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Introduction: As a worldwide public health concern, Metabolic syndrome 
(MetS) seriously endangers human health and life safety. It`s reported that there 
is a strong association between chemical pollutants and the development of 
MetS in recent years. Volatile organic compounds (VOCs), the primary emission 
pollutant in atmospheric pollutants, were closely associated with development 
of chronic diseases. However, the association between VOCs exposure and MetS 
is unclear. We aimed to investigate the association between VOCs and MetS and 
identify the behavioral patterns in which MetS patients may be exposed to VOCs.

Methods: We conducted a cross-sectional data analysis from 15,560 VOC-
exposed participants in the NHANES. Multivariable logistic regression model, 
weighted quantile sum (WQS) regression model, and Bayesian kernel machine 
regression (BKMR) regression model were employed to explore chemical 
exposure`s independent and combined effects on MetS, respectively.

Results: A total of 2,531 individuals were included in our study, of whom 51.28% 
had MetS and 48.72% were non-MetS. The logistic regression model identified 
the association between N-acetyl-S-(N- methylcarbamoyl)-L-cysteine (AMCC), 
N-acetyl-S-(2-carboxyethyl)-L-cysteine (CEMA), N-acetyl-S-(2- cyanoethyl)-L- 
cysteine (CYMA) and MetS. In WQS regression analysis, the WQS index was 
significantly associated with AMCC, trans,trans-Muconic acid (t,t-MA), N-Acetyl-
S-(1-cyano-2- hydroxyethyl)- L-cysteine (CYHA), CEMA, 2-Thioxothiazolidine-
4-carboxylic acid (TTCA), N-acetyl- S-(3- hydroxypropyl-1-methyl)-L-cysteine 
(HPMM), CYMA, N-acetyl-S-(3,4-dihydroxybutyl)-L-cysteine (NADB), and 
N-Acetyl-S-(4-hydroxy-2-methyl-2-buten-1-yl)-L-cysteine (IPM3 cysteine). 
Finally, the combined association of MetS was positively associated with CEMA 
and CYMA in the BKMR regression model.

Discussion: In summary, we demonstrated that VOCs and their` metabolism 
were significantly associated with MetS. Compared results from these three 
models, CEMA and CYMA were identified as the factors associated with MetS. 
This study provides a research direction for the mechanism of VOCs that may 
induce the onset and development of MetS.
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1 Introduction

Metabolic syndrome (MetS) is classified as a metabolic disorder 
characterized by central obesity, elevated triglyceride (TG), low high-
density lipoprotein cholesterol (HDL-C), hypertension, and impaired 
glucose homeostasis (1). As one of the most serious global public health 
problems, MetS induces a series of metabolic disorders and increases the 
risk of chronic diseases, including cardiovascular disease (CVD), type 2 
diabetes (T2D), and other chronic diseases (2, 3). Between the 1980s and 
2012, the prevalence of MetS among US adults aged 18 years and older 
rose by over 35%, and more than one-third of all US adults met the 
definition and criteria for MetS (4). Meanwhile, the research indicates that 
MetS and its associated complications pose a relatively great threat to 
children’s health, with the prevalence of overweight and obesity among 
children and adolescents on the rise (5). Consequently, it has become 
essential to investigate the risks that influence the development of MetS to 
reduce the burden of disease. Previous studies have established that the 
epidemic of MetS is primarily driven by factors such as physical inactivity, 
overnutrition, aging, and sleep deficiency. Furthermore, increasing 
evidence indicates that environmental chemicals, particularly air pollution, 
may also significantly contribute to the development of chronic metabolic 
diseases (6).

Volatile organic compounds (VOCs) are the primary constituents of 
air pollutants, which destroy the atmospheric environment and seriously 
endanger human health. As the research on VOCs and other air pollutants 
deepens, it causes a variety of chronic diseases, such as chronic obstructive 
pulmonary disease, asthma, bronchiolitis, and CVD (7). Specifically, 
VOCs may increase the risk of CVD by depleting circulating angiogenic 
cells (8, 9). Furthermore, chloroethanol causes white adipose tissue 
(WAT) inflammation and investigated lipolysis, which alters lipid 
metabolism and WAT-mediated hepatic steatosis due to changes in WAT 
lipolysis (10). Moreover, the content of urinary VOCs in T2D patients was 
significantly higher than that of the healthy subjects (11). A statistically 
significant association was identified between breath acetone and blood 
acetoacetate, as well as between breath acetone and β-hydroxybutyrate, 
indicating the potential involvement of VOCs in blood glucose 
metabolism (12). The above studies indicate that VOCs may contribute 

to the onset of various metabolic diseases associated with MetS. Despite 
the limited studies exploring the connection between VOCs and MetS, 
the exact relationship remains unclear. Therefore, we aimed to investigate 
the association between VOCs and MetS.

