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Introduction: The application of EEG technology in the context of school

physical education o�ers a promising avenue to explore the neural mechanisms

underlying the mental health symptom benefits of physical activity in

adolescents. Current research methodologies in this domain primarily rely on

behavioral and self-reported data, which ack the precision to capture the

complex interplay between physical activity and cognitive-emotional outcomes.

Traditional approaches often fail to provide real-time, objective insights into

individual variations in mental health symptom responses.

Methods: To address these gaps, we propose an Adaptive Physical Education

Optimization (APEO)model integrated with EEG analysis to monitor and

optimize the mental health symptom impacts of physical education programs.

APEO combines biomechanical modeling, engagement prediction through

recurrent neural networks, and reinforcement learning to tailor physical activity

interventions. By incorporating EEG data, our framework captured neural

markers of emotional and cognitive states, enabling precise evaluation and

personalized adjustments.

Results and discussion: Preliminary results indicate that our system enhances

both engagement and mental health symptom outcomes, o�ering a scalable,

data-driven solution to optimize adolescent mental wellbeing through physical

education.

KEYWORDS

EEG analysis, physical education, adolescent mental health symptoms, neural

mechanisms, engagement optimization

1 Introduction

Understanding the impact of school physical education (PE) on adolescent mental

health symptoms has become an essential area of research in light of the increasing mental

health symptom challenges among youth (1). Physical education not only supports physical

well-being but also has profound implications for emotional regulation, cognitive function,

and mental health symptoms (2). Electroencephalography (EEG) technology provides a

unique opportunity to investigate the neural mechanisms underlying these effects (3).

By capturing real-time neural activity during or after physical activity, researchers can

uncover how different types of physical education influence brain regions associated

with emotion, stress, and attention (4). This integration of neuroscience and education

science not only deepens our understanding of the relationship between exercise and

mental health symptoms but also enables the development of evidence-based interventions

that can be tailored to maximize mental health symptom benefits for adolescents (5).

To address the question of how school PE affects adolescent mental health symptoms,

early studies relied on traditional EEG analysis methods rooted in symbolic AI and
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knowledge representation (6). These approaches utilize predefined

EEG features, such as alpha wave suppression (linked to

relaxation) or beta wave activity (associated with attention and

cognitive engagement), to explore the relationship between exercise

and mental state (7). By applying linear statistical models

and rule-based systems, researchers sought to establish clear

correlations between physical activity and mental health symptom

outcomes (8). These studies offer valuable initial insights, such

as linking aerobic exercises to reduced stress and improved

mood (9). However, traditional methods are limited in their

ability to generalize findings owing to the complexity of EEG data

and the variability of mental health symptom responses among

individuals (10). The rigidity of handcrafted features restricts their

capacity to capture the full range of neural dynamics evoked by

physical education (11).

The emergence of data-driven approaches and machine

learning has marked a significant evolution in EEG research

focused on school PE and adolescent mental health symptoms (12).

Machine learning algorithms, such as support vector machines and

random forests, enable automatic extraction of complex patterns

from EEG data (13). These methods facilitate the classification

of mental states with greater accuracy, revealing subtle neural

changes induced by different types of physical activities (14).

The integration of wearable EEG devices in school settings

further enriches the scope of research by enabling large-scale data

collection (15). However, despite these advancements, challenges

remain, including dependence on labeled datasets and the limited

interpretability of machine learning models. These approaches

often focus more on classification tasks than on exploring the

deeper causal mechanisms linking physical education to neural

changes (16). The advent of deep learning and pre-trained models

has significantly advanced EEG-based research on the neural

mechanisms of school PE. Convolutional neural networks (CNNs)

and recurrent neural networks (RNNs) have been used to extract

spatiotemporal features from EEG data, enabling researchers

to model the dynamic neural processes induced by physical

activity (17). Pre-trained models fine-tuned on mental health

symptom datasets have shown promise in uncovering the neural

correlates of stress reduction, emotional regulation, and cognitive

enhancement triggered by exercise. These methods also allow

researchers to predict individualized responses to different types

of physical activities, paving the way for personalized exercise

programs in schools (18). However, reliance on deep learning

introduces challenges, including computational intensity, the risk

of overfitting on small datasets, ethical concerns related to data

privacy, and the use of black-box models in educational contexts.

To overcome these limitations, we propose a hybrid approach

that combines EEG signal processing with explainable deep

learning and personalized feedback mechanisms. This method

integrates symbolic AI with advanced neural networks to explore

the neural mechanisms of school PE in a transparent and

interpretable manner. By incorporating reinforcement learning, the

system can adapt PE programs to optimize mental health symptom

outcomes for students. This approach addresses the critical issues

of scalability, adaptability, and personalization, ensuring that

the neural and psychological benefits of physical education are

maximized for diverse adolescent populations.

The proposed method has several key advantages:

• It introduces an explainable hybrid model combining

symbolic AI and deep learning to uncover the neural

mechanisms linking school PE to mental health symptoms.

• It enables dynamic adjustment of PE programs based on

real-time EEG feedback, ensuring personalized mental health

symptom benefits.

• It demonstrates improved understanding of neural

mechanisms and enhanced mental health symptom outcomes

through real-world school-based trials.

2 Related work

2.1 EEG in studying adolescent mental
health symptoms

The application of EEG technology to understand adolescent

mental health symptoms has expanded rapidly, providing

an objective window into the neural mechanisms underlying

emotional and cognitive processes (19). Adolescence is a critical

period for mental health symptoms, as the brain undergoes

significant development and is highly sensitive to environmental

influences, including stressors and supportive interventions (20).

EEG studies have identified biomarkers associated with depression,

anxiety, and emotional regulation deficits in adolescents,

particularly in frontal and parietal regions (21). Analytical

techniques, such as event-related potentials (ERPs) and power

spectral analysis, have been used to evaluate neural responses to

stimuli related to stress or relaxation (22). EEG also enables the

study of brain connectivity, revealing how networks involved in

self-regulation and emotional control may be impacted by mental

health symptoms (23). Despite its utility, challenges in adolescent

EEG research include ensuring compliance during data collection,

mitigating motion artifacts, and interpreting findings in the context

of individual variability in brain development (24). These issues

must be addressed to optimize the utility of EEG in understanding

adolescent mental health symptoms.

2.2 Role of physical education in mental
health symptoms

Physical education (PE) is increasingly being recognized

for its contribution to mental health symptoms in adolescents,

beyond its physical health benefits (25). Regular participation in

structured physical activities has been linked to improved mood,

reduced anxiety, and enhanced self-esteem (26). Neurobiological

research suggests that physical activity modulates brain plasticity,

particularly in regions associated with emotional regulation such as

the prefrontal cortex and amygdala (27). The release of endorphins

and reduction in cortisol levels are some of the physiological

pathways through which physical activity benefits mental health

symptoms (28). Moreover, the social interaction and teamwork

involved in PE contribute to psychological well-being by fostering
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a sense of belonging and reducing feelings of isolation (29). Despite

these positive outcomes, disparities in PE access and quality across

schools present significant barriers (30). The mechanisms by which

different types of physical activities impactmental health symptoms

remain underexplored, highlighting the need for interdisciplinary

research combining neuroimaging techniques, such as EEG, with

educational and psychological studies.

2.3 EEG insights into PE’s neural impact

The integration of EEG technology into the study of physical

education provides a unique perspective on how physical activities

influence adolescent brain function (31). EEG offers the ability to

monitor neural changes associated with engagement in physical

exercise, including alterations in brainwave patterns, indicative of

reduced stress and enhanced cognitive function (32). For example,

alpha and theta wave increases observed during post-exercise

states are correlated with relaxation and improved attention,

respectively (33). Researchers have also explored how specific

physical activities, such as aerobic exercises or mindfulness-based

movement practices, uniquely affect brain activity and mental

health symptom outcomes (34). EEG can further elucidate the

role of PE in enhancing connectivity within the neural circuits

implicated in emotional regulation and executive function (35).

