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Objective: With the extension of life expectancy and persistently low birth rates, 
population aging has become a pressing issue in China. This study investigates 
and visualizes the multiscale spatial heterogeneity of population aging and 
its influential factors (demographic, socioeconomic, healthcare, and natural 
environmental factors) across the Shaanxi-Gansu region in northwestern China 
for 2010 and 2020, and aims to offer some insights for designing localized aging 
policies to promote an older adult-friendly society.

Methods: Using county-level census data and nighttime light data, spatial 
autocorrelation analysis and multiscale geographically weighted regression 
were applied to explore spatial patterns of aging and the varying impacts of 
different factors across scales.

Results: The results reveal progressive population aging and significant spatial 
heterogeneous impacts in the region. In 2010, demographic factors had global 
effects, economic factors had local effects, and environmental factors influenced 
at regional scales. By 2020, healthcare factors exerted global impacts, while the 
spatial influence of the other factors varied within each category.

Conclusion: The Shaanxi-Gansu region experienced accelerated aging along 
with distinct spatial–temporal heterogeneity in aging patterns. The scale and 
magnitude of the impacts from four types of influencing factors also shifted 
over the study period. These findings highlight the importance of addressing 
aging challenges by considering the specific local characteristics of each area.
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1 Introduction

China is undergoing rapid population aging, with the median age dramatically rising 
from 21.4 in 1984 to 39.1 in 2024 (1), and by 2023, 15.4% of the population was aged 65 
or older (2), far surpassing the international threshold of 7% that defines an aging society. 
This trend which is driven by increased life expectancy and persistently low birth rates, 
poses a significant challenge. Furthermore, the spatial distribution and underlying 
mechanisms of population aging differ across regions (3, 4), complicating efforts by 
central and local governments to address this issue effectively. Researches of China’s 
population aging mainly focus on three aspects (Figure 1a): disease burden and healthcare 

OPEN ACCESS

EDITED BY

Steven A. Cohen,  
University of Rhode Island, United States

REVIEWED BY

María Teresa Solís-Soto,  
Universidad de O'Higgins, Chile
Jinghang Cui,  
Northeastern University, United States

*CORRESPONDENCE

Qing Luo  
 luoqing@wit.edu.cn

RECEIVED 25 December 2024
ACCEPTED 10 March 2025
PUBLISHED 27 March 2025

CITATION

Long F, Luo Q and Li Z (2025) Multiscale 
spatial heterogeneity of population aging in 
relation to its influential factors: a case study 
in the Shaanxi-Gansu region, China.
Front. Public Health 13:1551287.
doi: 10.3389/fpubh.2025.1551287

COPYRIGHT

© 2025 Long, Luo and Li. This is an 
open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Original Research
PUBLISHED 27 March 2025
DOI 10.3389/fpubh.2025.1551287

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpubh.2025.1551287&domain=pdf&date_stamp=2025-03-27
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1551287/full
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1551287/full
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1551287/full
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1551287/full
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1551287/full
mailto:luoqing@wit.edu.cn
https://doi.org/10.3389/fpubh.2025.1551287
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://doi.org/10.3389/fpubh.2025.1551287


Long et al. 10.3389/fpubh.2025.1551287

Frontiers in Public Health 02 frontiersin.org

needs of the older adult (highlighted in red and yellow-green 
clusters) (5, 6), the living environments, including natural and 
cultural aspects (shown in green, purple, and orange clusters) 
(7–9), and policies related to aging population (depicted in blue 
cluster) (10, 11).

However, fewer than 10% (122 out of 1,309) of studies on 
population aging have been conducted from a spatial perspective 

(Figure 1b), which is essential for addressing aging with localized 
characteristics. Figure 1b categorizes these spatial studies into three 
main types: spatiotemporal trend of aging development (blue cluster) 
(12, 13), the allocation of public facilities and services for equitable 
accessibility (green and purple clusters) for the older adult (14, 15), 
and the spatial heterogeneity and influencing factors of population 
aging (red cluster) (3, 16).

