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This study proposes a hybrid quantum systemof an ensemble of collective spins

coupled to a surface acoustic wave (SAW) cavity through a sideband design.

Assisted by a dichromatic optical drive with a phase-dependent control, this

spin ensemble can effectively mimic different types of long-range

Lipkin–Meshkov–Glick (LMG) interactions and then undergo quantum phase

transitions (QPTs) due to phase-induced spontaneous symmetry breaking

(SSB). In addition, this phase-controlled scheme also ensures the dynamical

preparation of the spin-squeezed state (SSS), which may be a useful application

in quantum measurement. This study is a fresh attempt at quantum

manipulation based on acoustic control and also provides a promising route

toward useful applications in quantum information processing, especially the

adiabatic preparation of multiparticle-entangled ground states via QPTs;

i.e., the Greenberger–Horne–Zeilinger (GHZ) or W-type states.
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1 Introduction

In the field of quantum information processing (QIP) and quantum manipulation

(QM), the quantized electromagnetic field has always been considered the most reliable

medium and means, such as in cavity quantum electrodynamics (QED) system and the

superconducting circuits (SC) system (Xiang et al., 2013; Blais et al., 2020; Carusotto et al.,

2020; Clerk et al., 2020; Haroche et al., 2020; Blais et al., 2021). However, with the rapid

development of cryogenic and micro-nano processing technologies, traditional

mechanical or acoustic devices have gradually re-entered the quantum world

(O’Connell et al., 2010; Aspelmeyer et al., 2014; Forn-Díaz et al., 2019). In particular,

quantum acoustic devices (QADs) have become among the most valuable quantum units

owing to their unique advantages (Naber et al., 2006; Gustafsson et al., 2014; Schuetz et al.,

2015). First, for the suppression of quantum noise, QADs can isolate environmental

phononic noise at a much higher efficiency compared to other electromagnetic systems.

Second, QADs are more convenient to design and fabricate because of their inherent

OPEN ACCESS

EDITED BY

Youngik Sohn,
Korea Advanced Institute of Science and
Technology (KAIST), South Korea

REVIEWED BY

Shi-Lei Su,
Zhengzhou University, China
Lucas Lamata,
Sevilla University, Spain

*CORRESPONDENCE

Yuan Zhou,
zhouyuan@huat.edu.cn

SPECIALTY SECTION

This article was submitted to Quantum
Engineering,
a section of the journal
Frontiers in Quantum Science and
Technology

RECEIVED 24 October 2022
ACCEPTED 07 December 2022
PUBLISHED 12 January 2023

CITATION

Zhou Y, Cao L-Z, Wang Q-L, Hu C-S,
Zhang Z-C and Xiong W (2023), Phase-
dependent strategy to mimic quantum
phase transitions.
Front. Quantum Sci. Technol.
1:1078597.
doi: 10.3389/frqst.2022.1078597

COPYRIGHT

© 2023 Zhou, Cao, Wang, Hu, Zhang
and Xiong. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Quantum Science and Technology frontiersin.org01

TYPE Original Research
PUBLISHED 12 January 2023
DOI 10.3389/frqst.2022.1078597

https://www.frontiersin.org/articles/10.3389/frqst.2022.1078597/full
https://www.frontiersin.org/articles/10.3389/frqst.2022.1078597/full
http://orcid.org/0000-0003-3356-1800
https://crossmark.crossref.org/dialog/?doi=10.3389/frqst.2022.1078597&domain=pdf&date_stamp=2023-01-12
mailto:zhouyuan@huat.edu.cn
mailto:zhouyuan@huat.edu.cn
https://doi.org/10.3389/frqst.2022.1078597
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/quantum-science-and-technology
https://www.frontiersin.org
https://www.frontiersin.org/journals/quantum-science-and-technology
https://www.frontiersin.org/journals/quantum-science-and-technology#editorial-board
https://www.frontiersin.org/journals/quantum-science-and-technology#editorial-board
https://doi.org/10.3389/frqst.2022.1078597


larger dimensions (Schuetz et al., 2015; Kuzyk and Wang, 2018).

Third, they originate from mature magnetostrictive or

piezoelectric technologies, which can further improve their

adaptive capacity to establish various hybrid quantum systems

(Manenti et al., 2016; Knörzer et al., 2018). Finally, QADs can

induce strong coupling to different qubits; this coupling

mechanism is mainly similar to the ion (or atom) trap system

and is naturally applicable to multiple QIP schemes, which were

first proposed in ion trap systems (Andrew Golter et al., 2016a;

Andrew Golter et al., 2016b). Therefore, an acoustic-based hybrid

system can provide a promising platform to implement QIP and

QM targets to ensure the efficient tailoring of spin–phonon and

spin–spin interactions (Rabl et al., 2009; Bennett et al., 2013).