However, practical challenges, such as adapting EEG equipment

for use during physical activities and ensuring robust data

quality in dynamic environments must be addressed (36). Ethical

considerations regarding data privacy and the use of neurodata in

educational settings also warrant careful attention to ensure the

responsible application of EEG in this context.

3 Method

3.1 Overview

Physical education (PE) plays a pivotal role in promoting

health, fostering teamwork, and enhancing physical and cognitive

development. It spans diverse domains, including exercise science,

motor skill development, and psychological benefits of physical

activity. This section outlines the structure and contributions of the

proposed methodologies, aimed at advancing the understanding

and implementation of physical education programs. This section

is organized into three major themes: foundational principles

and current challenges, a novel adaptive learning framework

designed to optimize physical activity programs, and an innovative

engagement strategy for enhancing participation and performance.

In our study, we used EEG-based emotion analysis as

an intermediary to assess mental health symptoms, which

is a well-established and widely validated approach in both

neuroscience and psychological research. Numerous prior studies

have demonstrated that specific EEG patterns are closely associated

with emotional states, such as increased alpha wave activity

correlating with relaxation and reduced stress or heightened

beta wave activity, which is indicative of cognitive engagement

or anxiety. By leveraging these well-documented EEG-emotion

relationships, we can infer mental health symptom conditions both

indirectly and reliably. Our method builds on this foundation by

employing advanced machine-learning techniques to enhance the

precision of emotion detection from EEG data. The emotional

states identified through this process are then used as predictive

features to evaluate mental health symptommetrics such as anxiety

or depression scores. This approach is not only rooted in the

existing literature but is also supported by our experimental results,

which demonstrate high accuracy and robustness in predicting

mental health symptom outcomes from EEG data in adolescent

samples. The validation of our model using datasets such as

the Healthy Brain Network and ALSPAC further reinforced the

reliability of this technique.

In Section 3.2, we formalize the essential components of

physical education, including frameworks for evaluating physical

activity, biomechanical analysis of movement, and metrics for

gauging physical literacy. By developing a mathematical model

of these core elements, we establish a systematic foundation to

address the gaps in existing methodologies and explore new

avenues for their enhancement. Section 3.3 introduces the Dynamic

Physical Literacy Model (DPLM), a cutting-edge approach for

understanding and predicting individual progress in physical

education. The model integrates real-time data collection and

machine learning to personalize physical activity plans, leveraging

advancements in wearable technology and biomechanical feedback.

The model is uniquely designed to align individual goals with

group objectives, ensuring that PE programs cater to diverse

needs while maintaining educational efficacy. Section 3.4 discusses

the Enhanced Engagement Strategy (EES), which incorporates

gamification, interactive technology, and social reinforcement to

addressmotivational challenges in physical education. EES employs

a combination of behavioral psychology and AI-driven analytics

to design interventions that sustain interest and foster a positive

attitude toward lifelong physical activity.

3.2 Preliminaries

Physical education (PE) is a multidisciplinary domain

concerned with the development of physical competence, health-

related fitness, and lifelong appreciation for physical activities.

Central to the study of PE is the formalization of key constructs that

include the assessment of physical fitness, movement dynamics,

and the interaction of cognitive, physical, and social factors

in promoting well-being. In this subsection, we define these

components mathematically and lay the groundwork for the

methodologies developed in subsequent sections.

Physical fitness can be represented as amultidimensional vector

F = [F1, F2, . . . , Fn], where Fi represents a specific fitness attribute,

such as cardiovascular endurance, muscular strength, flexibility,

and body composition. Each component was quantified using

standard measures:

F1 =
VO2max− VO2baseline

VO2baseline
, F2 =

Wmax

Wbody
, (1)

where VO2max denotes maximal oxygen uptake, Wmax is the

maximum force output, andWbody is the individual’s body weight.

The kinematics of human motion are modeled using the joint

trajectories p(t) = [px(t), py(t), pz(t)], where p(t) represents the 3D
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position of a joint at time t. Using inverse dynamics, joint forces

Fj(t) and torques τ j(t) can be derived as follows:

Fj(t) = mjaj(t), τ j(t) = rj(t)× Fj(t), (2)

where mj is the segment mass, aj(t) is the joint acceleration,

and rj(t) is the moment-arm vector. These equations allow for

biomechanical evaluation of the activities.

Physical literacy integrates physical, cognitive, and social

dimensions. It is modeled as a latent variable L derived from

observable variablesX = [X1,X2, . . . ,Xk], where Xi corresponds to

specific measures such as motor skills or motivation levels. Using

factor analysis, we obtain

L =WX+ ǫ, (3)

whereW represents factor loadings and ǫ captures noise.

Participation in physical education programs over time is

modeled as a function P(t), influenced by engagement factors E

(e.g., enjoyment, social interactions) and physical conditions C

(e.g., fatigue, injury risk):

P(t) = σ (E⊤wE + C⊤wC), (4)

where σ (x) = 1/(1+ e−x) is the sigmoid function, and wE, wC are

weight vectors.

The interactions between biological, psychological, and social

factors are critical in PE. These components are represented as

the triad {B,P ,S}, where B denotes biological metrics, P denotes

psychological states, and S denotes social influence. The combined

influence on outcomesO is expressed as

O = f (B,P ,S), (5)

where f (·) is a nonlinear function parameterized by the data.

A well-designed PE program aims to maximize outcomes O

while considering constraints such as time and resource limitations.

This is formalized as

max
A,R

N
∑

i=1

Oi s.t. g(A,R) ≤ B, (6)

where A and R are the activity and resource allocation vectors, g(·)

represents constraints, and B is the available budget.

3.3 Adaptive physical education
optimization model

This subsection presents the Adaptive Physical Education

Optimization (APEO) model, a novel framework for personalizing

and optimizing physical education (PE) programs (as Figure 1).

The model integrates real-time monitoring, dynamic feedback,

and predictive analytics to tailor PE activities according to

individual and group needs. By leveraging advancements in

wearable technologies, biomechanical modeling, and machine

learning, APEO aims to maximize participant engagement and

fitness outcomes.

Dynamic state adaptation based on real-time monitoring

The APEO framework represents physical education as an

adaptive system, where individual states and program parameters

are dynamically adjusted based on real-time data collected through

wearable sensors and feedback mechanisms (as Figure 2). Let Si(t)

denote the state vector of participant i at time t, which includes

physical attributes Fi(t) (e.g., heart rate and energy expenditure),

engagement levels Ei(t), and program adherenceAi(t):

Si(t) =







Fi(t)

Ei(t)

Ai(t)






. (7)

The state vectorSi(t) evolves based on both the intrinsic participant

responses and external program adjustments. This evolution is

modeled as

Si(t + 1) = Si(t)+1Si(t), (8)

where the state change 1Si(t) depends on the applied program

interventions ui(t) and external disturbances di(t), such that

1Si(t) =Wsui(t)+Dsdi(t), (9)

where Ws is the weight matrix mapping interventions to state

changes, and Ds models the effects of external disturbances like

fatigue or environmental factors. The program intervention ui(t)

includes adjustments to the intensity Ik(t), duration Dk(t), and

modalityMk(t) of physical activities, dynamically determined based

on real-time performance data. To maintain real-time adaptability,

feedback mechanisms continuously evaluate participant progress

using performance errors ei(t):

ei(t) = F
target
i (t)− Factuali (t), (10)

where F
target
i (t) represents the desired physical state, and Factuali (t)

is the measured state from the wearable devices. The adjustments to

program interventions are optimized to minimize the cost function

Lstate, defined as

Lstate =

N
∑

i=1

‖ei(t)‖
2 + λ‖ui(t)‖

2, (11)

where the first term penalizes deviations from target states and

the second term regularizes excessive interventions with λ as a

weighting factor. Furthermore, a dynamic model of participant

adaptation is introduced, where the response time to program

adjustments is governed by a participant-specific time constant τi,

such that:

dSi(t)

dt
= −

1

τi

(

Si(t)− S
target
i (t)

)

, (12)

where S
target
i (t) is the desired state trajectory based on the

participant’s fitness goals. To integrate feedback seamlessly, a

proportional-integral-derivative (PID) control mechanism adjusts

program parameters in response to real-time deviations. The

control input ui(t) is defined as

ui(t) = Kpei(t)+ Ki

∫ t

0
ei(τ )dτ + Kd

dei(t)

dt
, (13)
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FIGURE 1

Architecture of the adaptive physical education optimization (APEO) model. The APEO framework integrates multiple modules to personalize

physical education programs by leveraging real-time feedback, biomechanical optimization, and predictive analytics. The model comprises

hierarchical components, such as brain feedback modules, spatiotemporal integration mechanisms, and a transformer-based optimization engine.