2 Materials and methods

2.1 Data sources

This study was conducted by the National Health and Nutrition 
Examination Survey (NHANES), a nationally representative cross-
sectional health examination survey in the United States, which consists 
of five main components: demographics, questionnaires, laboratory, 
dietary, and examination data. The data combined the partial data in 
2019–2020 (pre-pandemic) with the previous cycle (2017–2018), and 
included both MetS and non-MetS patients over 18 years old. In addition 
to essential demographic characteristics, the study included 62 VOCs, 
body mass index (BMI), blood pressure, fasting plasma glucose/
triglycerides (FPG/TG), and high-density lipoprotein cholesterol 
(HDL-C) were included in the study. The subjects` questionnaire 
collected information on their height, weight, smoking history, alcohol 
consumption, income level, and marital status. All participants provided 
complete written informed consent, and the study was approved by the 
Internal Review Board (National Institute of Environmental Research, 
Environmental Health Research Division-1805; IRB NIER 1805). The 
guidelines and regulations of the Declaration of Helsinki conducted all 
methods of this study. The distribution of other VOCs concentrations in 
urinary and serum samples is shown in Supplementary Table S1.

2.2 Participant selection

We extracted data for a total of 15,560 individuals from NHANES 
(2017-March 2020 pre-pandemic). Following the exclusion criteria, 
2,531 participants were eventually included in our study. The flowchart 
that explains the screening process is shown in Figure 1. Considering 

FIGURE 1

The flow chart for determining the final subjects is included.
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data representativeness, we excluded subjects with missing values and 
those whose lower limit of detection (LLOD) values for urine and 
serum VOC metabolites in the population exceeded one-fifth of the 
total population. To evaluate the associations of urine and serum 
VOCs with MetS, participants with missing data on any of the 62 
VOCs (n = 10,962) were initially excluded. Participants with missing 
data on smoking and drinking data (n = 587), family monthly poverty 
level index (n = 722), those aged under 18 years (n = 381), and core 
covariates (n = 131) were further omitted. A total of 2,531 participants 
were ultimately included in this study.

2.3 MetS definition

We defined MetS based on the National Cholesterol Education 
Program/Adult Treatment Panel III (NCEPATP III) criteria, where an 
individual was considered to have MetS if they met three or more of the 
following components (13). As follows: (a) Central obesity (waist 
circumference > 102 cm for males and > 88 cm for females); (b) 
Hypertension (blood pressure ≥ 130/85 mmHg or treated with anti-
hypertensive drugs); (c) Impaired fasting plasma glucose (fasting glucose 
≥5.6 mmol/L or drugs used for treating diabetes); (d) Fasting plasma 
triglycerides (fasting plasma triglycerides ≥150 mg/dL or treated with 
drugs for the lipid abnormality); (e) Low HDL cholesterol (males/females 
<40/50 mg/dL or treated with drugs for this lipid abnormality). Due to 
the waist circumference data missing, we could not effectively obtain this 
part of the data. Studies have found a strong association between waist 
circumference and BMI in patients with MetS (14). An increasing number 
of studies now utilize BMI as a proxy for central abdominal adiposity 
rather than waist circumference. Samuel R. Bozeman et al. found that it 
is possible to construct an alternative estimate of waist circumference 
using common BMI values in conjunction with demographic factors such 
as age and sex, particularly when direct waist circumference 
measurements are unavailable (15). Therefore, we represented centripetal 
obesity based on BMI, and the subjects were identified obesity when 
BMI ≥ 30 kg/m2 (Supplementary Table S2) (16).

2.4 Covariate

Based on the risk factors for MetS in the association analysis study, 
we sought various risk factors among the behavioral and demographic 
profiles of participants that may influence the occurrence of Mets. The 
questionnaires obtained all covariate information, including age 
(years), gender (male, female), race/ethnicity (Mexican American, 
other Hispanic, non-Hispanic white, non-Hispanic black, 
non-Hispanic Asian, other race, multiracial), highest level of 
education attained (no high school, some high school, high school 
graduate, some college, college or higher graduate), marital status 
(married, unmarried, divorced), family poverty level index, smoking 
(more than 100 cigarettes, less than 100 cigarettes), alcohol 
consumption (ever had any alcohol, never had any alcohol).