Working as a quantum data bus or transducer, QADs can

provide strong interactions in a wide range of qubits,

especially at the single-quantum level (Li et al., 2020; Zhou

et al., 2021; Leng et al., 2022; Zhou et al., 2022). Taking the

surface acoustic wave (SAW) cavity, for example, strong coupling

to different qubits can be achieved, with an estimated

cooperativity C ~ g2/(γκ) of C ~ 10–100 (Schuetz et al., 2015).

Recently, other kinds of artificial qubits, including

nitrogen-vacancy (NV), silicon-vacancy (SiV), and

hexagonal boron nitride (hBN) color centers have been

introduced into the field of quantum science (Gao et al.,

2015; Lemonde et al., 2018; Tan et al., 2022; Zhao et al.,

2022). Without an additional trap, a SAW-based device may

also induce strong stressful interactions directly to this type of

solid-state spin, which increased interest for QIP and QM.

This study proposes a general hybrid quantum system of an

ensemble of collective spins coupled to a surface acoustic wave

(SAW) cavity through a sideband design. Assisted by a

dichromatic optical drive with a phase-dependent control,

this spin ensemble effectively mimicked different types of

long-range spin–spin interactions, namely the

Lipkin–Meshkov–Glick (LMG) model with different types

(Lipkin et al., 1965; Castaños et al., 2006; Morrison and

Parkins, 2008; Ma and Wang, 2009; Zhang et al., 2017).

Through a phase-dependent modification of this optical

drive, this ensemble of spins undergoes quantum phase

transitions (QPTs) because of the so-called spontaneous

symmetry breaking (SSB). In addition, this phase-

controlled scheme can also supply both the dynamical

preparation of spin-squeezed state (SSS) (Kitagawa and

Ueda, 1993; Wineland et al., 1994) and the adiabatic

preparation of the multiparticle entangled ground states via

QPTs (Vidal et al., 2004a; Vidal et al., 2004b); i.e., the

Greenberger–Horne–Zeilinger (GHZ) or W-type states

(Anders and Mølmer, 1999; Mølmer and Anders, 1999;

Zheng, 2001; Unanyan and Fleischhauer, 2003). Given the

goal of performing realistic QIP and QM, the results of our

investigations are a fresh attempt using an acoustic control

and may also provide general and useful applications.

2 Setup and Hamiltonian

Here we consider the basic proposal for this hybrid system

and the coupling mechanism, which are illustrated in Figures 1A,

B, C. Without a loss of generality, we take an ensemble of the NV

centers as an example. In Figure 1A, an ensemble of solid-state

spins is set near the surface of the SAW cavity with a fundamental

frequency ωm/2π ~ 0.1–1.0 GHz. A phase-dependent

dichromatic field (λ ~ 700 nm) is applied to transmit the

optional classical field (θ1, ω1, Ω1) or (θ2, ω2, Ω2). According

to the previous investigation, this type of spin–phonon coupling

is analogous to the ion trap system, and this SAWmode is similar

to a harmonic oscillator potential as shown in Figure 1B. For an

NV center, the energy-level design is plotted in Figure 1C, where |

e(g)〉 denotes the excited (ground) state with the energy split

ω0 ≫ ωm. We can obtain only the longitudinal coupling to each

NV center via the SAW cavity, based on the expression

ĤL ~ Zg0(â + â†)|e〉〈e| and coupling strength g0 (Andrew

Golter et al., 2016b). Meanwhile, we apply the dichromatic

optical drive to each NV spin obtain to the transition process

|e〉 #|g〉 near-resonantly. This sideband design is illustrated in

FIGURE 1
(Color online) Scheme diagrams. (A) An ensemble of solid-
state spins is set near the surface of the SAW cavity with the
phonon annihilation (creation) operator â (â†) and mode
frequency ωm. The phase modulators are applied to transmit
the optional and controllable optical fields with tunable phase θ1,2,
frequency ω1,2, and driving strength Ω1,2. (B) This type of sideband
spin–phonon coupling system can be analogous to the ion trap
system. (C) Energy-level schematic and sideband design, where
the two-tune classical fields are applied to the solid-state spins via
additional phase controls, thereby ensuring an optional drive to the
spins with the red (blue) detuning Δ ~ ωm.
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Figure 1C. The identical red and blue detuning satisfies Δ ≡
ω2−ω0 ≡ ω0−ω1 ~ ωm.