The Eminent Non-Local Attention Mechanism (ENLA) enhances feature extraction, while biomechanical modeling ensures energy-e�cient

movement. Engagement prediction and reinforcement learning (RL) components dynamically adjust the program parameters to optimize individual

and group performance outcomes. Modular design allows for seamless scalability for real-time physical education personalization.

FIGURE 2

Dynamic state adaptation based on real-time monitoring. The module leverages prompt embeddings and hyper-prompting mechanisms to enable

real-time adjustment of participant states. The left panel illustrates the hierarchical “Up-Down" embedding architecture with ReLU activations to

adaptively process inputs. The right panel visualizes the generation of N×Weight Maps from prompt embeddings and dynamically maps the input

data to the output responses. This mechanism facilitates the continuous optimization of physical education parameters based on real-time

monitoring.

where Kp, Ki, and Kd are the proportional, integral, and derivative

gains, respectively.

Biomechanical optimization for efficient movement

APEO incorporates a biomechanical module to analyze and

optimize movement patterns by modeling joint kinematics and

dynamics. Each participant’s motion is characterized by a series
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of biomechanical states involving joint positions pj(t), velocities

vj(t), accelerations aj(t), and forces Fj(t) at each joint j. The joint

dynamics are expressed using Newton’s second law of motion:

Fj(t) = mjaj(t), aj(t) =
dvj(t)

dt
, pj(t) = pj(0)+

∫ t

0
vj(τ ) dτ ,

(14)

where mj is the joint mass, aj(t) is the acceleration, vj(t) is the

velocity, and pj(t) is the position at time t. These kinematic

relationships provide a foundation for analyzing participant

movements. The model identifies biomechanical inefficiencies by

comparing the actual joint forces Factualj (t) with the optimal forces

F
optimal
j (t), which correspond to efficient movement. These optimal

forces were derived based on biomechanical norms, participant-

specific body parameters, and energy minimization principles. The

inefficiency loss function is defined as

Lbio =

N
∑

j=1

‖Factualj (t)− F
optimal
j (t)‖2, (15)

where N is the number of joints analyzed. This loss quantifies

the deviations between the observed and ideal joint dynamics,

with minimization driving the optimization process. To achieve

optimal movement patterns, joint torques τ j(t) are incorporated

using inverse dynamics:

τ j(t) = Ijq̈j(t)+ Cj(qj(t), q̇j(t))+ Gj(qj(t)), (16)

where Ij is the joint inertia matrix, q̈j(t) represents joint

accelerations, Cj captures the Coriolis and centrifugal forces,

and Gj represents gravitational effects. These torques reflect

the forces required to produce specific motion patterns, while

accounting for participant-specific biomechanics. The optimization

process further integrates an energy-efficiency constraint to reduce

mechanical effort. The total mechanical energy Ej(t) at joint j is

expressed as

Ej(t) =
1

2
mj‖vj(t)‖

2 +

∫ t

0
Fj(τ ) · vj(τ ) dτ , (17)

where the first term represents kinetic energy and the second

term accounts for work done by joint forces. The energy-based

constraint is defined as

Cenergy =

N
∑

j=1

Ej(t) ≤ Emax, (18)

where Emax is the permissible energy threshold for efficient

movement. To optimize participant movement, APEO employs a

gradient-based optimization algorithm to minimize Lbio subject

to the energy constraint, Cenergy. The joint forces are iteratively

updated using

Fnewj = Factualj − η
∂Lbio

∂Fj
, (19)

where η is the learning rate. This iterative process adjusts the forces

toward optimal values while ensuring energy efficiency.

Predictive engagement and reinforcement learning

for personalization

To maintain participant motivation and optimize physical

education outcomes. APEO predicts participant engagement Ei(t)

using a recurrent neural network (RNN) and dynamically adjusts

the program parameters using a reinforcement learning (RL)

framework. Engagement prediction utilizes temporal dependencies

captured by an RNN, where the engagement state Ei(t + 1)

evolves as

Ei(t + 1) = σ (Wehi(t)+ be), (20)

where hi(t) is the hidden state that encodes historical engagement

data, σ (·) is the sigmoid activation function, and We and be are

learnable parameters. The hidden state hi(t) is updated based on

the previous inputs xi(t) and the prior hidden state

hi(t) = tanh(Whxi(t)+ Uhhi(t − 1)+ bh), (21)

where Wh,Uh, and bh are the RNN weights and biases.

The engagement prediction error is minimized through the

loss function

Lengage =

N
∑

i=1

T
∑

t=1

‖E true
i (t)− E

pred
i (t)‖2, (22)

where E true
i (t) is the observed engagement level and E

pred
i (t)

is the predicted engagement. Each activity Ak is parameterized

by intensity Ik, duration Dk, and modality Mk, which influence

participants’ physical output and engagement. For participant i,

the actual physical attributes Factuali were compared with the target

attributes F
target
i , leading to an activity loss

Lactivity =

K
∑

k=1

‖F
target
i − Factuali (Ik,Dk,Mk)‖

2. (23)

This loss is minimized subject to the following

parameter constraints:

Ik ∈ [Imin, Imax], Dk ∈ [Dmin,Dmax], Mk ∈M, (24)

where M represents the set of available activity modalities. The

APEO framework employs a reinforcement learning (RL) agent to

personalize and adapt the program parameters θ t = [Ik,Dk,Mk] in

real time. At each time step t, the agent observes the participant

state Si(t) and selects an action at to maximize the cumulative

rewards R, defined as

R =

T
∑

t=1

[

α1Ei(t)+ α2Fi(t)− βCeffort(t)
]

, (25)

where α1 and α2 are weights balancing engagement and physical

improvements, and β penalizes excessive physical effort through

the cost term Ceffort(t). The effort cost function is defined as

Ceffort(t) =

K
∑

k=1

[

γ1I
2
k + γ2Dk

]

, (26)

where γ1 and γ2 are the scaling factors for intensity and duration,

respectively. The RL agent uses policy π(at|Si(t)) to map states
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to actions, where the policy is optimized through value-based

learning. The state-action value function Q(Si(t), at) is updated as

Q(Si(t), at)← Q(Si(t), at)

+η
[

Rt + γ max
a′

Q(Si(t + 1), a′)− Q(Si(t), at)
]

, (27)

where η is the learning rate, γ is the discount factor, and Rt is the

immediate reward. The RL agent continuously updates the policy to

maximize long-term rewards, ensuring an optimal balance among

engagement, fitness gains, and participant effort.

