the field
and the ratio of the strengths of interaction and nonlinearity in the connection
between TEIs and EURs. The second model opens up the possibility of examining
the connection between mixed state bipartite entanglement and EURs, when the
number of atomic levels is finite. Since the tomogram respects the requirements
of classical probability theory, this effort also sheds light on the extent to which
TEIs reflect the temporal behaviour of those EURs which are rooted in the
Shannon entropy.
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1 Introduction

The inherently probabilistic nature of quantum laws and the
manner in which they manifest themselves in the measurement
problem are typically formulated in terms of uncertainty relations.
The original form of these relations, involving products of variances
of incompatible observables (Heisenberg, 1927; Robertson, 1929;
Schrodinger, 1930), has been extended in the literature to wider
settings, e.g., as in (Maccone and Pati, 2014; Chen and Fei, 2015).
More recently the uncertainty relations have been expressed in a
manner which subsumes variance-based relations, and formulated
in a readily applicable form in quantum information theory. The
first hint of such a formulation came through Everett’s employment
of the Shannon entropy for this purpose (Everett, 1957).

Following this, Hirschman formalized the entropic uncertainty
relation (EUR) (Hirschman, 1957). Since then, several EURs have
been proposed in the literature [for a detailed review, see Coles et al.
(2017)], the version given in (Maassen and Uffink, 1988) being the
most well known of these. While the variance-based uncertainty
relations can be recovered from EURs, the converse is not possible in
general, thus lending more significance to EURs. Further, other
generalizations such as the Rényi (Bialynicki-Birula, 2006), Tsallis
(Wilk and Włodarczyk, 2009), and Wehrl (Floerchinger et al., 2021)
entropies have also been used to formulate EURs. Uncertainty
relations for coarse-grained measurements have been examined
in detail in the literature [For a review see, e.g., Toscano et al.
(2018)]. Apart from their fundamental importance, EURs find
practical use in diverse problems in quantum information such
as those pertaining to quantum key distribution, quantum
cryptography and entanglement witnesses (Berta et al., 2010).

The link between EURs and quantum entanglement is of immense
interest as this is a possible route to understanding correlations and to
quantify entanglement (Giovannetti, 2004; Gühne and Lewenstein,
2004; Floerchinger et al., 2021). The experiment on entanglement-
assisted entropic uncertainty (Li et al., 2011), carried out on polarization
states of entangled photons, has revealed the importance of the nature of
the observer in estimating the extent of uncertainty. Experiments on
diamond validate results on entropic uncertainty relations for multiple
measurements in qubit systems (Xing et al., 2017). Entropy-based and
coherence-based uncertainty relations have been tested in an optical
platform using Bell-like states and Bell-like diagonal states (Ding et al.,
2020). Lower bounds on distillable entanglement that can be measured
in viable experiments on cold atoms have been derived in (Bergh and
Gärttner, 2021). Experiments to obtain bounds on quantumuncertainty
relations have been performed in an all-optical set up with appropriate
qubits (Liu et al., 2022), invoking quantum coherence and relative
entropy of coherence.

It is to be emphasized, however, that from both theoretical
studies and experimental investigations some partial understanding
about the interplay between entanglement and EURs, is only
available at present for qubit systems. In the context of
continuous variable (CV) systems, EURs have been examined
theoretically and tight bounds obtained for quadrature
observables in optics [see, e.g., (Hertz and Cerf, 2019)]. However,
the link between entanglement and EURs in CV systems has not
been examined in sufficient detail, even in bipartite cases. This is
primarily because of the challenges faced in reconstructing the state
from appropriate experimentally obtained tomograms for high

dimensional Hilbert spaces. As a consequence, density-operator-
based entanglement measures such as the subsystem von Neumann
entropy (SVNE) and the subsystem linear entropy (SLE) are not
readily calculable. In fact, even for small Hilbert space dimensions,
quantum state reconstruction is an arduous task (Hou et al., 2016).
The problem is exacerbated if the instantaneous state of a system
needs to be obtained in order to examine the changes in the
entanglement during time evolution. While state reconstruction
procedures in CV systems and in multiple spin arrays are now
augmented with machine learning protocols, these attempts are still
in their infancy. It is therefore advantageous to avoid detailed state
reconstruction wherever possible, and to extract reliable
entanglement indicators solely from tomograms. Such
entanglement indicators have been proposed in the literature and
their efficacy examined in CV and HQ systems by comparing them
with standard entanglement measures and monotones (Sharmila
et al., 2020; Sharmila et al., 2022).