Therefore, the systemic Hamiltonian for each NV spin

(i.e., we consider the jth NV spin) is expressed as (Z = 1)

Ĥj � ω0σ̂
j
z/2 + ωmâ

†â + g0 â + â†( )σ̂jz + σ̂+j Ω1e
−iω1t +Ω2e

−iω2t( )
+H.c.,

(1)
where σ̂jz ≡ |e〉j〈e| − |g〉j〈g|, σ̂+j ≡ |e〉j〈g|. For simplicity, we

assume here that the collective spins are homogenous, and write

the Hamiltonian of this whole system as

Ĥ � ω0Ŝz + ωmâ
†â + g â + â†( )Ŝz + Ŝ

+ Ω1e
−iω1t +Ω2e

−iω2t( )
+H.c. (2)

in which the collective spin operators are defined as Ŝx,y,z �∑N
j�1σ̂

j
x,y,z/2 and Ŝ

± � ∑N
j�1σ̂

±
j , with the basic commutation

relation: [Ŝi, Ŝj] � iεijkŜk, [Ŝ+, Ŝ−] � 2Ŝ
z
, and [Ŝz, Ŝ±] � ± Ŝ

±
.

We apply the unitary Schrieffer–Wolff transformation ÛSW �
e−ip̂ to Eq. 2, with the Hermitian operator p̂ ≡ iη(â† − â)Ŝz and
the Lamb–Dicke-like parameter η = g/ωm ~ 0.1–0.2 (Rabl et al.,

2010; Zhou et al., 2018; Li et al., 2020). We assume that the SAW

is cooled sufficiently at extremely low ambient temperature so

that this hybrid system satisfies the so-called Lamb–Dicke limit

(�n + 1)η2 ≪ 1, where �n � 1/(eZωm/kBT − 1) is the average number

of the phonon for this acoustic mode for the environmental

temperature T. For example, we assume that ωm/2π ~ 1.0 GHz;

once T ≈ 1.0 K, we get �n ≈ 20.3; if T ≈ 0.1 K, we also get �n ≈ 1.6.

Therefore, the thermal phonon number can be compressed

effectively as long as this hybrid system is at a low

temperature. Applying the approximate relation

e±η(â
†−â) ≃ 1 ± η(â† − â) to Eq. 2 we acquire the Hamiltonian

in the interaction picture. As η≪ 1, we can effectively rewrite the

Hamiltonian in the interaction picture (IP)

ĤIP ≃ Ŝ
+
eiω0t × 1 + η â†eiωmt − âe−iωmt( )[ ] × Ω1e

−iω1t +Ω2e
−iω2t( )

+H.c.

(3)
In this scheme, we assume the following relations: ] ≫ λ,

|Δ|≫|Ω1,2|, and {], |Δ|, |Δ ± ]|}≫ η|Ω1,2| and can then

eliminate this phonon mode adiabatically (according to

Appendix A) (James, 1998; James and Jerke, 2012). Ignoring

the items for the energy shift caused by this acoustic mode

(~ â†âŜz), we can get the general LMG model with the long-

range spin–spin interactions.

Ĥ
eff

Total ≈ AŜz + BŜ
2

x + CŜ
2

y +D ŜxŜy + ŜyŜx( ), (4)
where the relevant coefficients are

A � 2
Δ − 2η2Δ

δ2δ3
( ) r21 − r22( ),

B � 2ωmη
2

δ2δ3
2r1r2 cosΘ − r21 − r22( ),

C � 2ωmη
2

δ2δ3
−2r1r2 cosΘ − r21 − r22( ),

D � −4ωmη
2

δ2δ3
r1r2 sinΘ.

3 LMG model

The Lipkin–Meshkov–Glick (LMG) model was first

proposed in the area of nuclear physics to describe monopole-

monopole interactions and is one kind of solvable long-range

spin–spin model (Lipkin et al., 1965). This model, not only obeys

the conservation of angular momentum but also satisfies the Z2

symmetry. Thus, many theoretical proposals have been described

for simulating this spin model to explore new topics in physics.

Different physical systems such as the ion-trap system (Zheng,

2001; Unanyan and Fleischhauer, 2003), the cavity QED system

(Morrison and Parkins, 2008; Zhang et al., 2017), and the

superconducting system (Tsomokos et al., 2008) have

presented theoretical schemes and reported interesting results.