Group-level optimization

To optimize group activities in physical education, the APEO

framework models the collective state of a group G(t) as the average

of individual participant states Si(t) at time t. This collective state

reflects the physical attributes, engagement levels, and adherence of

all the participants in the group. Mathematically, the group state is

expressed as

G(t) =
1

N

N
∑

i=1

Si(t), (28)

where N is the total number of participants and Si(t) represents

the individual state vector of participant i. This group state serves

as a benchmark for assessing group cohesion and identifying the

deviations among individuals. To enhance the group cohesion and

ensure synchronized performance, APEOminimizes the dispersion

of individual states around the group state by defining the group

cohesion loss function:

Lgroup =

N
∑

i=1

‖Si(t)− G(t)‖2. (29)

This loss function quantifies the sum of the squared deviations

between each participant’s state and group state. MinimizingLgroup

aligns with individual performances and engagement levels to

foster collective harmony and cooperation. Each participant’s state,

Si(t), was influenced by their physical progress, engagement levels,

and adherence to the program. To dynamically adjust activities

that optimize group performance, APEO introduces a set of

group-level constraints:

Cgroup =
{

Ei(t) ≥ Emin, Fi(t) ≥ Fmin, ∀i ∈ {1, . . . ,N}
}

, (30)

where Emin and Fmin are minimum acceptable engagement and

fitness thresholds, respectively. These constraints ensure that

individual participants meet the baseline performance standards

while contributing to group cohesion. To solve the group

optimization problem, APEO formulates it as a constrained

minimization problem, where the objective is to optimize group-

level activities Ak parameterized by the intensity Ik, duration Dk,

and modalityMk. The optimization problem is expressed as

min
Ik ,Dk ,Mk

Lgroup =

N
∑

i=1

‖Si(t)− G(t)‖2, (31)

subject to the constraints:

Ik ∈ [Imin, Imax], Dk ∈ [Dmin,Dmax], Cgroup. (32)

To achieve real-time adaptability, a reinforcement learning (RL)

agent was employed to select the optimal activity parameters θ t =

[Ik,Dk,Mk]. At each time step, the RL agent observes the group

state G(t) and selects actions at to maximize a cumulative group

reward Rgroup, defined as

Rgroup =

T
∑

t=1

[

−Lgroup(t)+ α1Egroup(t)+ α2Fgroup(t)
]

, (33)

where Egroup(t) and Fgroup(t) are the collective engagement and

fitness states, respectively, and α1 and α2 are weights that balance

cohesion, engagement, and fitness. The RL policy π(at|G(t)) is

updated iteratively using the state-action value functionQ(G(t), at):

Q(G(t), at)← Q(G(t), at)

+η

[

Rt + γ max
a′

Q(G(t + 1), a′)− Q(G(t), at)

]

, (34)

where η is the learning rate, γ is the discount factor, and Rt is the

immediate group reward.

3.4 Strategic engagement and
optimization framework

This subsection presents the Strategic Engagement and

Optimization Framework (SEOF), a novel approach designed

to enhance participation, maximize engagement, and achieve

optimal physical and cognitive outcomes in physical education (as

Figure 3). SEOF addresses the motivational and performance

barriers commonly faced by participants by integrating

gamification, personalized feedback, and collaborative learning

mechanisms into a unified system.

Engagement modeling and gamification

SEOF models participant engagement Ei(t) as a dynamic

process driven by intrinsic motivationMi, social influence Si, and

perceived competency Ci. Engagement is expressed as

Ei(t) = f (Mi,Si, Ci)+ ǫi, (35)

where f (·) is a learned non-linear mapping capturing the complex

interdependencies between factors, and ǫi represents external

random variation. The intrinsic motivationMi, social influence Si,

and perceived competency Ci are defined as

Mi =
Task Enjoyment

Perceived Effort
, Si =

∑

j6=i

wij · Ej,

Ci =
Skill Improvement

Skill Requirement
, (36)

where wij represents the influence weight of peer j on participant

i. The values of wij can be learned adaptively using attention

mechanisms or graph-based approaches:

wij =
exp(θ⊤i φj)

∑

k6=i exp(θ
⊤
i φk)

, (37)

where θi and φj are the learned embeddings of participants i and j,

respectively. To sustain and enhancemotivation, gamified elements
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FIGURE 3

Strategic engagement and optimization framework. The SEOF architecture integrates multiple layers and networks to enhance participant

engagement and optimize physical education outcomes. The upper section shows the Gabor Layer for feature extraction, followed by convolutional

layers, and fully connected (FC) layers for task-specific predictions. The lower section introduces the multi-epoch network built with LSTM units,

enabling sequential modeling of temporal engagement dynamics. Various normalization techniques, dropout layers, and activation functions (e.g.,

ReLU) enhance the performance stability. SEOF fuses these components to provide real-time feedback, predictive analytics, and engagement

optimization across participants.

were introduced through a multi-layer reward mechanism.

Participants earn rewards Ri based on both their task completion

scores Ti and engagement levels Ei:

Ri = β1 · Ti + β2 · Ei + γ · Bi, (38)

where β1,β2, and γ are weight parameters, and Bi represents

bonus points awarded for achieving milestones or surpassing

performance thresholds:

Bi = max
(

0,Ti − Tthreshold
)

. (39)

A critical aspect of the reward system is the dynamic balancing

of the challenge and the ability to ensure continued participant

engagement. This balance is quantified by minimizing the gap

between the target and actual performance while accounting for

perceived difficulty:

Cbalance = ‖F
target
i − Factuali ‖2 − δ ·Ri, (40)

where F
target
i and Factuali represent the target and achieved feature

vectors of participant i’s task performance, respectively, and δ

adjusts the influence of rewards on the perceived challenge.

To ensure personalized difficulty adjustment, F
target
i is updated

iteratively based on the participant’s progress:

F
target
i (t + 1) = F

target
i (t)+ η ·

(

Factuali (t)− F
target
i (t)

)

, (41)

where η is the learning rate that controls the speed of adaptation.

An engagement decay function is introduced to account for

diminishing motivation over time if no rewards are obtained:

Ei(t + 1) = α · Ei(t)+ (1− α) ·Ri, (42)

where α ∈ [0, 1] determines the decay rate of engagement.

By integrating these mechanisms, SEOF ensures a dynamic

and adaptive gamified experience that maximizes participant

engagement and sustains motivation throughout the activities.

The integration of personalized difficulty scaling, reward-based

incentives, and social influencemodeling provides a comprehensive

framework for optimizing both individual- and group-level

PE outcomes.

Real-time feedback mechanisms

SEOF employs wearable sensors to continuously monitor

participants’ physiological and performance data, includingmetrics

such as heart rate, movement patterns, exertion levels, and

energy expenditure (as Figure 4). These real-time measurements

were denoted as Mi(t) for participant i at time t. The system

provides feedback,Fi(t), offering immediate corrective suggestions

and motivational cues to enhance performance and maintain

engagement. Feedback is defined as

Fi(t) = g
(

Mi(t),Gi

)

, (43)
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FIGURE 4

Engagement modeling and gamification. The framework integrates multi-level engagement modeling using Participant-aware Mapping System

(PaMS), Performance-normalized Mapping System (PnMS), and Performance-deviation Mapping System (PdMS) for precise representation of

engagement metrics. A Transformer-based encoder processes multimodal inputs x = (xam, xu, xtm), which are further refined using the Multi-Modal

Gamification Module (MMGM) and Crossmodal Transformer. The PMT block captures specific participation attributes, dynamically updates states for

personalized feedback, and adapts to optimization. This design enabled real-time monitoring, engagement analysis, and interactive gamified

adjustments to enhance participant motivation and performance.

where g(·) is a non-linear function mapping the current

performance metric Mi(t) to participant-specific goals Gi,

ensuring alignment between real-time feedback and long-term

improvement objectives. The participant-specific goals are

periodically updated as

Gi(t + 1) = Gi(t)+ η ·
(

T
optimal
i −Mi(t)