2.5 Statistical analysis

All analyses were performed with IBM SPSS Statistics (version 
20.0) or R (version 4.2.3). We used the rank sum and Chi-square tests 
to analyze the subjects’ demographic characteristics, respectively. 

Through the non-parametric Wilcoxon rank sum test, we identified 
62 variables with significant differences as potential risk factors for 
investigating the association between VOCs and MetS in this study. 
Since the concentrations of these VOCs data had a skewed 
distribution, the data were ln-transformed to improve a normal 
distribution when treated as continuous variables. In addition, the 
Chi-square test was used to analyze the behavior of MetS patients who 
may be exposed to VOCs. We adjusted the three statistical models for 
potential confounding by other known risk factors identified by 
previous studies, such as age, gender, race, education, family poverty 
index, smoking, and alcohol consumption. Sampling weights are 
commonly used to generate representative and unbiased statistics 
when analyzing survey data. However, further adjustment to the 
variables used to calculate the sample weights in the regression 
analysis may reduce the estimate’s precision and even introduce a 
degree of over-adjustment bias (17). Consequently, the results of this 
study are presented without sampling weights, similar to those 
reported in previous studies based on NHANES data (18).

2.5.1 Statistical model 1: Generalized linear 
regression model

First, we fitted the logistic regression model for chemical adjusting 
for age, gender, and confounding factors. All significant variables in 
the univariate analysis were considered for the logistic regression 
analysis based on the backward stepwise method. Considering 
associations with other exposures, we addressed the possibility that 
the combined associations of other metabolites of VOCs may result in 
false-positive or false-negative results by calculating multiple 
comparisons using Benjamini-Hochberg false discovery rate (FDR) 
corrections (19). Individual p-values (per hypothesis) were ranked 
from smallest to largest. Adjusted p-values were calculated by 
multiplying the original p-value by (m/i), where m is the number of 
tests, and i is the rank of the specific p-value. Then, adjusted p-values 
are compared with the original alpha of 0.05, and the rank of the 
largest adjusted p-value that is less than 0.05 is used to calculate an 
adjusted alpha level by following the formula 0.05*(i/m) (20). We set 
the statistical significance to FDR-corrected p < 0.05.

2.5.2 Statistical model 2: Weighted quantile sum 
regression model

Second, the WQS regression model was used to detect the 
combined effect of the multi-pollutant exposures on MetS, which can 
solve the problem of high dimensionality and high association 
between homologous pollutants. We constructed the WQS index of 
MetS based on quartiles of the metabolites of VOCs and conducted 
WQS regression analyses by gender, age, education, race, and 
education with 100 bootstrap samples in each dataset. In this study, 
bootstrap = 100, quantile = 4, validation = 0.6, seed = 2023. The WQS 
regression model was used to calculate a weighted linear index (total 
effect of mixed exposure) representing all VOCs` effects on the 
MetS. We calculated each VOC weighting index (weight) to represent 
the specific VOCs` pollutant contribution to the WQS regression 
model. The fitting model of the WQS regression model was as follows: 

( )
c

’
0 1 i i

i 1
g w q z

=

 
µ = β + β + ϕ  

 
∑  (i = 1,2,3...k). Where β was the weight 

of each component in the environmental mixture, and 1β was the 
regression coefficient of the weighted quantile sum index (WQS 
index), which is the overall effect of the environmental mixture. 0β  
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was the intercept, `z  and ϕ represented the matrix of covariates and 
coefficient of covariates. The WQS index was a weighted average 
across the ensemble step samples using a signal function. We observed 
the association among multiple exposure factors by drawing a heat 
map of the association coefficients and used the R package “gWQS” 
(version 3.0.4) to complete the WQS regression analysis in this 
study (21).

2.5.3 Statistical model 3: Bayesian kernel machine 
regression model

Third, we also used the BKMR model to evaluate the combined 
effect of chemicals on MetS, which can identify non-linear and 
non-additive relationships within chemicals. The dose–response 
relationship between single VOCs and MetS was used to determine 
the risk at different concentrations of VOCs (possible mixing effects). 
The fitting model of the BKMR regression model was as follows: 

( )1, ,i i im i iY h Z Z x β ∈= … + + . Where h() was the exposure-response 
function based on nonlinearity and/or interaction among the mixture 
components, iZ , and β represented covariates and their coefficients, 
respectively. We  evaluated the exposure-response relationship 
between VOCs exposure and potential outcomes by obtaining h(). 
When h() > 0, the compound promotes the occurrence of MetS and, 
conversely, inhibits the occurrence of MetS (22). Moreover, 
we calculated the posterior inclusion probability (PIP), which is the 
probability that a spike in the posterior sample and a plate variable 
selector will include a particular contaminant in the mixture in the 
model. To determine the importance of each environmental pollutant 
for the study outcome, a threshold of PIP > 0.5 was used (23).