The general LMG model may be expressed as

Ĥ � ϵŜz + V Ŝ
2

x − Ŝ
2

y( ) +W Ŝ
2

x + Ŝ
2

y( ), (5)

and the relevant tunable parameters are ϵ, V, and W, respectively

(Lipkin et al., 1965). Here, Eq. 5 satisfies the conservation of angular

momentum, namely, [Ĥ, S2] with S2 ≡ Ŝ
2
x + Ŝ

2
y + Ŝ

2
z � S(S + 1). In

addition, we can achieve several types of LMGmodels by modifying

the aforementioned parameters. For example, onceV= 0 andW≠ 0,

we can first obtain isotropy-type interactions with

ĤI � ϵŜz +W(S2 − Ŝ
2
z). This type of LMG Hamiltonian can be

solved exactly in the representation of Ŝz; i.e., Ŝz|mz〉 � mz|mz〉,

FIGURE 2
(Color online) Dynamical squeezing parameter ξ2S for
different Θ = 0, ± π/2, ± π, ± 0.2π, with γdp ≈ 0.1γdc ≈ 0.001GT and
N = 100, 50, 20.
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−S ≤mz ≤ S and |mz〉 denote the eigenstate of Ŝz. We can, therefore,

obtain the relation ĤI|mz〉 � Emz|mz〉 and

Emz � ϵmz +W[S(S + 1) −m2
z]. This model mainly indicates the

ferromagnetic order, with a ground state of |mz = S〉 or |mz = −S〉.
When ϵ = 0 andV =W ≠ 0 (orV = −W ≠ 0), we obtain the one-axis

twisting LMGmodel; i.e., Ĥx,y � Cx,yŜ
2
x,y withCx =W +V andCy =

W−V. Here, Ĥx,y belongs to the ferromagnetic order when Cx,y < 0;

conversely, when Cx,y > 0, it obeys the antiferromagnetic order.

Furthermore, when V ≠ W ≠ 0, we obtain the two-axis twisting

LMG model; i.e., ĤT � ϵŜz + CxŜ
2
x + CyŜ

2
y.

4 Discussion of the phase-dependent
control

First, according to the previous investigation of this long-

range spin model, the isotropy LMG model is (see Appendix B)

Ĥ
1,2

Isotropy � A1,2
0 Ŝz − B1,2

0 Ŝ
2

z + B1,2
0 S2. (6)

In this Hamiltonian, S2 ≡ Ŝ
2
x + Ŝ

2
y + Ŝ

2
z � S(S + 1) is a conserved

quantity, S = N/2 represents the maximum total angular

momentum, and Ĥ
1,2
Isotropy corresponds to a phase-independent

model. This also belongs to the ferromagnetic- (FM-) order

Hamiltonian, with the unique and non-degenerate ground

state namely, |Ψ〉u = |↑↑/〉 ≡|mz = S〉 or |Ψ〉d = |↓↓/〉 ≡|
mz = −S〉, with spin number N (Zheng, 2001). Here, the

coefficient A1,2
0 breaks the original symmetry and eliminates

the degeneracy of item −B1,2
0 Ŝ

2
z. The unique ground state |Ψ〉u

or |Ψ〉d is decided mainly by the parameter A1,2
0 . For example, if

we can obtain Ĥ
2
Isotropy and A2

0 > 0, the ground state is |Ψ〉u;
however, for Ĥ

1
Isotropy and A1

0 > 0, the ground state is |Ψ〉d.
Second, the more interesting and novel point lies in the

phase-dependent control of this proposal, which we discuss

briefly. Here, we assume Ω1,2 � r1,2eiθ1,2 and Θ = θ1+θ2. To

study the effects caused by the phase of this dichromatic

optical drive, we assume r1 = r2 = r for simplicity, to get

Ĥ
LMG

General ≈

− GT 1 − cosΘ( )Ŝ2x + 1 + cosΘ( )Ŝ2y + sinΘ ŜxŜy + ŜyŜx( )[ ],
(7)

with GT � 4ωmr2η2

δ2δ3
.

For single solid-state spin, we first define |± 〉x �
(|↑〉±|↓〉)/ �

2
√

and |± 〉y � (|↑〉± i|↓〉)/ �
2

√
. We can then make

the brief list shown in Table 1. For example, for the first case,

namely, case (1), with Θ = 0, we obtain the one-axis twisting

LMG model along the y direction,

Ĥ
LMG

y � −GyŜ
2

y. (8)

When Gy � 8ωmr2η2

δ2δ3
> 0, the Hamiltonian Ĥ

LMG
y presents the

ferromagnetic (FM) order, with a ground state corresponding

to |my = ±N/2〉 = |±±/〉y ≡|±〉y|±〉y/|±〉y; however, when Gy <
0, the Hamiltonian Ĥ

LMG
y is the antiferromagnetic (AFM) order,

with a ground state of |my = 0〉 (N is an even number) or |

my = ±1/2〉 (N is an odd number). In addition, according to our

previous investigation on this type of interaction, we can obtain

an adiabatic transition process from the initial disentangled

ground state (governed by Ĥ
1,2
Isotropy) to the N-particle

Greenberger–Horne–Zeilinger (GHZ)-type entangled state

(Zhou et al., 2018).