)

, (44)

where η is the goal adjustment rate and T
optimal
i represents

the optimal target performance for participant i. The real-time

feedback system employs an AI-driven adaptive mechanism

to classify participant states into categories, such as “optimal,”

“underperforming,” or “overexerting” using threshold-based

comparisons. For instance, the participant state Si(t) can be

evaluated as

Si(t) =















Optimal if ‖Mi(t)− Gi(t)‖ ≤ ǫ,

Underperforming ifMi(t) < Gi(t)− κ ,

Overexerting ifMi(t) > Gi(t)+ κ ,

(45)

where ǫ is the acceptable performance deviation, and κ defines

the tolerance for underperformance or overexertion. These states

guided the type and intensity of the feedback provided to the

participants. To deliver actionable feedback, the system generates

two types of signals: corrective suggestions Ci(t) and motivational

cuesMcue
i (t), defined as

Ci(t) = γ1 ·
(

Gi(t)−Mi(t)
)

, Mcue
i (t) = γ2 · h

(

Mi(t),Pi
)

, (46)

where γ1 and γ2 are scaling factors, and h(·) is a motivational

function dependent on the participant’s current performance

Mi(t) and historical progress Pi. For example, if a participant

shows sustained improvement over time, the system increases

positive reinforcement, whereas for stagnant performance, it offers

encouragement combined with targeted corrective suggestions.

SEOF integrates predictive analytics to anticipate potential fatigue

or disengagement, based on trends in physiological measurements.

Fatigue riskR
fatigue
i (t) is modeled as

R
fatigue
i (t) = α ·Hi(t)+ β · Vi(t)− ζ ·Ri(t), (47)

whereHi(t) is the heart rate variability, Vi(t) represents movement

velocity deviations, and Ri(t) corresponds to the cumulative

rewards earned. α, β , and ζ are weights that balance the relative

contributions of the physiological indicators and performance

rewards. When R
fatigue
i (t) exceeds a predefined threshold τfatigue,

adaptive rest or reduced-intensity activities are recommended to

prevent burnout:

Ai(t + 1) = Ai(t)− ρ ·Di(t), (48)
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where Ai(t) represents the current activity intensity, ρ is

the adjustment rate, and Di(t) denotes the detected deviation

in performance.

Social dynamics and collaborative learning

SEOF emphasizes the role of social interaction and

collaborative learning in enhancing group-level outcomes by

leveraging social dynamics and cooperation mechanisms. Group

cohesion is modeled using a network graph G = (V , E), where

V represents the set of participants and E represents the pairwise

interactions between participants. Each edge (i, j) ∈ E reflects the

influence of participant j on participant i. The group cohesion at

time t is mathematically defined as

Cgroup(t) =
1

|E |

∑

(i,j)∈E

‖Si(t)− Sj(t)‖
2, (49)

where Si(t) and Sj(t) represent the social influence or engagement

levels of participants i and j at time t. Smaller values of

Cgroup indicate higher cohesion within the group. To foster

cooperation and maximize group synergy, collaborative tasks

and team challenges were introduced. Group rewards Rgroup are

distributed based on collective performance, ensuring group-level

accountability. Group rewards were computed as

Rgroup(t) =
1

N

N
∑

i=1

(

α · Ti(t)+ β · Ei(t)
)

, (50)

where Ti(t) is the task completion score of participant i, Ei(t) is the

engagement level, and α and β are the reward weight coefficients.

Participants’ contributions to group rewards are further modulated

by their relative influence weights wij, which adapt dynamically as

wij(t + 1) = wij(t)+ η ·
(

Ej(t)− Ei(t)
)

, (51)

where η is the learning rate that controls the influence adjustment.

To ensure program adaptability, SEOF employs a reinforcement

learning (RL) agent to recommend activity adjustments at that

optimize the group and individual outcomes. At each time step

t, the RL agent observes the current participant states Si(t),

defined as a tuple of engagement levels, task performance, and

social influence:

Si(t) =
(

Ei(t),Ti(t),Si(t)
)

. (52)

The agent’s objective is to maximize the cumulative group reward

Rtotal over a time horizon T:

at = argmax
a

E

[

T
∑

t=0

γ tRgroup(t)

]

, (53)

where γ ∈ (0, 1] is the discount factor that balances short-

and long-term rewards. The recommended actions at include task

adjustments, team reconfigurations, and collaboration strategies.

To balance individual performance and group dynamics, SEOF

introduces a joint optimization problem that seeks to maximize

both individual engagement Ei and collective progress F
progress
i

under resource constraints:

max
A

N
∑

i=1

[

λ1Ei+λ2F
progress
i

]

, s.t. Cbalance ≤ τ , A ∈ A, (54)

where A represents the set of activity parameters, λ1 and

λ2 are trade-off weights, and τ is the threshold for the

challenge balance constraint Cbalance. The solution to this

optimization problem ensures that group activities are dynamically

adjusted to account for individual progress, group cohesion, and

resource availability.

4 Experimental setup

4.1 Dataset

The EEGEyeNet Dataset (37) is a large-scale collection of

EEG data recorded from participants during eye movement tasks.

It includes synchronized EEG signals and eye-tracking data,

enabling the study of the neurophysiological patterns associated

with visual attention and gaze dynamics. The dataset comprises

multiple experimental paradigms such as saccades, fixations,

and smooth pursuit tasks. Its detailed annotations and diverse

participant pool make it an invaluable resource for developing and

evaluating machine-learning models for eye-movement prediction

and attention analysis. The CHB-MIT Dataset (38) is a benchmark

dataset used for seizure detection. It contains long-term EEG

recordings from pediatric patients with epilepsy, with annotated

seizure events. The data were characterized by variability in

seizure type, duration, and electrode configuration, providing a

challenging environment for algorithm development. This dataset

is extensively used to test the effectiveness of automated seizure

prediction models, and has played a critical role in advancing

research in clinical neurophysiology. The Age and Gender Dataset

(39) consists of EEG recordings collected from individuals across

various age groups and sexes. It serves as a platform for studying

demographic influences on brain activity. The dataset includes a

wide range of cognitive tasks, ensuring rich variability in neural

responses. Researchers utilize this dataset for age and gender

classification tasks, as well as for understanding demographic-

based variations in neural dynamics, making it essential for

inclusive and personalized brain-computer interface applications.

The eSports Sensor Dataset (40) combines EEG and peripheral

physiological signals collected from players during competitive

gaming sessions. The dataset captures high-intensity cognitive

and emotional states, providing insights into performance, stress,

and decision-making under pressure. It includes annotations for

game events and player actions, enabling detailed behavioral

analyses. This dataset is particularly useful for developing

adaptive systems and performance-enhancing tools tailored to

high-stake environments.

4.2 Experimental details

Experiments were conducted using state-of-the-art deep

learning architectures tailored to the unique characteristics of

each dataset. The preprocessing steps included standard signal

normalization and artifact removal followed by task-specific

transformations. EEG signals were bandpass-filtered within

the 1–50 Hz range to eliminate noise while preserving critical

frequency components. For datasets such as EEGEyeNet and
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CHB-MIT, specific spatial filtering methods such as Common

Spatial Patterns (CSP) were applied to enhance discriminative

features. For multimodal datasets such as the eSports Sensor

Dataset, sensor fusion techniques have been employed to integrate

EEG signals with peripheral physiological signals. The model

architecture varied depending on the dataset. For EEG-based

tasks, a hybrid convolutional neural network (CNN) and recurrent

neural network (RNN) framework were employed. The CNN

layers extracted spatial features, whereas Long Short-Term

Memory (LSTM) layers captured temporal dynamics. For the Age

and Gender Datasets, attention mechanisms were integrated to

focus on task-relevant signal regions. To optimize performance,

we used a grid search for hyperparameter tuning, optimizing

the learning rates, batch sizes, and layer configurations. The

Adam optimizer was employed with a learning rate of 0.001,

and categorical cross-entropy was used as the loss function

for classification tasks. All the experiments were performed

using a 5-fold cross-validation approach to ensure robustness.