In this work, we look at CV and hybrid quantum (HQ) systems
to examine possible links between EURs and entanglement, relying
only on tomograms for this purpose. More specifically, in this paper
we examine the efficacy of TEIs in capturing the behaviour of EURs
during dynamical evolution of two generic systems. This exercise
facilitates identification of the appropriate TEIs that track EURs in
the case of both pure and mixed states. We point out that this is the
first and essential step in an extended program, that is, expected to
shed light on the manner in which several factors affect the interplay
between EURs and entanglement in CV and HQ systems. These
factors include: the number of atomic levels, the extent of
nonlinearity and interaction strengths in the relevant
Hamiltonian, the degree of coherence of the initial states,
bipartite vs. tripartite interactions, and pure vs. mixed states. The
importance and novelty of this exercise are enhanced by the fact that
even in qubit systems with small Hilbert spaces, the links between
EURs and entanglement measures during dynamics are rather
poorly understood.

The contents of this paper are arranged as follows. In Section 2
we briefly review the salient features of optical tomograms,
entanglement indicators, and entropy-based sum uncertainty
relations. In Section 3 we consider two generic theoretical models
of light-matter interaction, and illustrate the role played by the
number of atomic levels, the atom-field interaction and
nonlinearities, in establishing the links between uncertainty
relations and entanglement. With this aim, in Section 3.1 we
investigate a bipartite system of an atom interacting with a
radiation field, while Section 3.2 deals with a tripartite model of
a Λ-atom interacting with two radiation fields. An optical
tomographic indicator capturing the sum entropy dynamics is
identified for each of the two systems. In Section 4 we conclude
with a brief summary and outlook.

2 Formalism: tomograms,
entanglement indicators, and
uncertainty relations

Consider a single-mode radiation field with photon creation and
annihilation operators â† and â respectively. The set of rotated
quadrature operators (Ibort et al., 2009) is defined by
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X̂θ � â†eiθ + âe−iθ( )/ �
2

√
, (1)

where θ (0 ≤ θ < π) is the phase of the local oscillator in the standard
homodyne measurement setup. It is evident that θ = 0 and π/2
respectively correspond to the x and p quadratures. Equation 1
constitutes a quorum of observables which carry complete
information about a given state ρ̂. The optical tomogram w (Xθ,
θ) (Lvovsky and Raymer, 2009) is given by

w Xθ , θ( ) � 〈Xθ , θ|ρ̂| Xθ , θ〉, (2)
where

X̂θ|Xθ , θ〉 � Xθ|Xθ , θ〉. (3)
For each value of θ, the set {|Xθ, θ〉} comprises a complete basis. The
optical tomogram visualized with Xθ as the abscissa and θ as the
ordinate is essentially a collection of histograms corresponding to
the quadrature operators. It satisfies the property

∫
∞

−∞
dXθ w Xθ , θ( ) � 1, ∀ θ. (4)

It is advantageous to expand w (Xθ, θ) in terms of the Hermite
polynomials for ease in numerical computations (Filippov and
Man’ko 2011). For a bipartite system AB, the corresponding
quadrature operators are defined as

X̂θA � â†eiθA + âe−iθA( )�
2

√ , X̂θB �
b̂
†
eiθB + b̂e−iθB( )�

2
√ , (5)

where (â†, â) (resp. (b̂†, b̂)) are the creation and annihilation
operators for subsystem A (resp. B). The two-mode optical
tomogram is given by

wAB XθA, θA;XθB, θB( ) � 〈XθA, θA;XθB, θB|ρ̂AB|XθA, θA;XθB, θB〉,
(6)

where ρ̂AB is the two-mode density matrix. The two-mode
tomogram satisfies

∫
∞

−∞
dXθA∫

∞

−∞
dXθB wAB XθA, θA;XθB, θB( ) � 1, ∀ θA, θB. (7)

The reduced tomogram (corresponding to subsystem A, for
instance) is given by

wA(XθA, θA) � ∫
∞

−∞
dXθB wAB(XθA, θA;XθB, θB) (8)

for any given θB. A similar definition holds good for subsystem B.
Extension of these definitions to multipartite systems is
straightforward.