While for case (2), when Θ = π, we can also get another one-

axis twisting LMG model along the x direction,

Ĥ
LMG

x � −GxŜ
2

x. (9)

Equivalently, when Gx � 8ωmr2η2

δ2δ3
> 0, the Hamiltonian Ĥ

LMG
x also

shows the ferromagnetic (FM) order, with a ground state of |

mx = ±N/2〉 = |±±/〉x ≡|±〉x|±〉x/|±〉x; however, when Gx < 0,

the Hamiltonian Ĥ
LMG
x is of the antiferromagnetic (AFM) order,

with a ground state of |mx = 0〉 (N is an even number) or |

mx = ±1/2〉 (N is an odd number).

Then, for case (3), as illustrated in the third and fourth lines

of Table 1, when Θ = ±π/2, we obtain a novel transverse-type

LMG model (in the x−y plane) as follows:

Ĥ
±

T � −GT Ŝx ± Ŝy( )2. (10)

This type of spin–spin interaction belongs to the one-axis

twisting model. For example, if we define a linear

transformation in this model; i.e., Ŝ+ � �
2

√
Ŝ
+
eiϑ,

Ŝ− � �
2

√
Ŝ
−
e−iϑ, and Ŝx � (Ŝ+ + Ŝ−)/2, we get Ĥ

±
T � −GTŜ2

x ,

with the “±” signs ϑ = ∓π/4, respectively. In this new x

representation, we can also obtain an equivalent one-axis

twisting LMG model along the x direction. The physical

mechanism of this model is also similar to that in case (2),

TABLE 1 Phase-dependent LMG models and ground states (GS) (Zhou et al., 2018).

Model Phase-dependent control Θ and ground states (GS)

Ĥ
LMG
y

Θ = 0, GS: Gy > 0 |my = ±N/2〉; Gy < 0 |my = 0〉 (even N), or |my = ±1/2〉 (odd N)

Ĥ
LMG
x

Θ = π, GS: Gx > 0 |mx = ±N/2〉; Gx < 0 |mx = 0〉 (even N), or |mx = ±1/2〉 (odd N)

Ĥ
±
T

Θ � ± π
2, GS: GT > 0 |mx = ±N/2〉; GT < 0 |mx = 0〉 (even N), or |mx = ±1/2〉 (odd N)
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and its FM and AFM phases are governed by the sign of GT;

i.e., GT > 0, the Hamiltonian Ĥ
±
T denotes the FM order, with a

ground state of |mx = ±N/2〉 = |±±/〉x; but while GT < 0, Ĥ
±
x

stands for the AFM order, with a ground state of |mx = 0〉 (N is an

even number) or |mx = ±1/2〉 (N is an odd number).

Thus, despite the different representations, we can always get

the one-axis twisting LMG model, which can also lead to the

preparation of the spin-squeezed state (SSS) through a dynamic

process. Two main definitions have been proposed to describe

the squeezed degree of this spin ensemble, (Sidles et al., 1995).

First, Masahiro Kitagawa and Masahito Ueda defined ξ2S �
4min(ΔĴ2�n⊥)

N in 1993. Another similar definition, the metrological

spin-squeezing parameter ξ2R � N(ΔĴ⊥)2
〈ĴS〉2

, was introduced by

Wineland et al. in 1992 and 1994 (Wineland et al., 1992;

Wineland et al., 1994). According to our previous

investigation, both definitions are valid and reliable for

describing the SSS; moreover, we also reported that ξ2S ≤ ξ2R (Li

et al., 2020). For simplicity, we plot the dynamical ξ2R (Kitagawa

and Ueda, 1993) in Figure 2, by solving the following master

equation numerically. Under the realistic condition considering

both decay and dephasing factors (Γdc and Γdp), the

corresponding dynamical process of this whole system is

dominated by the master equation:

dϱ̂
dt

� i ϱ̂, ĤLMG

General[ ] + Γdc 2Ŝ
−ϱ̂Ŝ+ − Ŝ

+
Ŝ
−ϱ̂ − ϱ̂Ŝ+Ŝ−( )

+ Γdp 2Ŝzϱ̂Ŝz − ŜzŜzϱ̂ − ϱ̂ŜzŜz( ). (11)

From which we note that this general LMGmodel can always

engineer collective spins into the SSS dynamically at time ~ 0.03
GT

(N = 100), or ~ 0.05
GT

(N = 50), or ~ 0.08
GT

(N = 20). In addition,

governed by this general LMGmodel, no matter the special phase

Θ or general Θ, the collective spins will be equivalently and

efficiently engineered into the SSS.