3 Results

3.1 The association study between VOCs 
and MetS

Among the 2,531 subjects, 1,298 were diagnosed with MetS. The 
demographic characteristics of the subject population are shown in 
Supplementary Table S3. Overall, age, race, education, smoking, 
drinking, BMI, systolic blood pressure, diastolic blood pressure, and 

FPG were significant between MetS and non-MetS participants 
(p < 0.05). As showed that there were differences in BDCM, Benzene, 
Benzonitrile, Cyclohexane, Chloroform, DBCM, Ethylbenzene, 
MIBK, 1,1,1-TCA in the serum samples of the subjects. In addition, 
we  also found that there were significant differences in AMCC, 
CEMA, CYHA cysteine, CYMA, NADB, N-ace-S-(2-hydroxyethyl)-
L-cys (2-HEMA), IPM3 cysteine, HPMM, TTCA, and t,t-MA in the 
urinary samples of subjects (p < 0.05). After controlling for other 
confounding factors, we observed associations between various VOCs 
in urine and serum and the components of MetS, respectively, in the 
spearman partial correlation heatmap (Figure 2).

3.2 The logistic regression model to assess 
the association between VOCs and MetS

Next, we included those with significant differences in the rank 
sum test in the binary logistic regression model to assess the individual 
effect of each chemical on MetS (Table 1). After adjusting for all the 
covariates, AMCC and CEMA showed positive associations with 
MetS, while CYMA was negatively associated among urinary VOCs 
(PFDR < 0.05). Among serum VOCs, Benzene was positively associated 
with MetS, while Chloroform, DBCM, Ethylbenzene, and Benzonitrile 
were negatively associated (PFDR < 0.05).

3.3 The WQS regression model to assess 
the association between VOCs and MetS

By observing the VOCs association coefficient heat map 
(Figure  3A), we  found strong associations among urinary VOCs. 
Similarly, we also observed a few associations among serum VOCs 
(Supplementary Figure S1A). Notably, a distinct overlap was observed 
in the dark blue region, indicating potential serious collinearity 
between variables. By drawing interaction plots, we observed distinct 
synergistic and antagonistic effects among serum or urinary VOCs. In 
urinary samples, CEMA and t,t-MA, NADB and AMCC, as well as 
HPMM and 2-HEMA exhibited synergistic effects (Figure  3B). 
Conversely, antagonistic effects were noted between AMCC and 

FIGURE 2

The associations between urinary (A) and serum (B) VOCs metabolites and components of MetS.
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CEMA, TTCA and HPMA with NADB, and 2-HEMA with IPM3. In 
serum samples, we observed that Benzene and Ethylbenzene with 
Benzonitrile showed synergistic effects (Supplementary Figure S2B).

Next, we discussed the mixed exposure of VOCs to the influence 
of the MetS and the relative contribution of various factors (weight) 
by the WQS regression model. As shown in Figure  3C, after 
adjustment for the other confounders, the WQS index of mixed 

urinary VOCs was positively associated with MetS [WQS 
index = 0.406, 95%CI (0.219 ~ 0.593), p = 0.000]. The weight of 
urinary VOCs were AMCC (0.283), t,t-MA (0.194), CYHA cysteine 
(0.191), CEMA (0.168), TTCA (0.053), HPMM (0.031), CYMA 
(0.026), NADB (0.015), and IPM3 cysteine (0.010), respectively. And 
the gradual increase in urinary VOCs positively correlated with MetS 
(Figure  3D). The WQS index of mixed serum VOCs was not 

TABLE 1 Binary logistic regression analysis of MetS patients exposed to VOCs.

