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Continuous-variable quantum key distribution offers simple, stable and easy-

to-implement key distribution systems. The discrete modulation scheme

further reduces the technical difficulty. The main regret is that the security

of discrete modulation schemes has not been sufficiently demonstrated.

Schemes with different signal state distributions use various physical

conditions to obtain the key rate formula, resulting in different security

levels, computation complexities and implementation difficulties. Therefore,

a relatively systematic and logically consistent security proof against most

general attacks is worth exploring. On the other hand, extending the

discrete modulation scheme and its variants to different applications, such

as satellite-to-earth communication, can further activate and advance this field.

Here, we briefly review the achievements that have been made in discrete-

modulated continuous-variable quantum key distribution, and openly discuss

some issues worthy of further research.
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1 Introduction

Quantum private communication is a practical direction of the application of quantum

mechanics. It offers chances to communicate securely against the art-of-state techniques and

predictably powerful technologies, such as quantum computers. Various forms of

communication are carried out according to cryptographic tasks (Gu et al., 2021; Li et al.,

2021a), such as quantum private query (Liu B. et al., 2022) and quantum digital signatures (Lu

et al., 2021). The most basic one is quantum key distribution (QKD) (Zhou et al., 2016;

Pirandola et al., 2020;Wang et al., 2020; Xu et al., 2020; Kwek et al., 2021) that does not involve

the transmission of information, but only shares a string of identical and secure keys for both

parties against quantum attacks. For this symmetric encryption, the one-time pad (Shannon,

1949) ensures that if each key generated from QKD is used only once, the theoretical security

of information can be achieved.
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Continuous-variable QKD (CV-QKD) (Su et al., 2009;

Diamanti and Leverrier, 2015; Guo et al., 2021; Su et al., 2022;

Zhao et al., 2022) is an important direction of QKD, which

encodes keys in continuous degrees of freedom. Another notable

choice is to encode keys in discrete degrees of freedom on single

photon, which is called discrete-variable QKD (Yin et al., 2021;

Xie et al., 2022; Zeng et al., 2022). In general, CV-QKD has

advantages in experimental implementation (Karinou et al.,

2018). The intensity of signals in CV-QKD is usually stronger

to resist channel loss, increasing the amount of measurement

outcomes and improving the key rates. Measurement devices are

homodyne detectors or heterodyne detectors (Liu J. et al., 2022)

that are compatible with classical optical communication and

inexpensive to manufacture and maintain, compared to the

single-photon detector in discrete-variable QKD (Zhao et al.,

2006; Yin et al., 2020; Jiang et al., 2021).

For key encoding, discrete modulation (Ralph, 1999) is

proposed earlier than Gaussian modulation, but Gaussian

modulation (Grosshans and Grangier, 2002; Grosshans et al.,

2003) pushes the CV-QKD to the hot spot. The Gaussian

modulation scheme achieves security against general attacks

(Leverrier et al., 2010; Leverrier, 2015; Pirandola, 2021), which

is based on U(N) symmetry by sampling and estimating

quadratures from a Gaussian distribution. However, the U(N)

symmetry of the Gaussian distribution requires signal continuity,

while we can only prepare finite kinds of signal states (Lupo,

2020). It is necessary to propose a stricter security proof for the

discreteness of prepared states. The preparation step can be

further simplified by sending a few coherent states and 1 bit

value for each coherent state. This encoding manner is similar to

discrete variables, which facilitates simplified postprocessing.

Discrete-modulated continuous-variable quantum key

distribution (DM-CV-QKD) is now easy to realize in terms of

preparation and measurement (Aguiar et al., 2022; Wang H.

et al., 2022). However, many problems remain to be solved, such

as security (Shao et al., 2022), key rate calculation, and fast

postprocessing methods (Gyongyosi and Imre, 2018; Zhou et al.,

2021). This work reviews the theoretical achievements that have

been made in DM-CV-QKD, and openly discusses the issues

worthy of further research.