Both qualitative identification and quantitative estimates of
nonclassical effects such as squeezing and entanglement properties
of radiation field states can be obtained solely from tomograms. In
what follows, we focus on entanglement indicators. While these are
not measures, it has been established that they suffice to capture the
gross features of bipartite entanglement. We briefly describe, below,
two of these “tomographic entanglement indicators” (TEIs) that we
will use in the sequel. An interesting and useful feature of these
indicators is that they can be defined for specific tomographic slices
(also referred to as “sections”), by choosing appropriate values of θA
and θB. Averaging over a judiciously chosen set of such indicators

provides a section-independent assessment of entanglement. We will
exploit this aspect in understanding the connection, if any, between
EURs (which are in any case slice-dependent as they relate specific
quadrature uncertainties), on the one hand, and both the slice-
dependent and averaged entanglement indicator, on the other.

An interesting slice-dependent indicator denoted by ϵIPR(θA, θB) is
inspired by the well known inverse participation ratio (IPR) which
quantifies the delocalization of a state in a given basis. It was initially
proposed to assess the extent of spatial delocalization of atomic
vibrations in a specified eigenbasis of a disordered system (Bell and
Dean, 1970). Since then, the IPR has been examined in different
settings. In particular, in the context of disordered spin chains,
general conditions have been derived relating the extent of
multipartite entanglement with the IPR computed over a maximal
set of mutually unbiased basis states. The details are reported in (Viola
and Brown, 2007). Therefore, by its very definition, IPR can be
computed in different basis sets. This feature makes it readily
computable directly from tomograms. In particular, in CV
tomograms, since every value of θ defines a complete basis set, IPR
can be computed in any chosen basis set. This provides a slice-
dependent value for IPR, analogous to the early computations of
delocalization in a specific eigenbasis in the atomic context.
Averaging over several such slice-dependent values yields the mean
IPR, which we denote by ξIPR. As in the case of the example of the
disordered spin chain mentioned above, entanglement indicators can
now be defined based on IPR, the new feature being that it is now
adapted to CV systems. It is to be noted, though, that since IPR only
estimates delocalization, it is in general nonzero even for separable
states. Consequently, an entanglement indicator based on IPR does not
vanish for unentangled states. Despite this feature, this indicator, as also
other TEIs, have been found to track entanglement dynamics effectively
in a variety of systems (Sharmila et al., 2019).

It is worth pointing out that this is only an instance of how the
tomographic approach is useful in calculating both slice-dependent
values and averaged values of all TEIs, and not merely those
corresponding to IPR. This advantage is not available in the
computation of entanglement measures such as SVNE which are
obtained as a single quantity from the reconstructed density matrix.
Slice-dependent indicators are hence the natural choice in
comparing entanglement trends with EUR trends, as the latter
are defined only for specific slices—either canonically conjugate
slices, or arbitrarily chosen slices defined by noncommuting
operators. Hence, the SVNE is not always expected to capture
trends in EURs as well as the TEIs. In the later sections we have
examined the role of SVNE versus the TEIs in this context.