Influencing factors β OR 95%CI p-value PFDR

Serum VOCs

Benzene 0.186 1.205 1.020–1.423 0.028* 0.0280*

Chloroform −0.176 0.838 0.725–0.969 0.017* 0.0204*

DBCM −0.482 0.617 0.434–0.879 0.007** 0.0135*

Ethylbenzene −0.310 0.733 0.589–0.914 0.006** 0.0135*

Benzonitrile −0.524 0.592 0.398–0.879 0.009** 0.0120*

Urinary VOCs

AMCC 0.276 1.318 1.130–1.536 0.000** 0.0000**

CEMA 0.368 1.445 1.226–1.704 0.000** 0.0000**

CYMA −0.165 0.848 0.791–0.908 0.000** 0.0000**

NADB −0.211 0.810 0.646–1.014 0.066 0.0660

2-HEMA −0.141 0.869 0.748–1.010 0.066 0.0660

t,t-MA 0.090 1.095 1.006–1.192 0.037* 0.0518

*p-value<0.05, **p-value<0.01.

FIGURE 3

The relative contribution of urinary VOCs to MetS risk based on the WQS regression model. (A) The heat maps of urinary VOCs association coefficient; 
(B) The synergistic and antagonistic effects of the interaction of different urinary VOCs by interaction plots; (C) The relative contribution of urinary 
VOCs on MetS. (D) The dose–response relationship between urinary VOCs and MetS.
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significantly associated with MetS [WQS index = −0.528, 95%CI 
(−1.137–0.080), p = 0.089] in Supplementary Figure S1C. In the 
dose–response relationship, the gradual increase in serum VOCs 
negatively correlated with MetS (Supplementary Figure S1D).

3.4 The combined and individual effects of 
exposure to VOCs on MetS by the BKMR 
model

Except for the possible collinearity of various chemical 
compounds (combined effect), there were potential non-linear and 
non-additive relationships within VOCs. Table 2 summarizes the PIPs 
of VOCs in the BKMR analysis, and we found that CEMA and CYMA 
contributed the most to the mixed association of VOCs with MetS 
(PIPs = 1.000). At the same time, AMCC contributed to the higher 
mixed association of VOCs with MetS (PIPs>0.500).

The overall associations between the chemical mixture of urinary 
VOCs and the latent continuous outcome are shown in Figure 4. 
Although confidence intervals were wide, the latent continuous 
outcome of MetS showed a significant increase when all the chemicals 
were at their 55th or 60th percentile, compared to their 50th percentile, 
indicating a significant, positive association with MetS. On the 
contrary, no statistically significant difference was found in the MetS, 
and there was an overall decreasing trend in serum VOCs 
(Supplementary Figure S2).

Next, we calculated the continuous change in the risk of MetS 
associated with an interquartile range (IQR) increase in a single 
pollutant level when the other urinary VOCs are fixed at the 25th, 
50th, and 75th percentiles (Figure 5A). A significant association with 
MetS was observed for CEMA when other elements were set at their 
25th, 50th, and 75th percentile, respectively (p < 0.05). Specifically, 
we found that the effects of CEMA on MetS rose as the other VOCs 
increased from their 25th to 75th percentiles. Additionally, we also 
observed a negative association between CYMA and MetS when the 
other urinary VOCs were set at their 25th, 50th, and 75th percentile, 
respectively (p < 0.05). Finally, the remaining serum VOCs were not 
significantly associated with MetS at the 25th, 50th, or 75th percentile, 
possibly due to the presence of interactions among VOCs mixtures 
(highly overlapping confidence intervals, Supplementary Figure S3A).

We estimated both univariate concentration-response (C-R) 
functions to further investigate the potential non-linear C-R 
relationship and possible interaction of the VOCs mixture. When the 
remaining pollutants were kept at the 50th percentile, the promoting 
effects of AAMC and CEMA on MetS gradually increased, whereas 
CYMA had an opposing effect (Figure 5B). Meanwhile, the promoting 
effect of MIBK on MetS gradually increased when the remaining 
pollutant serum VOCs remained at the 50th percentile 
(Supplementary Figure S3B). No other discernible patterns 
(discontinuous trends) were found. Finally, the exposure-response 
curves of elements suggested the negative trends of associations 
between CYMA and MetS and positive trends of associations between 
AAMC, CEMA, and MetS.

3.5 The subgroup analysis of urinary VOCs 
and MetS

In the WQS regression and BKMR regression analyses, given the 
lack of significant associations between serum-based VOCs and 
metabolic syndrome (MetS), we focused the subgroup analyses on the 
relationship between urinary VOCs and MetS. Our findings indicate 
that in young individuals, Mexican Americans, individuals living in 
deep poverty, and smokers, exposure to VOCs was more likely to 
be associated with an increased risk of MetS (Table 3).