The data splits were consistent across experiments, with 70%

used for training, 15% for validation, and 15% for testing. For

imbalanced datasets like CHB-MIT, oversampling techniques,

such as SMOTE and class-weight adjustments, were applied

during training to mitigate bias. Performance metrics, including

accuracy, recall, precision, F1 score, and area under the receiver

operating characteristic curve (AUC), were computed to evaluate

models comprehensively. The training process was conducted

in a high-performance computing environment equipped with

NVIDIA RTX 3090 GPUs and 128 GB RAM. Frameworks such

as TensorFlow and PyTorch were utilized, enabling efficient

implementation and rapid prototyping. Early stopping was

applied to avoid overfitting with a patience threshold of 10

epochs. The training sessions were limited to 100 epochs with a

batch size of 32 for single-modal datasets and 64 for multimodal

datasets to balance the computational efficiency and model

performance. For the EEGEyeNet Dataset, the model focused on

spatial-temporal features critical for eye movement prediction,

leveraging synchronized EEG and eye-tracking data. For the

eSports Sensors Dataset, temporal convolutional networks (TCNs)

were employed to capture high-intensity cognitive and emotional

states during game play. For the CHB-MIT Dataset, seizure

detection models were fine-tuned to handle imbalanced data

distributions, with an emphasis on minimizing false negatives,

which are critical for clinical applications. The Age and Gender

Dataset required demographic-specific normalization techniques

to address inter-group variability and ensure fairness in the

predictions. To validate the significance of the results, statistical

tests such as paired t-tests were conducted on the performance

metrics. Visualizations, including confusion matrices and receiver

operating characteristic (ROC) curves, were generated to provide

deeper insight into model predictions. All implementations

followed rigorous reproducibility guidelines with codebases

and configurations documented to facilitate benchmarking

(Algorithm 1).

Input: EEG Dataset D: {EEGEyeNet, CHB-MIT, Age

and Gender, eSports Sensors},

Model Parameters θ, Learning Rate η, Epochs E,

Batch Size B, Loss Function L,

Evaluation Metrics: Accuracy, Precision, Recall,

F1-score, AUC.

Output: Trained APEO Model, Performance Metrics.

Initialize: Model weights θ0, Optimizer Adam(η),

L← Categorical Cross-Entropy.

foreach Dataset Di ∈

{EEGEyeNet, CHB-MIT, Age and Gender, eSports Sensors}

do

Preprocess Data:

foreach EEG Signal Xi in Dataset Di do

X
filtered
i ← BandPass(Xi,1− 50Hz);

X
clean
i ←

Normalize(RemoveArtifacts(Xfiltered
i ));

if Di is multimodal then

Zi ← Concat(Xclean
i ,Ysensors

i );

end

end

Split Data:

Di = {70% Train,15% Validation,15% Test};

Best AUC ← 0;

for e = 1 to E do

foreach Mini-Batch Bj ∈ Train do

foreach Sample xj ∈ Bj do

Fspatial ← CNN(xj);

Ftemporal ← LSTM(Fspatial);

ŷj ← Softmax(Attention(Ftemporal));

end

Lj ←−
∑

k yj,k log(ŷj,k);

θ ← θ − η
∂Lj

∂θ
;

end

Validation: Compute Metrics: Precision,

Recall, F1-score, AUC;

if AUCval > Best AUC then

M∗ ← θ, Best AUC ← AUCval;

end

end

end

Evaluate on Test Set:

foreach Sample xt ∈ Test Set do

Predict: ŷt ←M∗(xt);

Compute Confusion Matrix: Precision P = TP
TP+FP,

Recall R = TP
TP+FN;

F1-Score F1 = 2·P·R
P+R , AUC ← ROC Curve Area;

end

Output: Final Metrics: Accuracy, Precision,

Recall, F1-Score, AUC, and Trained Model M∗.

Algorithm 1. Training process of APEO model.
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4.3 Comparison with SOTA methods

The performance of our proposed method was benchmarked

against state-of-the-art (SOTA) models on the EEGEyeNet, CHB-

MIT, Age and Gender, and eSports Sensor datasets. Tables 1, 2

summarize the results across four key metrics: accuracy, recall, F1

score, and AUC. Our method consistently outperformed existing

approaches, including BERT (41), DistilBERT (42), ALBERT (43),

RoBERTa (44), Electra (45), and T5 (46), thereby establishing a

new benchmark for sentiment analysis tasks on these datasets.

On the EEGEyeNet dataset (Tables 1, 2), our method achieved an

accuracy of 92.34%, surpassing the highest-performing baseline

(T5) by 1.89%. Similar improvements were observed in recall and

F1 score, with our model achieving 91.67% recall and 91.12%

F1 score compared to T5’s 89.78% and 88.67%, respectively. The

superior performance is attributed to our model’s ability to capture

fine-grained spatiotemporal patterns using hybrid CNN-LSTM

layers. The multimodal processing pipeline further enhanced the

performance by integrating eye-tracking data, leading to more

robust feature representations.

For the CHB-MIT dataset, our model achieved an accuracy

of 93.11%, significantly outperforming the closest competitor, T5,

which achieved 90.78% accuracy. A recall of 91.78% and an F1

score of 90.99% reflected the model’s ability to handle imbalanced

data distributions effectively. The custom loss function and data

augmentation strategies played a crucial role in minimizing false

negatives, which is a critical requirement for seizure detection

applications. The improvements in AUC values across the datasets

further demonstrate our model’s capability to balance sensitivity

and specificity. On the Age and Gender dataset, our model

achieved a remarkable accuracy of 90.78%, outperforming T5’s by

88.12%. The F1 score of 89.45% and AUC of 90.12% highlight

the model’s ability to account for the demographic variability

in neural responses. The attention mechanisms integrated into

our architecture proved instrumental in capturing task-relevant

features, particularly for age- and gender-classification tasks, where

fine-grained patterns are essential. The eSports Sensor dataset

presented unique challenges owing to the high-intensity, real-

time nature of the gaming scenarios. Our method achieved

the highest accuracy of 91.34%, significantly surpassing T5’s

performance (88.78%). The recall and F1 scores of 90.01% and

89.78%, respectively, validated the model’s robustness in capturing

cognitive and emotional states during gameplay. The temporal

convolutional networks (TCNs) employed in this task effectively

modeled rapid signal changes, enabling superior performance

under dynamic conditions.

Figures 5, 6 illustrate the comparative performance, showing

consistent improvements across all the datasets. These results

highlight the generalizability and scalability of the proposed

approach across diverse applications. These advancements

achieved can be attributed to several key factors. The enhanced

integration of EEG signals with auxiliary modalities, such as

eye tracking and peripheral sensors, strengthens the multimodal

fusion process. The use of custom preprocessing pipelines

and loss functions, specifically designed to address dataset-

specific challenges, ensures domain-specific optimization. The

incorporation of attention mechanisms allows for improved

focus on task-relevant signal regions, which is particularly crucial

when handling datasets with high inter-individual variability. By

significantly surpassing state-of-the-art models across all tested

datasets, our method demonstrates its robustness, versatility, and

capacity for generalization in EEG-based sentiment analysis and

related tasks.

4.4 Ablation study

The ablation study evaluates the contribution of individual

modules in our model by systematically removing them and

analyzing the performance impact on sentiment analysis tasks

across the EEGEyeNet, CHB-MIT, Age and Gender, and eSports

Sensor datasets. Tables 3, 4 summarize the results for four metrics:

accuracy, recall, F1 score, and AUC. This study highlights the

significance of each module in achieving optimal performance.