We now proceed to define the TEIs. The slice-dependent
entanglement indicator based on IPR is given by,

ϵIPR θA, θB( ) � 1 − ηA θA( ) + ηB θB( ) − ηAB θA, θB( )[ ], (9)
where

ηAB θA, θB( ) � ∫
∞

−∞
dXθA∫

∞

−∞
dXθB w XθA, θA;XθB, θB( )[ ]2 (10)

is the two-mode IPR, and

ηk θk( ) � ∫∞

−∞
dXθk wk Xθk, θk( )[ ]2 k � A, B( ) (11)

is the reduced subsystem IPR. Another useful TEI is given by
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ϵTEI θA, θB( ) � SA θA( ) + SB θB( ) − SAB θA, θB( ) (12)
where

Sk θk( ) � −∫
∞

−∞
dXθkwk Xθk, θk( ) log wk Xθk, θk( ) (13)

is the subsystem tomographic entropy corresponding to subsystem
k, and

SAB θA, θB( ) � −∫
∞

−∞
dXθA∫

∞

−∞
dXθBwAB XθA, θA;XθB, θB( )

× log wAB XθA, θB;XθB, θB( ) (14)

is the bipartite tomographic entropy (Sharmila et al., 2020; Sharmila
et al., 2022). Note the similarity in form of Eq. 12 and quantum
mutual information (QMI). In order to remove the dependence on
(θA, θB) from Eqs 9, 12, one averages over the quorum (comprising a
set of indicators, each corresponding to different slices) to get

ξIPR � 〈ϵIPR θA, θB( )〉 (15)
and

ξTEI � 〈ϵTEI θA, θB( )〉. (16)

In principle, one needs an infinite number of basis sets in the range
0 ≤ θA < π and 0 ≤ θB < π, to obtain an entanglement indicator which
compares with standard entanglement measures. An important
aspect that needs to be addressed in this context, therefore, is the
estimation of the optimal number of slices required in practice for a
TEI to be useful. While this is sensitive to the specific system under
consideration, we have observed that, for a variety of bipartite CV
and HQ systems where a total number of quanta is conserved,
averaging over approximately 25 slices equispaced between [0, π) for
both θA and θB suffices to capture the gross features.

The variance based uncertainties, entropic uncertainties and the
corresponding bounds can be computed in a straightforward
manner from tomograms. A useful and readily applicable
procedure to compute the variance and all moments of
quadrature observables (corresponding to a given tomographic
slice) is given in Wünsche (1996). Our emphasis is on the
computation of the tomographic information entropies that are
directly relevant for EURs.

For any bipartite system the uncertainty relation of direct relevance
to us pertains to canonically conjugate quadratures with variables (x1,
p1) and (x2, p2) for the two subsystems. This EUR is given by

FIGURE 1
(A) Bipartite field-atom model. Initial state |10; 0〉 and weak nonlinearity (γ/g = 0.01). Entanglement indicators (red, blue, brown) and entropic sum
uncertainty (EU) in the x and p quadratures (black) vs. scaled time. 0.2× SVNE (red), ξTEI (blue), 2 × [ξIPR—0.507] (brown), and 0.4 × [h(x) + h(p)—6.168]
(black) vs. gt. Here x and p correspond to the (0, 0) and (π/2, π/2) tomographic slices, respectively. The ordinates have been appropriately scaled to enable
ready comparison. At t = 0, ξIPR = 0.507 and EU = 6.168. (B) Bipartite field-atom model. Initial state |10; 0〉 and weak nonlinearity (γ/g = 0.01).
Averaged tomographic entanglement indicators (blue, brown) and the corresponding tomographic entanglement indicators for the (0, 0) slice (red,
orange) vs. scaled time. ξTEI (blue), and 0.8 ×ϵTEI(0, 0) (red), 2 × [ξIPR—0.507] (brown), and 2 × [ϵIPR(0, 0)—0.507] (orange) vs. gt. The ordinates have been
appropriately scaled to enable ready comparison. At t = 0, ϵIPR(0, 0) = 0.507.