3.6 The subjects’ characteristics of 
VOCs-exposed

Moreover, we analyzed the subjects’ behavior to investigate the 
source of VOCs exposure in MetS patients in Supplementary Table S4. 
There were significant differences in the behavior patterns between 
MetS and non-MetS subjects when using moth balls or toilet 
deodorant, inhaling smoke the last time, and spending time in the 
pool hot tub tidy bathroom.

3.7 Sensitivity analysis

The linear regression and WQS regression [WQS index = 0.416 
95%CI (0.221–0.610), p = 0.000] were rerun in this study after 
removing outliers (Supplementary Table S5). Overall, the results of the 
sensitivity analysis were robust.

4 Discussion

Our study combined three regression models to estimate the 
combined effects of a mixture to evaluate the association of VOCs 
comprehensively and MetS through participants` serum and urinary 
samples, respectively. Firstly, the logistic regression model identified 
the association between AMCC, CEMA, CYMA, and MetS. Secondly, 
the WQS regression model identified the roles of AMCC, t,t-MA, 
CYHA cysteine, CEMA, TTCA, HPMM, CYMA, NADB, and IPM3 
cysteine in the occurrence and development of MetS. Finally, the 
combined association of MetS was positively associated with CEMA 
and CYMA in the BKMR regression model. Compared to the results 

TABLE 2 PIPs in BKMR model in NHANES 2017–2020.

Variables PIPs Variables PIPs

Serum 

VOCs

BDCM 0.000

Urinary 

VOCs

AMCC 0.620

Benzene 0.060 CEMA 1.000

Benzonitrile 0.000 CYHA cysteine 0.336

Cyclohexane 0.000 CYMA 1.000

Chloroform 0.110 NADB 0.204

DBCM 0.202 2-HEMA 0.384

Ethylbenzene 0.000 IPM3-cysteine 0.152

MIBK 0.244 HPMM 0.204

1,1,1-TCA 0.000 TTCA 0.310

/ / t,t-MA 0.406
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from these three models, CEMA and CYMA were identified as the 
important factors associated with MetS.

Acrolein was a chemical used as an intermediate reactive aldehyde 
in the chemical industry, where it was used to synthesize many organic 
substances (24). Meanwhile, it was found in emissions from the 
combustion of fuels, wood, and plastics, ambient air pollution, and 
electronic cigarette vapor (25). Furthermore, as a byproduct of 
endogenous lipid peroxidation, acrolein’s harmful effects were 
mediated through various mechanisms, including DNA damage, ROS 
formation, protein adduction, endoplasmic reticulum stress, and 

mitochondrial dysfunction (26). Recent studies have revealed that 
CEMA, as an acrolein exposure biomarker, could decrease insulin 
sensitivity and raise fasting insulin FPI, FPG, HOMA-insulin 
resistance, risks of prevalent IR, impaired fasting glucose, impaired 
fasting glucose (IFG), and the risk of type 2 diabetes, respectively (27). 
It revealed that acrolein exposure may impair glucose homeostasis and 
increase T2D risk via mediating mechanisms of heme oxygenase-1 
activation, lipid peroxidation, protein carbonylation, and oxidative 
DNA damage. Hongying Dai et al. reported that the urinary CEMA 
concentration in non-smokers and smokers without respiratory 

FIGURE 4

Joint effect (95% CI) of the urinary VOCs mixture on MetS by the BKMR regression model when all the chemicals at particular percentiles were 
compared to all the chemicals at their 50th percentile.

FIGURE 5

The single pollution model and univariate exposure-response relationship in the BKMR regression model. (A) The effect of urinary VOCs on MetS in the 
single pollution model. (B) Univariate exposure-response function (95% CI) between the single urinary VOC concentration and MetS. h(expos) can 
be interpreted as the relationship between chemicals and MetS. The results were assessed by the BKMR model adjusted for age, gender, race, 
education, family poverty index, smoking, and alcohol consumption, and ln-transformed creatinine.
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diseases was 99 ng/mL and 197.1 ng/mL, respectively (28). Despite 
spatial variations in exposure levels across different regions, 
we observed that the urinary CEMA among subjects was similar to 
those reported in the studies above, and the urinary CEMA 
concentration in MetS patients (114 ng/mL) was significantly elevated 
compared with that of the control group (91.9 ng/mL). After adjusting 
for high-risk factors such as smoking and drinking, we identified a 
substantial positive association between CEMA and MetS, indicating 
that CEMA may contribute to the development of MetS by promoting 
oxidative DNA damage, escalating lipid peroxidation, and triggering 
abnormal glucose metabolism. Acrylonitrile (ACN) is a colorless 
volatile liquid mostly present in tobacco smoke, and its exposure has 
been demonstrated to increase oxidative stress in animal studies. In a 
study of the association between CYMA, oxidative stress product 
8-OHdG, and CVD risk factors, the urinary CYMA concentration was 
4.67 μg/L in a cohort of adolescents and young adults in Taiwan. 
Although CYMA was not significantly associated with CVD, CYMA, 
as the crucial metabolic byproduct of acrylonitrile was correlated with 
increased levels of 8-OHdG at higher levels (29). A kinetic study of 
ACN uptake and CYMA excretion found that the average respiratory 
retention of ACN was 52, and 21.8% of the retained ACN was excreted 
as CYMA in urine (30). Elimination approximated first-order kinetics 
with a half-life of about 8 h. Thus, it cannot be used as an individual 
index of exposure. Despite recent studies that have explored ACN 
exposure through multiple linear regression models to fit CYMA 