5 Quantum phase transitions (QPTs)

Utilizing the standard average-field approximation, we can

determine the expected value of the collective spin components

via the definition 〈Ŝi〉 � Tr(ρŜi) and then write a group of time-

dependent differential equations for the total angular momentum

through the basic relation d〈Ŝi〉/dt � Tr( _ρŜi). We introduce an

equivalent normalization transformation: 〈Ŝx〉 � NX,

〈Ŝy〉 � NY, and 〈Ŝz〉 � NZ to this proposal. To achieve the

theoretical results, we also rewrite Eq. 11 for simplicity.

dρ̂

dt
� i ρ̂, ĤΘ[ ] + γdc 2Ŝ

−
ρŜ

+ − Ŝ
+
Ŝ
−
ρ − ρŜ

+
Ŝ
−( )

+ γdp 2ŜzρŜz − ŜzŜzρ − ρŜzŜz( ), (12)

in which we assume that all spins are homogenous and that their

relative dephasing and decay rates are uniform factors; i.e., we

assume that γdc ~Γdc/(−GT) and γdp ~Γdp/(−GT). By discarding

the quantum fluctuations of Ŝx,y,z, we effectively obtain a group

of semiclassical equations:

_X � 2 cosΘ + 1( )YZ + 2 sinΘ − γdc( )XZ − γdpX/2,
_Y � 2 cosΘ − 1( )XZ + −2 sinΘ − γdc( )YZ − γdpY/2,
_Z � −4 cosΘXY + −2 sinΘ + γdc( )X2 + 2 sinΘ + γdc( )Y2.

(13)
Together with the total spins’ conservation relation

X2+Y2+Z2 = 1, we obtain the analytical solutions of the

relevant order parameters, i.e., X, Y, and Z, by solving this

group of equations. Then, we can determine the analytical

solutions as (1) the trivial solution X = Y = 0, and Z = ±1 for

the normal phase; and (2) the non-trivial solutions

FIGURE 3
(Color online) Steady-state order parameters X and Y varying
with Θ ∈ [−2π, 2π], with γdp ≈ 0.1γdc.

FIGURE 4
(Color online) Basic transformation schematic for generating
the multiparticle entanglement via QPTs induced by SSB.
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Z � − γdp
2γdc

,

X � ±

����������������
1 − Z2( ) cosΘ + 1( )

2

√
,

Y � −X sinΘ
cosΘ + 1

.

(14)

Assuming γdp ≈ 0.1γdc, we get Z = −0.05 and plot the numerical

average-value order parameters X and Y in Figure 3. Owing to the

Z2 symmetry of this general LMG model ĤΘ, we can obtain the

positive and negative values symmetrically with X± and Y±. From

which, we first note several critical points among the varying

region [−2π, 2π].

More specifically, when Θ approaches points such as 0, ± 2π,

and even 2kπ (k is any integer number), X+→ 1, X−→ −1, and Y±

→ 0 simultaneously. This type of QPT is mainly induced by the

transformation of the representation; i.e., z ↔ x or x ↔ y. We

consider this to correspond to phase-induced spontaneous

symmetry breaking (SSB). When Θ → ±π, we get a different

QPT effect, namely, X± → 0; however, its n-order derivative at

this point (znX±/zΘn)±π is discontinuous with n ≥ 1. More

interestingly, around these points, Y+ and Y− will suddenly turn

over to each other and both Y± and (znY±/zΘn)±π are

discontinuous at this type of critical point. Finally, regarding

other critical points, when Θ is modified near points such as ± π/

2, ± 3π/2, /, a synchronous crossing phenomenon will occur;

i.e., X+ = Y+ and X− = Y−. This result corresponds to the mixture-

type LMG model (10), and it is also basically induced by the so-

called SSB.

6 Applications for engineering
multiparticle entanglement

Therefore, no matter in case (1) and in cases (2) and (3),

these long-range spin–spin interactions belong to the one-axis

twisting LMG model under their different y, x, and x

representations. This type of spin model can also play an

important role in the preparation of multiparticle

entanglement. Starting from the original and general LMG

model (4), we briefly discuss this topic.