FIGURE 2
(A)Bipartite field-atommodel. Initial state |α; 0〉 (|α|2 = 5) andweak nonlinearity (γ/g=0.01). Tomographic entanglement indicators (blue, brown) and
entropic sum uncertainty (EU) in the x and p quadratures (black) vs. scaled time. ξTEI (blue), 1.2 × [ξIPR—0.361] (brown), and 0.16 × [h(x) + h(p)—4.289]
(black) vs. gt. The ordinates have been appropriately scaled to enable ready comparison. At t = 0, ξIPR = 0.361 and EU = 4.289. (B) Bipartite field-atom
model. Initial state |α; 0〉 (|α|2 = 5) and weak nonlinearity (γ/g = 0.01). Sum of the tomographic entanglement indicators in the x and p quadratures
(red, orange), and entropic sum uncertainty (EU) in the same quadratures (black) vs. scaled time. 0.5 × [ϵTEI(0, 0) + ϵTEI(π/2, π/2)] (red), 0.5 × [ϵIPR(0, 0) +
ϵIPR(π/2, π/2)—0.722] (orange), and 0.2 × [h(x) + h(p)—4.289] (black) vs. gt. The ordinates have been appropriately scaled to enable ready comparison. At
t = 0, ϵIPR(0, 0) + ϵIPR(π/2, π/2) = 0.722 and EU = 4.289.
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h x( ) + h p( )P2 1 + ln π( ), (17)
where x � (x1, x2), p � (p1, p2) and

h x( ) � −∫ dx1dx2 ϱ x1, x2( )ln ϱ x1, x2( ) (18)

is the Shannon differential entropy [see, for instance, Hertz and Cerf
(2019)]. Here, ϱ(x) and ϱ(p) are the probability distributions along
the x and p quadratures respectively. Hence in the tomographic
approach, ϱ(x1, x2) is simplyw(X(θA�0), θA � 0;X(θB�0), θB � 0). The
probability in the momentum quadrature is simply the two-mode
tomographic slice obtained by setting θA and θB equal to π/2. A state
is said to be informationally squeezed in x if h(x) < 1+ ln π. An
analogous definition holds for the p quadrature. It is evident that the
EUR can be now defined for different pairs of canonically conjugate
slices. We may also consider the generalized EUR corresponding to
the Rényi q-entropy in the place of the Shannon entropy in Eq. 18. In
that case, an increase in q leads to a decrease in the lower bound
of EUR.

In the next section we examine the reliability of bipartite TEIs in
capturing the gross features of EURs in two generic systems, that are
bipartite and tripartite respectively.

3 Results and discussions

3.1 Bipartite atom-field interaction model

The Hamiltonian for a radiation field with photon creation and
annihilation operators â† and â, propagating through a nonlinear
atomic medium modelled as a multilevel oscillator with ladder
operators b̂

†
and b̂, is given by

Ĥ1 � ωâ†â + ω0b̂
†
b̂ + γb̂

†2
b̂
2 + g â†b̂ + âb̂

†( ). (19)

Here, and in the rest of this paper, we set Z = 1. The field and atomic
frequencies are respectively ω and ω0, γ is the strength of the Kerr
nonlinearity, and g is the interaction strength. Since N̂ � â†â + b̂

†
b̂

is a constant of the motion, it is convenient to examine the dynamics
of both the atom and the field in the basis |N −m〉f ⊗|m〉a denoted by

|N − m; m〉. Here, m = 0, 1, 2, . . . labels the atomic levels, and the
suffixes f and a denote the field and atom respectively. The
eigenvalues of N̂ are N = 0, 1, 2, . . .. Consider the subsequent
dynamics of an initial factored product of a photon number state or
a coherent state, with the atom in an energy eigenstate. This can be
understood to a large extent through analytical calculations carried
out using realistic approximations, in the case of both weak and
strong nonlinearity compared to the interaction strength. Further, in
the former case, near-revivals have been predicted at specific instants
of the scaled time gt (Agarwal and Puri, 1989). The entanglement
dynamics has been numerically investigated for these initial states,
and quantified in terms of SVNE and SLE of the field state in
(Sudheesh et al., 2006). It has been reported that, for weak
nonlinearity and an initial Fock state, the entanglement dips at
instants of both approximate revivals and fractional revivals.

We have numerically examined how efficiently the TEIs capture
these aspects of the dynamics. We illustrate these features for the
atom in the ground state, ω = ω0 = 1 and the field initially either in a
Fock state or a CS |α〉, both for weak (γ/g≪ 1) and strong (γ/g≫ 1)
nonlinearity. We have also investigated the temporal dynamics of
EUR corresponding to the pure bipartite state. We examine the
extent to which the TEIs mimic the dynamics of SVNE and also
identify the entanglement indicators which mimic the dynamics of
EUR. Our results are briefly summarized below.