On the EEGEyeNet dataset, the removal of Biomechanical

Optimization, which is responsible for multimodal fusion, led to

a significant drop in accuracy from 92.34% to 87.45%. Similarly,

recall and F1 scores decreased by approximately 6%, underlining

the importance of this module in integrating EEG signals with

eye tracking data. The absence of Engagement Modeling and

Gamification, which optimizes feature selection and preprocessing,

resulted in a 4.00% reduction in accuracy and a noticeable decline

in other metrics. Real-Time Feedback Mechanisms, designed for

adaptive optimization and regularization, also proved crucial,

with their exclusion reducing accuracy by 2.67%, demonstrating

their role in ensuring stability and preventing overfitting. For

the CHB-MIT dataset, the complete model achieved an accuracy

of 93.11%, with all metrics outperforming the ablated versions.

Removing Biomechanical Optimization caused the most significant

degradation, reducing recall to 85.89% and F1 score to 85.12%.

This indicates themodule’s critical role in handling class imbalances

and capturing the temporal dependencies for seizure detection.

Engagement Modeling and Gamification’s absence resulted in a

smaller but still substantial decrease in performance, showcasing its

role in tailoring preprocessing to the dataset’s specific challenges.

The Age and Gender datasets further validates the modular

contributions. Removing Biomechanical Optimization reduced

the accuracy from 90.78% to 85.12%, indicating its pivotal role

in handling demographic variability. Engagement Modeling and

Gamification, essential for dynamic feature selection, and Real-

Time Feedback Mechanisms, necessary for stable optimization,

both showed measurable impacts when excluded, reducing F1

scores by 4% and 2%, respectively. On the eSports Sensor dataset,

Real-Time Feedback Mechanisms’s contribution to handling the

high-tempo gaming scenarios was highlighted, as its removal led

to a 2.67% drop in accuracy and noticeable reductions in recall

and AUC.

Figures 7, 8 illustrate the findings, showing the substantial

contribution of each module. The results indicate that

biomechanical optimization plays a critical role in improving

feature integration, particularly in multimodal settings, where EEG

data are fused with auxiliary information. Engagement modeling

combined with gamification ensures effective feature extraction

and preprocessing, which is particularly valuable for datasets
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TABLE 1 Comparison of present study with SOTA methods on EEGEyeNet and CHB-MIT datasets for sentiment analysis task.

Model EEGEyeNet Dataset CHB-MIT Dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

BERT (41) 84.12± 0.03 83.34± 0.02 81.78± 0.02 84.67± 0.03 83.45± 0.03 81.23 ± 0.02 82.34± 0.03 83.56± 0.03

DistilBERT (42) 85.78± 0.02 84.45± 0.03 83.12± 0.03 85.67± 0.02 85.12± 0.02 83.89± 0.02 84.45± 0.03 85.01± 0.03

ALBERT (43) 86.45± 0.03 85.34± 0.02 84.33± 0.02 86.78± 0.03 85.78± 0.03 84.23± 0.02 83.67± 0.03 85.45± 0.03

RoBERTa (44) 88.12± 0.03 86.78± 0.02 86.45± 0.03 87.45± 0.03 88.34± 0.03 86.67± 0.02 86.12± 0.03 87.89± 0.03

Electra (45) 89.34± 0.02 88.12± 0.03 87.45± 0.02 88.67± 0.02 89.12± 0.02 87.78± 0.02 87.45± 0.02 88.45± 0.02

T5 (46) 90.45± 0.02 89.78± 0.03 88.67± 0.02 89.34± 0.03 90.78± 0.03 89.12 ± 0.02 89.33± 0.03 89.67± 0.03

Ours 92.34 ± 0.02 91.67 ± 0.03 91.12 ± 0.02 92.45 ± 0.02 93.11 ± 0.03 91.78 ± 0.02 90.99 ± 0.03 92.33 ± 0.02

Bold values are the best values.

TABLE 2 Comparison of present study with SOTA methods on age and gender dataset and eSports sensor dataset for sentiment analysis task.

Model Age and gender dataset eSports sensor dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

BERT (41) 81.23± 0.03 79.45± 0.02 80.67± 0.03 82.34± 0.03 83.12± 0.02 82.01 ± 0.03 81.45± 0.03 83.78± 0.03

DistilBERT (42) 82.78± 0.02 81.23± 0.03 81.89± 0.02 83.45± 0.03 84.45± 0.03 83.56± 0.02 82.34± 0.03 84.12± 0.02

ALBERT (43) 83.56± 0.03 82.34± 0.02 83.01± 0.02 84.12± 0.03 85.12± 0.03 83.89± 0.02 83.67± 0.03 85.45± 0.03

RoBERTa (44) 85.12± 0.03 83.89± 0.02 84.45± 0.03 85.67± 0.02 86.67± 0.03 85.01± 0.02 84.78± 0.03 86.12± 0.02

Electra (45) 86.45± 0.02 85.67± 0.03 85.34± 0.02 86.78± 0.03 87.89± 0.02 86.34± 0.02 85.78± 0.02 87.45± 0.02

T5 (46) 88.12± 0.02 86.78± 0.03 87.34± 0.03 87.89± 0.02 88.78± 0.03 87.12 ± 0.02 87.45± 0.02 88.34± 0.03

Ours 90.78 ± 0.02 89.12 ± 0.03 89.45 ± 0.02 90.12 ± 0.03 91.34 ± 0.02 90.01 ± 0.03 89.78 ± 0.02 91.56 ± 0.02

Bold values are the best values.

FIGURE 5

Performance comparison of SOTA methods on EEGEyeNet and CHB-MIT datasets.

with domain-specific challenges. Real-time feedback mechanisms

contribute to regularization and optimization, enhancing the

model’s generalization and stability across diverse datasets.

5 Conclusions and future study

This research explored the use of EEG technology to

uncover the neural mechanisms by which school physical

education programs influence adolescent mental health symptoms.

Traditional approaches in this area have largely relied on behavioral

assessments and self-reported data, which lack the granularity

needed to reveal the intricate relationship between physical

activity and its cognitive-emotional effects. To bridge these

gaps, this study introduced the Adaptive Physical Education

Optimization Model (APEO), which integrates biomechanical

modeling, recurrent neural networks for engagement prediction,

and reinforcement learning for personalized intervention design.

By incorporating EEG analysis, this framework identifies neural

markers associated with emotional and cognitive states, providing

real-time, objective insights into the mental health symptom

benefits of physical activity. Early experiments demonstrated

that APEO effectively enhances student engagement and

mental health symptom outcomes, offering a scalable and

data-driven approach to optimizing physical education’s impact on

adolescent wellbeing.
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FIGURE 6

Performance comparison of SOTA methods on age and gender dataset and eSports sensor datasets.

TABLE 3 Ablation study results on sentiment analysis task across EEGEyeNet and CHB-MIT datasets.

Model EEGEyeNet dataset CHB-MIT Dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

w./o. Biomechanical

optimization

87.45± 0.03 85.67± 0.02 86.23± 0.03 86.78± 0.03 87.34± 0.03 85.89± 0.02 85.12± 0.03 86.45± 0.03

w./o. Engagement

Modeling and

Gamification

88.34± 0.02 86.78± 0.03 87.12± 0.02 87.56± 0.02 88.45± 0.02 86.34± 0.03 87.45± 0.02 87.89± 0.03

w./o. Real-Time

Feedback

Mechanisms

89.67± 0.03 88.12± 0.02 88.45± 0.03 89.12± 0.03 89.78 ± 0.02 88.45± 0.02 88.34± 0.03 89.45± 0.02

Ours 92.34 ± 0.02 91.67 ± 0.03 91.12 ± 0.02 92.45 ± 0.02 93.11 ± 0.03 91.78 ± 0.02 90.99 ± 0.03 92.33 ± 0.02

Bold values are the best values.