2 Protocol and variants

We discuss the prepare-and-measure type protocols with two

users Alice and Bob and an adversary Eve. The first binary-

modulated scheme (Silberhorn et al., 2002), which sends states

with a Gaussian distribution but interprets a state as logical 0 or

one according to the displacement direction (Heid and

Lütkenhaus, 2007), is the early form of discrete modulation.

Later, schemes with different signal states or different probability

distributions evolved (Zhao et al., 2020a; Dias and de Assis, 2021;

Kaur et al., 2021).

The phase-shift-keying (PSK) type prepares different signal

states by changing phases. Concretely, the M-PSK type scheme

(Sych and Leuchs, 2010; Papanastasiou et al., 2018) prepares M

kinds of signals represented by |αe2πik/M〉, where k ∈ {0, 1, . . .,

M − 1}. Signals have the same amplitude α > 0 but different

phases. The value of M can be taken as 2 (Zhao et al., 2009), 3

(Brádler andWeedbrook, 2018), 4 (Leverrier and Grangier, 2009)

or 8 (Becir et al., 2012; Guo et al., 2018, 2020).M = 4 is the most

popular choice in the investigation (Xuan et al., 2009; Hirano

et al., 2017; Liao et al., 2018; Ghorai et al., 2019; Lin et al., 2019;

Liu et al., 2021).

The quadrature amplitude modulation (QAM) type (Denys

et al., 2021) is a practical implementation of Gaussian

modulation, using limited kinds of signal states to

approximate the Gaussian distribution. Each quadrature has

m choices, and there are M = m2 signal states in total. The

state that takes the kth q̂ quadrature and the lth p̂ quadrature can

be denoted by |αk,l〉, where αk,l � α
�
2

√���
m−1√ (k − m−1

2 ) + i α
�
2

√���
m−1√ (l −

m−1
2 ) and α > 0 is the amplitude. The probability distribution

is Pk,l � 1
22(m−1) (m−1

k ) (m−1
l ). Signal states are arranged in a

coordinate system formed by two quadratures as a square lattice.

The amplitude and phase shift keying (APSK) type (Almeida

et al., 2021) is likely a multi-ring of PSK type. The states in each

ring have the same amplitude, and adjacent states have the same

phase difference. It has 4, 12, 16, 32, 64, 128, and 256 states in the

first ring to the seventh ring, respectively. For instance, 16-APSK

has two rings, and 32-APSK has three rings. To approach the

Gaussian modulation, the probability of a state in ring p is Pp = 1/

(RMp), where R is the total number of rings and Mp is the total

number of states in ring p.

For detector selection, homodyne detection is more precise

and simpler than heterodyne detection (Caves and Drummond,

1994; Laudenbach et al., 2018) in principle. However, if there are

too many types of signal states, it is better to use heterodyne

detection to distinguish them accurately. It is worth noting that

more states can improve key rates but complicate postprocessing,

especially because error correction is difficult due to the high

error rate caused by the difficulty of distinguishing different

states.

3 Security analysis

Security is the deciding factor in whether a protocol should

exist or not. In this section, we briefly summarize some art-of-

state security analysis methods. In general, security analysis starts

from the Devetak-Winter formula (Igor and Andreas, 2005),

which reads

K � I SA; SB( ) −max χ SB: E( ), (1)

where I(SA; SB) is the mutual information between Alice and

Bob’s measurement outcomes SA and SB that are used to distil

keys, and χ(SB: E) is the Holevo bound between Bob’s outcome SB
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and the quantum register E of Eve. The search range for the

maximal solution of χ(SB: E) is any possible attack that matches

the statistics of experimental parameters obtained by Alice

and Bob.

Discrete modulation schemes cannot be directly applied to

Gaussian attack optimization and quantum de Finetti theory due

to insufficient symmetry of the prepared signal states. Estimation

of the Holevo bound χ(SB: E) is an admittedly difficult problem.