We first consider the field initially in the Fock state |N = 10〉. For
weak nonlinearity, it is straightforward to see that if θA = θB = θ, both
the bipartite and the subsystem tomograms are independent of θ.
This follows from the conservation of N̂ and the fact that the field is
initially in a photon number state. The TEIs extremize at points
where SVNE and EUR also extremize. However, as illustrated in
Figure 1A, while the general trends agree, the behavior is very
sensitive to the time interval considered. As an example, for gt
between 240 and 248, the TEIs and SVNE do not mirror EUR.
Similar conclusions follow when the tomographic slices (π/4, π/4)
and (3π/4, 3π/4) are compared, instead of (0, 0) and (π/2, π/2) as in
the figure. Further, while ϵTEI and ξTEI do not mimic each other, ϵIPR
and ξIPR are relatively more similar in their trends (see Figure 1B).
This is evidence that IPR is dominated by contributions for which
θA = θB, while TEI has significant contributions from regions in
which θA ≠ θB. This feature is more pronounced for large N. The
subsystem EUR dynamics is not captured by TEIs or SVNE. We
have also verified that there is no entropic squeezing for weak
nonlinearity.

For strong nonlinearity, the atom effectively behaves like a two-
level system, with periodic exchange of energy with the field
(Agarwal and Puri, 1989). We have verified that SVNE, TEIs and
EUR emulate each other. Further, the EUR corresponding to the
field subsystem is also captured by the TEIs. However, for large N,
the changes in ξIPR with scaled time are small in comparison with the
corresponding changes in ξTEI. In this sense, ξTEI reflects the EUR
dynamics better than ξIPR. As in the case of weak nonlinearity, ξIPR
and ϵIPR are similar in their trends, while ξTEI and ϵTEI are dissimilar.

The EUR based on the Rényi entropy is alike in dynamics to the
EUR corresponding to the Shannon entropy, independent of the
extent of nonlinearity. Therefore, in what follows, we shall only
examine the EUR based on the Shannon entropy.

Next, we consider the field to be initially in a CS |α〉 (|α|2 = 5). In
this case the TEIs depend on the specific slice considered, in contrast

FIGURE 3
Bipartite field-atommodel. Initial state |α; 0〉 (|α|2 = 5) and strong
nonlinearity (γ/g = 5). Entanglement indicators (red, blue, brown) and
entropic sum uncertainty (EU) in the x and p quadratures (black) vs.
scaled time. SVNE (red), 4.5 × ξTEI (blue), 5 × [ξIPR—0.361], and
0.8 × [h(x) + h(p)—4.289] (black) vs. gt. The ordinates have been
appropriately scaled to enable ready comparison. At t = 0, ξIPR = 0.361
and EU = 4.289.
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to the preceding case. For the x and p quadratures and weak
nonlinearity, as in Figure 2A, the dynamics of EUR is not
reflected in that of the TEIs for all time intervals (as before),
although ξIPR performs better than ξTEI, on the average. Further,
the dynamics of ϵIPR is similar to ξIPR, and, overall, it captures the
trends of EUR better than ϵTEI (Figure 2B). For strong nonlinearity,
the main results are strikingly different from the case of an initial
Fock state reported earlier (see Figure 3). SVNE and TEIs have
similar behaviour in dynamics. However, EUR is not captured by
either, except during short time intervals (e.g., gt between 0 and
1 and also between 15 and 20). The ϵ indicators mimic the
corresponding ξ indicators reasonably well.

From the above results we conclude that for weak nonlinearity
and a pure bipartite state, the efficacy of both the TEIs in mimicking
the dynamics of EUR is not very sensitive to the precise nature of the
initial field state. Further, both ξIPR and ξTEI are comparable in their
performance. In what follows, therefore, we will only consider strong
nonlinearity and bipartite entanglement in a mixed state. In
particular, we will compare how well the dynamics of SVNE, ξIPR
and ξTEI follow that of EUR.