concentrations with other confounding factors as predictor variables, 
the relationship between CYMA and ACN exposure remains 
inadequately demonstrated (31). The CYMA exposure level of the 
subjects reported here (1.465 ng/mL) was lower than those typically 
reported by the rest of the biomonitoring studies. We observed a 
significant negative association between CYMA and MetS, suggesting 
a potential association between these ACN metabolites and the 
occurrence and development of MetS. However, further research is 
needed to establish a causal relationship.

The exposure pathways of VOCs are closely related to the diverse 
behavioral patterns of subjects. Emissions originate from a wide range 
of indoor and outdoor sources, including combustion and evaporation, 
such as smoking, emissions related to organic solvents, decoration, 
and household products (32). The emission of VOCs in homes 
depended on the strength of emission sources, ventilation rates, and 
the indoor oxidative environment, which reflected differences in 
chemical use, building materials, and occupant behavior (33, 34). 
Based on the analysis of the behavior pattern in the VOCs exposed, 
we deem that banning it is particularly important to prevent MetS by 
prohibiting indoor smoking, reducing the time spent in the bathroom, 
paying attention to the emissions of organic solvents, and indoor 
ventilation. Potential policy implications and public health 
implications of recommendations on reducing VOCs exposure to 
prevent MetS. In terms of economic costs and benefits, technology 
upgrades to accurately quantify and control volatile chemical (VCP) 
emissions and strengthening industrial abatement measures can help 
reduce indoor and outdoor air pollution (35). The control of VOCs 
pollution has a positive significance in reducing the medical costs of 
chronic diseases. Therefore, industrial upgrading and control of VOC 
pollution can reduce the disease burden caused by VOC-induced 
chronic diseases, which has long-term benefits. In terms of health 
equity, we found that among young people, Mexican Americans, those 
living in extreme poverty, and smokers, the possibility of VOC 
exposure being associated with an increased risk of MetS is relatively 
high in the subgroup analysis (Table 3). This may be since these groups 
are often exposed to higher concentrations of VOC, such as using 
inferior decoration materials and having bad living habits, etc. Policies 
should prioritize protecting vulnerable groups and strengthening 
health education for these groups.

There are few studies on VOCs and MetS, and the relationship 
remains unclear. Compared with the study of Dong et al. (15 urinary 
VOCs), we simultaneously analyzed 62 VOCs among the serum and 
urinary samples of the subjects to explore the associations between 
more types of VOCs and different metabolic stages with MetS (36). 
Based on Supplementary Figure S4, we found that the vast majority of 
VOCs were highly positively correlated with fasting plasma 
triglycerides, Low HDL cholesterol, fasting plasma glucose, and 
Hypertension. Next, we adopted three statistical models to explore the 
association between VOCs mixed exposure and MetS. Compared to 
using a single model to explore the impact of co-exposure of 
compounds on the outcome, we  believe that using more models 
simultaneously can better leverage the advantages of different 
statistical methods and complement each other’s shortcomings. 
Somewhat different from the study by Dong et al., we  found that 
CYMA was also identified as a factor associated with MetS by 
comparison of the results of these three models, except for CEMA.

Meanwhile, we also note the shortcomings and limitations of 
this research. Although this study explored the association between 

TABLE 3 The Subgroup analysis of urinary VOCs and MetS by WQS 
regression model.