3.1 Analytical method

Based on physical conditions, analytical methods scale the

objective function by various inequalities until a bound that can

be directly calculated with known experimental parameters is

found. Therefore, the key rate formula obtained by the analytical

method has the advantage of being easy to compute.

Considering universality, one method (Denys et al., 2021) is

constructing the covariance matrix according to the security

analysis of Gaussian modulation schemes. χ(SB: E) can be

explicitly bounded by taking the value of the Holevo

information for a Gaussian state with the covariance matrix

VI2 ZσZ
ZσZ WI2

[ ] (2)

whereV andW can be directly given by experimental parameters,

but Z is linearly related to the density operator of both parties and

is influenced by Eve. σZ is the pauli-Z matrix and I2 is two-

dimensional identity matrix. Under constraints of the

experimental outcomes, we can find a scaling that gives upper

and lower bounds on the parameter Z of the covariance matrix.

The lower bound of the secret key rate of CV-QKD with an

arbitrary modulation is secure against collective attacks under the

asymptotic regime. (Almeida et al., 2021) applies this method to

the M-QPSK type considering finite-size effects.

It is worth noting that a binary-modulated CV-QKD

protocol has achieved the highest security against general

coherent attacks in the finite-key-size regime (Matsuura et al.,

2021). The security is based on the fidelity of an optical pulse to a

coherent state. For this purpose, a tight and robust method of

estimating fidelity via heterodyne detection has been proposed.

The drawbacks of this method are not tight and not universal,

since the key rate is small, and the transmission distance is short.

3.2 Numerical method

Numerical methods usually have the advantage of being

tight, since the lower bound of the key rate can be calculated

directly according to the experimental parameters with less

scaling. One method (Ghorai et al., 2019) is based on the

covariance matrix and is the predecessor of the universal

analytical method (Denys et al., 2021) mentioned above. The

difference is how to calculate the parameter Z of the covariance

matrix. In the numerical method, we directly search the optimal

value of Z under the constraints using semidefinite

programming. The numerical solution and the analytical

solution of the key rate are consistent, but neither is as high

as the numerical solution of the nonlinear method (Lin et al.,

2019).

In this nonlinear method, the secret key rate K against

collective attacks in the asymptotic limit from Devetak-Winter

formula (Igor and Andreas, 2005) is rewritten as

K � min
ρ∈S

f ρ( ) − leakECobs, (3)

where the first term is associated with privacy amplification and

leakECobs is information leakage during error correction. ρ is the

density operator shared by Alice, Bob, and possibly other parties

involved in the protocol. S = {ρ ∈H+|Tr(Γiρ = γi, ∀i)} denotes the
set of states satisfying linear constraints from asymptotic

experimental data, where H+ is the set of positive semidefinite

operators, {Γi} is the set of Hermitian operators and {γi} is the

corresponding set of expectation values. χ(SB: E) is implicit in f(ρ)

(Winick et al., 2018)

f ρ( ) � D G ρ( )‖Z G ρ( )( )( ), (4)

where D(σ‖τ)≔Tr(σ log σ) − Tr(σ log τ) is the quantum relative

entropy, G is a completely positive map related to the

postselection and Z is a completely positive trace preserving

map related to the key map. Since the relative entropy is jointly

convex, G and Z are linear maps, S is convex, f(ρ) is convex in ρ

and minρ∈Sf(ρ) is a convex optimization problem. A two-step

numerical method is developed for calculating a reliable lower

bound on the convex optimization problem minρ∈Sf(ρ) (Winick

et al., 2018). We first need to find a ρ close to the minimum ρ* of

Eq. 4 with feasible convex optimization methods such as the

Frank-Wolfe method (Frank andWolfe, 1956). Subsequently, we

solve the dual problem of the linearization of f about ρ and obtain

the reliable lower bound.