Investigation of the effect of a finite number of atomic levels
(in contrast to the model considered in this section) in
understanding the quantum-classical divide is an aspect of
considerable interest. In the classical context consider a
coarse-grained phase space. Analysis of the Poincaré
recurrences of the dynamical variables to cells in this space
augmented with time series analysis of the variables
considered reveal that, if the first return time distribution to a
cell in phase space is spiky, the Lyapunov exponent obtained
through the time series analysis is zero, implying non-chaotic

dynamics. However, corresponding to exponential first return
time distributions, the Lyapunov exponent is positive, signaling
chaotic dynamics (Balakrishnan et al., 2001; Balakrishnan and
Theunissen, 2001). In the quantum context, treating the
observable as a dynamical variable in an appropriate coarse-
grained phase space, similar studies on their ergodicity properties
have been undertaken. The results show that if the number of
atomic levels is infinite, as in the model above, the classical
relation between the return time distribution and the Lyapunov
exponent continues to hold (Sudheesh et al., 2009). However, the
case of a 3-level atom interacting with one or two radiation fields,
with the mean photon number treated as a dynamical variable,
exhibits surprising results (Shankar et al., 2014). In specific
situations, spiky first return distributions accompany positive
Lyapunov exponents, while exponential distributions could go
hand in hand with vanishing Lyapunov exponents. In the next
section, we therefore consider the dynamics of the mean photon
number in a tripartite model with a finite number of atomic levels
in the context of EURs and entanglement, in order to examine
whether a reduction of the atomic levels to a finite number affects
the inferences drawn in this section.

3.2 The tripartite HQ model

We consider a tripartite model of a Λ-atom with energy levels
{|e1〉, |e2〉, |e3〉}, interacting with two radiation fields Fi, with
photon creation and annihilation operators â†i and âi, and
frequency Ωi respectively (i = 1, 2). Fi mediates the |ei〉 ↔|e3〉
transition, where |e3〉 is the highest energy state. The |e1〉 ↔|e2〉

FIGURE 4
(A) Tripartite field-atommodel. Initial state |α; α; e1〉 (|α|2 = 15) and χ/λ = 5. Atomic SVNE (black) vs. scaled time. The collapse interval is highlighted in
the figure inset. (B) Tripartite field-atom model. Initial state |α; α; e1〉 (|α|2 = 15) and χ/λ = 5. Entanglement indicators (red, blue, brown) and entropic sum
uncertainty (EU) in the x and p quadratures vs. scaled time during the initial interval. SVNE (red), 4 × ξTEI (blue), 2.5 × [ξIPR—0.361] (brown), and 0.25 × [h(x) +
h(p)—4.289] (black) vs. λt. The ordinates have been appropriately scaled to enable ready comparison. At t = 0, ξIPR = 0.361 and EU = 4.289. (C)
Tripartite field-atom model. Initial state |α; α; e1〉 (|α|2 = 15) and χ/λ = 5. Entanglement indicators (red, blue, brown) vs. scaled time during the collapse
interval. SVNE (red), 4.3 × ξTEI (blue), and 11 × [ξIPR—0.709] (brown) vs. λt. The ordinates have been appropriately scaled to enable ready comparison. At λt=
1350, ξIPR = 0.709, the minimum value during the collapse interval. (D) Tripartite field-atom model. Initial state |α; α; e1〉 (|α|2 = 15) and χ/λ = 5. Averaged
tomographic entanglement indicator (brown), sum of the tomographic entanglement indicator in the x and p quadratures (orange), and entropic sum
uncertainty (EU) in the same quadratures (black) vs. scaled time during the collapse interval. 2 × [ξIPR—0.709] (brown), ϵIPR(0, 0) + ϵIPR(π/2, π/2)—1.418
(orange), and 0.1 × [h(x) + h(p)—7.286] (black) vs. λt. At λt = 2250, EU = 7.286, the minimum value during the collapse interval.
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transitions are dipole forbidden. The tripartite Hamiltonian wth
zero detuning is

Ĥ2 � ∑
3

k�1
ωkσ̂kk +∑

2

i�1
Ωiâ

†
i âi + χâ†2i â

2
i + λf â†i âi( ) âiσ̂3i + h.c.( )[ ].