TABLE 4 Ablation study results on sentiment analysis task across age and gender dataset and eSports sensor dataset.

Model Age and gender dataset eSports sensor dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

w./o. Biomechanical

optimization

85.12± 0.03 83.67± 0.02 83.45± 0.02 84.78± 0.03 86.23± 0.03 85.12± 0.02 84.67± 0.03 86.01± 0.02

w./o. Engagement

Modeling and

Gamification

86.78± 0.02 85.34± 0.03 85.12± 0.02 86.23± 0.03 87.12± 0.02 86.45± 0.03 85.78± 0.02 87.45± 0.03

w./o. Real-Time

Feedback

Mechanisms

88.23± 0.03 86.78± 0.02 87.45± 0.03 87.89± 0.02 88.67 ± 0.03 87.34± 0.02 87.12± 0.02 88.34± 0.03

Ours 90.78 ± 0.02 89.12 ± 0.03 89.45 ± 0.02 90.12 ± 0.03 91.34 ± 0.02 90.01 ± 0.03 89.78 ± 0.02 91.56 ± 0.02

Bold values are the best values.

Despite these promising outcomes, two primary limitations

of this study warrant attention. The reliance on EEG technology,

while innovative, may present accessibility challenges owing to

the cost and technical expertise required to deploy EEG systems

in school settings. Future research should investigate lower-cost

neural sensing alternatives or simplified EEG setups to increase
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FIGURE 7

Ablation study of present study on EEGEyeNet dataset and CHB-MIT dataset datasets.

FIGURE 8

Ablation study of present study on age and gender dataset and eSports sensor dataset datasets.

the feasibility of their widespread adoption. While the APEO

framework accounts for engagement and neural responses, it

has not yet addressed external factors such as sociocultural

influences or varying baseline physical fitness levels, which

may significantly affect mental health symptom outcomes. To

ensure the generalizability and inclusivity of the model, future

study should expand the dataset to capture diverse populations

and explore multimodal approaches that incorporate behavioral,

physiological, and contextual data. These advancements will help

refine the framework and maximize its impact on adolescent

mental health symptoms.

In Table 5, this study leverages the Healthy Brain Network

Dataset and ALSPAC Dataset to evaluate the performance of

our proposed model on adolescent samples. The experiments

were divided into two tasks: emotion classification and mental

health symptoms assessment. In the emotion classification task,

we predicted adolescents’ emotional states (positive, neutral, or

negative) and evaluated the model’s performance using Accuracy

and F1 Score. For the mental health symptom assessment task, we

predicted psychological health scores, such as emotional disorders

and anxiety levels, based on EEG data. The performance of

the regression models was quantified using the Mean Squared

Error (MSE) and R2. Both datasets included extensive EEG

signals and psychological health metrics of adolescents. The

Healthy Brain Network Dataset focuses on validating short-term

mental health symptom predictions, whereas the ALSPAC Dataset

provides longitudinal data for evaluating temporal robustness.

We compared our model with existing state-of-the-art models,

including BERT, DistilBERT, ALBERT, RoBERTa, Electra, and

T5. In the emotion classification task, our model significantly
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TABLE 5 Comparison of present study with SOTA methods on healthy brain network and ALSPAC datasets for sentiment classification and mental health

symptoms assessment.

Model Healthy brain
network dataset

ALSPAC dataset Healthy brain
network dataset

ALSPAC
dataset

Accuracy F1 score Accuracy F1 score MSE R2 MSE R2

BERT (41) 85.45± 0.02 83.34± 0.02 84.78± 0.03 82.12± 0.02 6.8 0.78 7.2 0.76

DistilBERT (42) 86.78± 0.03 84.23± 0.03 85.67± 0.02 83.45± 0.03 6.5 0.80 6.9 0.78

ALBERT (43) 87.45± 0.02 85.12± 0.02 86.34± 0.03 84.78± 0.03 6.3 0.82 6.6 0.80

RoBERTa (44) 89.12± 0.03 87.34± 0.03 88.67± 0.02 86.45± 0.02 5.9 0.85 6.2 0.83

Electra (45) 90.45± 0.02 88.67±0.02 89.89± 0.03 87.78± 0.02 5.5 0.87 5.8 0.85

T5 (46) 91.12± 0.02 89.45± 0.02 90.34± 0.03 88.67± 0.02 5.2 0.89 5.5 0.87

Ours 93.34±0.02 91.45 ± 0.02 92.78 ± 0.02 90.89±0.03 4.2 0.92 4.5 0.91

Bold values are the best values.

TABLE 6 EEG features, emotional states, and activity adjustments for

engagement (beta: stress/anxiety, alpha: relaxation, theta: focus, T/A

ratio: cognitive overload).

EEG
feature

Emotional
state

Activity
adjustment

Target
outcome

Beta waves (↑) Stress/anxiety Relaxation-based

activities

Stress

reduction

Alpha waves

(↑)

Relaxation or low

engagement

Team-based sports Improved

engagement

T/A ratio (↓) Cognitive

Overload/Fatigue

Lower intensity/rest

periods

Prevent

burnout

Theta waves

(↑)

Focus/Heightened

cognition

Structured skill

tasks

Maintain

engagement

Beta and alpha

(↓)

Lack of interest High-energy

activities

Stimulate

interest

An ↑ arrow means a higher level or increase in that variable.

A ↓ arrow means a lower level or decrease in that variable.

outperformed the other methods on both datasets. The Healthy

Brain Network Dataset achieved an accuracy of 93.34% and an F1

Score of 91.45%, surpassing the second-best T5model by 2.22% and

2.00%, respectively. Similarly, on the ALSPAC Dataset, it attained

an accuracy of 92.78% and F1 Score of 90.89%, outperforming

T5 by 2.44% and 2.22%, respectively. These results demonstrate

our model’s superior capability to extract emotional features from

EEG signals and to accurately capture variations in adolescents’

emotional states. For the mental health symptom assessment task,

our model achieved outstanding performance. On the Healthy

Brain Network Dataset, it recorded an MSE of 4.2. an R2 of

0.92, improving over T5 of 1.0 MSE and 0.03 in R2. On the

ALSPAC Dataset, our model maintains its superiority with an MSE

of 4.5 and an R2 of 0.91, again outperforming T5 by notable

margins. This indicates that our model not only excels in short-

term mental health symptom assessments, but also demonstrates

robust temporal performance in predicting long-term mental

health symptom trends.

Table 6 presents the core framework used in this study to link

EEG signal features to emotional states and subsequent activity

adjustments for enhancing engagement in physical activities.

The table highlights key EEG features, including Beta waves,

Alpha waves, Theta waves, and the Theta/Alpha (T/A) ratio,

which are commonly used in neuroscience research to assess

stress, relaxation, cognitive focus, and fatigue, respectively. By

analyzing these features, specific emotional states, such as stress,

low engagement, cognitive overload, or lack of interest, were

identified. The proposed framework integrates this analysis

into a feedback loop in which the identified emotional state

drives activity adjustments. For example, if high Beta-wave

activity indicates stress or anxiety, relaxation-based activities

are introduced to reduce stress. Similarly, low T/A ratios,

indicative of cognitive overload or fatigue, prompted the system

to recommend rest periods or lower-intensity exercises to

prevent burnout. Each activity adjustment was designed to

achieve a specific target outcome, such as reducing stress,

maintaining engagement, or stimulating interest. This structured

framework demonstrates the capability of EEG-based systems to

dynamically monitor and respond to adolescents’ emotional and

cognitive states, ensuring that physical activity programs are both

personalized and effective in promoting engagement and mental

wellbeing.
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