Initially, we can easily get the isotropy LMG model such as

Eq. 6, which belongs to the FM order. Its ground state is the

disentangled and unique state |mz = S〉 or |mz = −S〉, which is

also decided by the sign of A1,2
0 . The relevant results are plotted

in Figure 4. Next, when we modify the amplitude of this

classical field adiabatically with r1,2 → r and select the phase

θ1,2 with Θ = θ1+θ2, we obtain not only the SSB-induced QPTs

but also efficient adiabatic passage for engineering collective

spins into the entangled ground state; i.e., the GHZ or W

states. As illustrated in Figure 4, if this GS transition

corresponds to the FM↦FM, we can get the entanglement

passage for the GHZ state. However, when the GS transition is

FM↦AFM, we get another entanglement strategy for the

W-type GS. Because these types of investigations have been

performed previously, these results confirm the feasibility of

this scheme for the preparation of entanglement (Zhou et al.,

2018).

7 Experimental considerations

In this proposal, we first considered an ensemble of solid-state

spins located on the surface of the SAW cavity with a fundamental

frequency of ωm/2π ~ 0.1–1.0 GHz (Schuetz et al., 2015). SAW-

based quantum devices can induce strong or ultra-strong

interactions in many kinds of atoms, spins, and even other

artificial atoms, as shown in Table 2. Taking the nitrogen-

vacancy (NV) spins for example, we can define the ground state

|0〉 ≡|g〉 and excited state |Ey〉 ≡|e〉, with energy-splitting ω0/2π ~

470 THz. The estimated coherent spin–phonon coupling at the

single-quantum level is approximately g0/2π~ 100 kHz; thus, we can

determine the collective coupling strength g ≈
��
N

√
g0 (Andrew

Golter et al., 2016a; Andrew Golter et al., 2016b). The coherent

spin–phonon coupling at the single-quantum level of a single

quantum dot (QD) can reach g0/2π ~ 100MHz. For both

different solid-state spins, their cooperativity in a SAW-based

hybrid system is C ~ g2/(γκ) ~ 10–100, which also belongs to the

strong-coupling region (Schuetz et al., 2015).

8 Conclusion

Utilizing a hybrid system of collective spins coupled to a

SAW cavity, we study a proposal for simulating the general

long-range LMG model with a phase-dependent control. Our

analysis and discussion show that this scheme can not only

ensure the generation of the SSS via a dynamical

evolution governed by the general one-axis twisting

interactions but also supply a potential route toward

multiparticle GHZ or W-type states through their FM or

TABLE 2 Basic coupling of the SAW-based platform to different qubits (Schuetz et al., 2015).

Strength Quantum dot Trapped ion NV center Superconducting qubit

Coupling g/2π 10–400 MHz 2–4 kHz 10–100 kHz 10–100 MHz

Cooperativity C 10–100 7–36 10–50 1–20
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AFM phase transitions. We also studied the open-system

critical behavior of this general LMG model by using the

average-field method. For the target of carrying out realistic

QIP and QM, our findings may be considered a fresh attempt

by using an acoustic control, especially a phase-dependent

control. Moreover, this proposed system might have various

applications.
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Appendix A: Derivation of the
effective Hamiltonian

According to Eq. 3, we can rewrite

HIP ≃ Ŝ
+
eiω0 t × 1 + η â†eiωmt − âe−iωmt( )[ ] × Ω1e

−iω1 t +Ω2e
−iω2 t( ) +H.c.

� 1 + η â†eiωmt − âe−iωmt( )[ ] × Ω1 Ŝ
+
eiΔt +Ω2 Ŝ

+
e−iΔt( ) +H.c.

� Ĥ1 Δ( ) + Ĥ2 δ2( ) + Ĥ3 δ3( ),
(A1)

where δ2 = ωm+Δ, δ3 = ωm−Δ, and

Ĥ1 � Ω1Ŝ
+
eiΔt +Ω2Ŝ

+
e−iΔt +Ω1*Ŝ

−
e−iΔt + Ω2*Ŝ

−
eiΔt, (A2)

Ĥ2 � ηΩ1â
†Ŝ

+
eiδ2t − ηΩ2âŜ

+
e−iδ2t + ηΩ1*âŜ

−
e−iδ2t − ηΩ2*â

†Ŝ
−
eiδ2t,

(A3)
Ĥ3 � ηΩ2â

†Ŝ
+
eiδ3t − ηΩ1âŜ

+
e−iδ3t + ηΩ2*âŜ

−
e−iδ3t − ηΩ1*â

†Ŝ
−
eiδ3t.