This method has been used for 4-PSK type schemes (Lin

et al., 2019; Lin and Lütkenhaus, 2020; Liu et al., 2021), in which

the constraints S include the statistics of experimental outcomes,

the definition of density operator and the requirement that Eve

cannot modify Alice’s systemA. The optical mode Bob received is

in an infinite-dimensional Hilbert space; thus, a photon-number

cutoff assumption is imposed (Lin et al., 2019) and latter

removed by (Upadhyaya et al., 2021).

3.3 Neural network method

Although numerical methods offer a tight key rate bound of

DM-CV-QKD, the high requirement of time and computational

resources in solving semidefinite programming remains a key
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challenge (Hu et al., 2021). Machine learning (Zdeborová, 2017;

Mehta et al., 2019) can efficiently learn complex patterns, thus

potentially speeding up the computation of key rates. Recently,

several works have taken a solid step in this direction (Liu Z.-P.

et al., 2022; Zhou et al., 2022).

A brief workflow of the neural network method is illustrated

in Figure 1. The architectures of neural networks are chosen by

considering the complexity of protocols and the scale of the

data sets collected. The data set composed of the training set

and test set is collected from numerical simulations or

experiments. Each entry in the data set consists of the input

features and an output label. Data preprocessing is necessary to

significantly improve the prediction accuracy of the key rates.

Then, the neural network is trained on the training set and

evaluated on a validation set. A critical ingredient is a loss

function including two adjustable hyperparameters designed

specifically, which keeps the predicted key rates reliable and

tight. It usually costs several trials to find the hyperparameters

that make the neural network perform best. After completing

this stage, the trained-well neural network is tested on the test

set and can be deployed on certain devices in quantum

networks to infer key rates online in real-time.

With the set of values {γi} (Lin et al., 2019) mentioned above

as the input features and the corresponding key rates as the

output labels, this method can be introduced into DM-CV-QKD

to reduce the time and computational resource waste of solving

semidefinite programming (Zhou et al., 2022). It yields a speedup

of approximately six or seven orders of magnitude compared

with numerical methods, which means it can infer key rates in

milliseconds when given new inputs.

In addition, (Liu Z.-P. et al., 2022), introduced Bayesian

optimization into the neural network method to automatically

search the best structure and hyperparameters. This improved

automatic neural network method has calculated the key rates of

two variants of DM-CV-QKD protocols (Lin et al., 2019; Liu

et al., 2021) with high reliability, considerable tightness and great

efficiency.

4 Satellite-to-ground DM-CV-QKD

In the past few decades, the communication distance of QKD

has been extended to several hundreds of kilometers (Yin et al.,

2016; Chen et al., 2021; Pittaluga et al., 2021; Wang S. et al., 2022)

due to progress in experimental technology and protocol design.

Unfortunately, the amount of secret bits distributed through a

lossy ground-based channel per use cannot exceed the

repeaterless bound proposed by Pirandola et al (Pirandola

et al., 2017). Quantum repeaters, relying on entanglement

distribution, entanglement swapping and quantum memories,

are a solution to mitigate the problem of fundamental limits in

the lossy channel. However, such technology is currently far from

practical for the large-scale deployment of quantum networks.

Satellites provide an alternative opportunity for long distance

QKD due to less decibels of loss in a satellite-to-ground channel

compared with ground-based fiber connections. Themilestone in

this field is the first complete satellite-to-ground QKD

experiment realized with Micius (Liao et al., 2017a; Liao et al.,

2017c; Yin et al., 2017b). In the same year, QKD was

implemented in a small payload on-board of the Tiangong-2

space laboratory (Liao et al., 2017b). Apart from QKD,

entanglement distribution (Yin et al., 2017a) and quantum

teleportation (Ren et al., 2017) have been realized.