Subgroup Variables β(95%CI) p

Gender
Male 0.255(0.018, 0.492) 0.035*

Female 0.442(0.161, 0.723) 0.002*

Age group

18–44 years old 0.378(0.094, 0.662) 0.009**

45–60 years old 0.292(−0.039, 0.624) 0.084

Over 60 years old 0.109(−0.211, 0.428) 0.506

Race

Mexican 

American
0.459(0.042,0.876) 0.031 *

Hispanic 0.339(−0.552, 1.230) 0.456

Non-Hispanic 

White
0.354(−0.015, 0.723) 0.060

Non-Hispanic 

Black
−0.100(−0.482, 0.281) 0.606

Non-Hispanic 

Asian
– –

Others race 0.313(−0.418, 1.044) 0.401

Mexican 

American
0.117 (−1.024, 1.257) 0.841

The monthly 

poverty level of a 

family

Mild poverty −0.069(−0.667, 0.529) 0.821

Moderate poverty 0.048(−0.347, 0.443) 0.811

Deep poverty 0.454(0.194, 0.713) 0.000**

Smoking
No smoking 0.131(−0.114, 0.376) 0.293

Smoking 0.441(0.101, 0.781) 0.011*

*p-value<0.05, **p-value<0.01.
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VOCs and MetS by using three regression models, statistical 
methods remain insufficient. Firstly, the logistic regression model 
was widely used to probe into the effects of chemical pollutants on 
the human body, which cannot solve the mixing and non-collinear 
interaction between chemical pollutants (37). The WQS and BKMR 
regression models can better solve this problem and solve non-linear 
effects and interactions. While the WQS regression model cannot 
exist simultaneously applied to evaluate the combined effects of 
chemicals with diverse effect directions, the BKMR regression model 
may be difficult to understand intuitively and needs more detailed 
quantitative explanations due to its non-linear and interacting 
nature (38). Therefore, we can find the contribution of variables 
through the logistic and WQS regression models and probe into 
their direction through the BKMR regression model. We compared 
the results of three regression models to make up for shortcomings 
in statistical methods selection. Secondly, the confounders, such as 
smoking and alcohol consumption were controlled in this study, 
while there are still potential confounders in reality. For example, 
physical activity was an important protective factor for the 
prevention and treatment of MetS, and regular physical activity can 
significantly reduce the risk of type 2 diabetes and CVD (39). As 
we all know, dietary habits are closely related to the pathogenesis of 
chronic metabolic diseases. In a cohort study, subjects with poor 
dietary habits had 1.18 times greater odds for MetS than those 
adhering to a healthy diet (40). The data on physical activity and diet 
was not included in this study due to the data missing. Thirdly, 
sampling weights were used to generate representative and unbiased 
statistics when analyzing survey data in this study. However, further 
adjustment of the variables used to calculate the sample weights in 
this study’s regression analysis may reduce the precision of the 
estimate and even introduce a degree of over-adjustment bias. 
Therefore, this study’s results are presented without sampling 
weights, similar to those reported in previous studies based on 
NHANES (41).

This study utilized a cross-sectional survey of VOC-exposed 
populations in the NHANES database from 2017 to 2019 to 
investigate the potential association between VOCs exposure and 
MetS. Although we used three models to explore the association 
between VOCs and MetS in this cross-sectional study, we only show 
an association, without being able to confirm causality. Therefore, our 
additional studies will confirm causality and determine the 
mechanism of action by experimental research. As research on the 
pathogenesis of MetS deepens, mitochondrial damage, autophagy, 
ferroptosis, and other pathways play an important role in the 
occurrence and development of chronic diseases caused by oxidative 
stress and lipid peroxidation (42–44). It has been further confirmed 
in clinical data of MetS patients and the experimental models in vitro 
and in vivo that promoting bioenergy and mitochondrial function is 
the crucial way to prevent the occurrence and development of MetS 
(45). Excessive consumption of sugars and long-chain saturated fatty 
acids was closely associated with lipotoxicity and MetS, including 
Toll-like receptor 4 (Toll4) activation, regulation of peroxisome 
proliferator-activated receptor γ (PPARγ), sphingolipid remodeling, 
and activation of protein kinase C. These pathways are pivotal in 
promoting mitochondrial dysfunction, disrupting fatty acid and 
protein metabolism, and inducing insulin resistance (46). Next, 
we will focus on the mechanism of Toll4, PPARγ, and protein kinase 

C in VOCs that induce MetS through mitochondrial damage 
and autophagy.

5 Conclusion

In summary, we demonstrated that VOCs and their` metabolism 
were significantly associated with MetS. Compared results from these 
three models, CEMA and CYMA were identified as the factors 
associated with MetS. This study provides a research direction for the 
mechanism of VOCs that may induce the onset and development 
of MetS.
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