(20)
Here, σ̂jk � |ej〉〈ek| (j, k � 1, 2, 3) are the atomic ladder operators,
{ωk} are positive constants, χ is the strength of the field Kerr
nonlinearity, λ is the interaction strength and f(â†i âi) is the
intensity-dependent field-atom coupling. Different forms of f have
been examined in the literature. An interesting case corresponds to
f � [1 + κ(â†i âi)], where κ is a tunable parameter, with an unentangled
initial state comprising a factored product of twoCS |α〉 and the atom in
|e1〉. The subsequent temporal dynamics corresponding to this case has
been investigated extensively. A spectacular bifurcation cascade has
been reported as κ is fine-tuned between 0 and 1 (Laha et al., 2016). We
set κ= 0 in our investigations, and examine the dynamics in terms of the
scaled time λt. Two time scales of direct relevance are characterized
approximately by the initial interval (0, 150), and the collapse region
(1200, 2400) of λt (Figure 4A). In the latter interval, SVNE collapses to
an approximately constant value. This collapse is captured in the
dynamics of the mean photon number corresponding to the field
considered. For illustrative purposes, and without loss of generality, we
set |α|2 = 15 and χ/λ = 5 in our numerical computations. Although the
tripartite system is described by a pure state, the bipartite field
subsystem (obtained by tracing out the atomic subsystem) is mixed
and is therefore ideally suited for examining mixed state bipartite
entanglement. We have verified that the inferences obtained by
considering the two different pairs of canonically conjugate slices
mentioned earlier, are similar.

We now summarize the main results. Consider, first, the initial
time interval. The broad features displayed by either field subsystem
are similar (though not identical). This is because the atomic
subsystem in this case is only weakly entangled with the field
subsystems. Hence we have carried out the computation of
SVNE with the density matrix corresponding to one of the fields.
From Figure 4B it is evident that the entanglement dips in SVNE at
λt = 60 and 120, for instance, are also reflected in ξTEI, ξIPR and EUR.
However, EUR and ξIPR resemble each other more closely in the
interval considered, whereas SVNE and ξTEI show similar
roughly oscillatory behavior. We have verified that the trends in
the ϵ indicators are similar to those of the corresponding ξ

indicators.
We now consider the dynamics during the time interval of

collapse. In stark contrast to the foregoing observations, the
dynamics of SVNE is not mirrored in any of the TEIs. Whereas
SVNE collapses to a nearly constant value over the entire interval,
the TEIs extremize in the neighbourhood of λt = 1300, 1900 and
2250 (see Figure 4C). Further, it is evident from Figure 4D, that the
dynamics of ξIPR and that of EUR are remarkably similar. This is also
reflected in the dynamics of [ϵIPR(0, 0) + ϵIPR(π/2, π/2)].

4 Conclusion

We have examined the dynamics of bipartite entanglement of
both pure and mixed CV states in two generic models of atom-field

interaction. A primary purpose of this investigation has been to
compare the manner in which TEIs on the one hand, and SVNE on
the other, mimic the dynamics of EURs. Further, we have identified
the TEI which closely tracks the temporal trends of EURs under
different situations, such as, weak versus strong nonlinearity, and
mixed versus pure states. The importance of this approach is
emphasized by the fact that SVNE depends on the density
operator, and it is in general a formidable task to reconstruct the
density operator from tomograms in generic CV and large HQ
systems. Our findings from the numerical simulations using the
tomographic approach employed in this paper provide a viable
alternative to assess bipartite entanglement in such cases. The broad
picture that emerges from the present work is that SVNE and ξTEI
resemble each other in their gross features, but do not follow the
trends in EURs in general. An interesting outcome of our
investigation is that the efficacy of ξIPR in mimicking EUR is very
reasonable. This is an illustration of the deficiency of an
entanglement measure in reflecting the dynamics of EUR, and of
the usefulness of slice-dependent indicators.
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