An important aspect in a global QKD network is developing

stable, high-throughput QKD links from a constellation of

satellites to a network of ground stations. CV-QKD exploits

the heritage of classical optical communication in terms of high-

speed components and space qualification and may bring a

breakthrough in this field. Currently, the progress in satellite

CV-QKD mainly focuses on the investigation of feasibility

theoretically considering the fluctuation effects in realistic

satellite-to-ground links and calculating the secret key rate of

Gaussian modulation CV-QKD (Kish et al., 2020; Villasenor

et al., 2020; Dequal et al., 2021). The preliminary experimental

study was implemented in terms of signal measurement in

satellite-to-ground links (Günthner et al., 2017). Further

efforts can be made to investigate the theoretical feasibility of

DM-CV-QKD (Wang T.-L. et al., 2019), and the demonstration

of satellite CV-QKD is expected.

5 Measurement-device-independent
DM-CV-QKD

If one wants to extend the advantages of CV QKD to the

condition of longer transmission distance, constructing a

measurement-device-independent (MDI) type variant

(Pirandola et al., 2015; Wang P. et al., 2019; Ye et al., 2020;

FIGURE 1
Schematic diagram of the brief workflow of the neural
network method.
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Tian et al., 2022) is a reasonable choice. With efficient

reconciliation error correction, an MDI type DM-CV-QKD

protocol can transmit longer than the MDI type Gaussian-

modulated CV-QKD protocol (Ma et al., 2019; Zhao et al.,

2020b). At the same time, MDI protocols (Huang et al., 2022)

close the loophole of detectors (Ma et al., 2014; Zhang et al.,

2014), which offers higher security than protocols trusting both

senders and detectors. Additionally, MDI protocols naturally

facilitate scenarios in which two users Alice and Bob are in

different media, such as fiber-to-water (Yu et al., 2022) and

space-to-water (Peng et al., 2022). The intermediate party,

Charlie, can be placed at the junction of the two media, so

that each signal is transmitted in only one medium.

6 Discussion

DM-CV-QKD is a vibrant research direction with great

potential for development. Compared with traditional

discrete-variable systems, continuous-variable systems have

indisputable low-cost advantages. In terms of preparation,

discrete modulation is also simpler than Gaussian modulation,

and eases the interpretation, error correction and privacy

amplification of measurement outcomes during the

postprocessing. Relaxing the requirements for experimental

conditions inevitably increases the difficulty of security analysis.

The quality of security analysis should be evaluated from four

aspects: security levels, tightness, universality and computation

complexity. Most security analysis methods can only resist

collective attacks under the asymptotic regime, which is still

some distance from security against coherent attacks under the

finite-size regime. Recently, analytical and numerical methods

that can be widely applied to different discrete modulation

schemes have been proposed. Analytical methods are usually

easy to compute but not tight enough for long distance

transmission. Numerical methods, especially nonlinear

methods, can find the tight lower bound of the key rate but

consume considerable computational resources and time. There

is still room for improvement in terms of tightness of key rate

bounds, security level and postprocessing speed.

Imposing the idea of machine learning in DM-CV-QKD is a

promising way to enhance the practicality (Li et al., 2018). For

instance, the neural network can reduce time consumption in

predicting the secret key rate (Liu Z.-P. et al., 2022; Zhou et al.,

2022). Ensemble learning has been used to predict

communication failure caused by channel disturbance (Li

et al., 2021b). Additionally, some technical means can be

applied to further improve the performance (Li and Cvijetic,

2018), such as quantum catalysis (Guo et al., 2020; Ye et al., 2021)

and quantum scissors (Ghalaii et al., 2020; Li Y. et al., 2021),

multicarrier (Gyongyosi, 2020).

While mastering the basic protocol of DM-CV-QKD, its

application range can be expanded according to its

characteristics. It has the potential for communications in

free-space channels (Hill et al., 2017; Mélen et al., 2017),

satellite-to-earth channels (Liao et al., 2017a) and seawater

channels (Ruan et al., 2019). In addition, MDI protocols

against side-channel attacks and device-independent protocols

with higher security are also worthy of further study.
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