(A4)
Utilizing the method of effective Hamiltonian, we get (James,

1998; James and Jerke, 2012)

Ĥ1 → Ĥ
eff

1 � Ω1Ω1*
Δ Ŝ

+
, Ŝ

−[ ] + Ω2Ω2*
Δ Ŝ

−
, Ŝ

+[ ]
� 2 |Ω1|2 − |Ω2|2( )

Δ Ŝz, (A5)
Ĥ2 → Ĥ

eff

2

� η2 −Ω1Ω2 â† Ŝ
+
, âŜ

+[ ] +Ω1Ω1′ â† Ŝ
+
, âŜ

−[ ] +Ω2Ω2′ â† Ŝ
−
, âŜ

+[ ] −Ω1′Ω2′ â† Ŝ
−
, âŜ

−[ ]{ }/δ2

≈ η2 Ω1Ω2 Ŝ
+( )2 +Ω1′Ω2′ Ŝ

−( )2 − |Ω1|2 Ŝ− Ŝ+ − |Ω2|2 Ŝ+ Ŝ−[ ]/δ2 ,

(A6)
Ĥ3 → Ĥ

eff

3

� η2 −Ω1Ω2 â† Ŝ
+
, âŜ

+[ ] +Ω2Ω2′ â† Ŝ
+
, âŜ

−[ ] +Ω1Ω1′ â† Ŝ
−
, âŜ

+[ ] −Ω1′Ω2′ â† Ŝ
−
, âŜ

−[ ]{ }/δ3

≈ η2 Ω1Ω2 Ŝ
+( )2 +Ω1′Ω2′ Ŝ

−( )2 − |Ω2|2 Ŝ− Ŝ+ − |Ω1|2 Ŝ+ Ŝ−[ ]/δ3.

(A7)

Thus, we can rewrite the total systemic Hamiltonian with an

effective form

Ĥ
eff

Total ≈ Ĥ
eff

1 + Ĥ
eff

2 + Ĥ
eff

3 . (A8)

Utilizing the relation Ŝ
± � Ŝx ± iŜy, we get

(Ŝ±)2 � Ŝ
2
x − Ŝ

2
y ± i(ŜxŜy + ŜyŜx), Ŝ

+
Ŝ
− � Ŝ

2
x + Ŝ

2
y + Ŝz, and

Ŝ
−
Ŝ
+ � Ŝ

2
x + Ŝ

2
y − Ŝz. Then, the total Hamiltonian is mainly

expressed as

Ĥ
eff

Total ≈ AŜz + BŜ
2

x + CŜ
2

y +DŜxŜy + EŜyŜx, (A9)
with the coefficients

A � 2
Δ − 2η2Δ

δ2δ3
( ) |Ω1|2 − |Ω2|2( ),

B � 2ωmη
2

δ2δ3
Ω1Ω2 +Ω1*Ω2* − |Ω1|2 − |Ω2|2( ),

C � 2ωmη
2

δ2δ3
−Ω1Ω2 − Ω1*Ω2* − |Ω1|2 − |Ω2|2( ),

D � E � 2iωmη
2

δ2δ3
Ω1Ω2 −Ω1*Ω2*( ).

(A10)

In general, if we may assume Ω1,2 ≡ r1,2eiθ1,2 and Θ ≡θ1+θ2, then
we can get

A � 2
Δ − 2η2Δ

δ2δ3
( ) r21 − r22( ),

B � 2ωmη
2

δ2δ3
r1r2e

iΘ + r1r2e
−iΘ − r21 − r22( ),

C � 2ωmη
2

δ2δ3
−r1r2eiΘ − r1r2e

−iΘ − r21 − r22( ),
D � E � 2iωmη

2

δ2δ3
r1r2e

iΘ − r1r2e
−iΘ( ).

(A11)

Appendix B: Isotropy LMG model

From Eqs. A9, A11, we assume r1 = 0, r2 ≠ 0 or r2 = 0, r1 ≠ 0;

thus, the isotropy LMG model is

Ĥ
1,2

Isotropy � A1,2
0 Ŝz + B1,2

0 Ŝ
2

x + Ŝ
2

y( ) � A1,2
0 Ŝz − B1,2

0 Ŝ
2

z + B1,2
0 S2,

(B1)
with coefficients (η ~ 0.1–0.2)

A1
0 �

2
Δ − 2η2Δ

δ2δ3
( )r21 ≈ 2r21

Δ ,

A2
0 � − 2

Δ − 2η2Δ
δ2δ3

( )r22 ≈ − 2r22
Δ ,

B1,2
0 � −2ωmη

2

δ2δ3
r21,2.
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