FIGURE 1

Keywords co-occurrence maps of population aging researches relating to China from 1985 to 2024 by VosViewer (76), keywords were searched in 
Web of Science Core Collection database and Chinese Science Citation database: (a) Keywords co-occurrence map of 1,309 papers searched by 
topics “population aging” and “China”; and (b) Keywords co-occurrence map of 122 papers searched by topics “population aging,” “China,” and 
“spatial”.
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Spatial analysis has emerged as a critical methodology for 
examining geospatial patterns of population aging data and 
uncovering hidden demographic dynamics. As conceptualized by 
Haining (17) (p. 4–5), this approach integrates three fundamental 
components: cartographic modeling, mathematical modeling, and 
spatial data analytics. The proliferation of geographical information 
platforms—e.g., ArcGIS, GeoDA (18), and specialized packages in R 
(19) and Python (20)—has significantly enhanced the application of 
spatial analysis techniques in demographical studies. This 
methodological advancement has facilitated innovative investigations 
into aging patterns, as exemplified by recent research: Wang et al. (21) 
employed spatial autocorrelation and Bayesian spatio-temporal effect 
model to explore the dynamic relationship between mainland China’s 
aging population distribution and medical resources allocation. 
Similarly, Xu et al. (22) utilized global and local spatial autocorrelation 
indices and spatial econometric models to examine provincial-level 
disparities in self-assessed health among older adult population 
in China.

The spatial dimensions of older adult care provision have become 
prominent themes in demographical research. Scholars have adopted 
diverse spatial analytical framework to address service accessibility 
challenges. Li et al. (23) conducted a spatio-temporal assessment of 
rural institutional older adult care resource distribution. Li et al. (24) 
employed provincial panel data to analyze urban–rural equity in 
older adult care services accessibility. Zhang et al. (25) highlighted 
the uneven allocation of older people care resource across 
China’s regions.

Scholarly investigations into spatial patterns of population 
aging and influencing factors operate across multiple geographical 
hierarchies, encompassing national (12, 26), regional (16, 27), 
provincial (28, 29), and municipal (30, 31) levels. These studies use 
diverse spatial datasets ranging from provincial administrative units 
(16), to townships records (30) and pixel-level grids (13). The 
phenomenon of population aging, characterized by demographic 
theory as “an inevitable part of the transition to lower rates of 
population growth that follow the demographic transition from 
high fertility and high mortality to low fertility and low mortality” 
(32) (p.7), exhibits multifaceted drivers. Empirical studies have 
identified several determinant categories of population aging. (i) 
Demographic drivers: Huang et  al. (33) established through 
prefecture level modeling that natural aging, fertility, mortality, and 
migration collectively reconfigure age structures. (ii) Economic 
forces: Man et  al. (12) revealed significant provincial-level 
correlations between aging and economic indicators, while Wu and 
Song also discussed the impacts of economic factors on aging. (iii) 
Healthcare systems: Iuga et al. (34) demonstrated through cross 
European Union that health care expenditure and hospital bed 
availability mediate aging progression rates; Ma et  al. (35) 
investigated the coupling and coordination between the demand of 
healthcare resources and the older adult population, while Wu et al. 
(36) revealed the increasing imbalance between supply and demand 
of older adult care resources in the Yangtze river delta regions of 
China. (iv) Natural environmental conditions: Lian et  al. (37) 
explored natural environmental factors on aging in China’s 
mountainous areas; Xu et al. (9) and Chen et al. (6) discussed the 
close relationship between population aging and air pollution 
driven mortality. And (v) other factors: except for other economic 
factors, Zhou et al. (38) also discussed the settlement costs on aging 

in the Yangtze river delta urban agglomeration. In our research, 
we examined how demographic, economic, health care, and natural 
environmental factors impact aging rates and how these influences 
vary across different scales.

The proliferation of geospatial big data has catalyzed a paradigm 
shift from singular-data analysis to multisource data fusion, 
particularly in overcoming the spatial–temporal limitations of 
conventional statistical sources. While cell phone signaling and 
point-of interest (POI) datasets have proven effective in population 
downscaling (39–41), exploring spatial patterns of demographic 
subgroups (42, 43), and economic data spatialization (44, 45), night 
time light (NTL) remote sensing has been verified as an valuable 
data source across multidisciplinary investigations. Andries et al. 
(46) systematically identified 58 potential research themes of NTL 
spanning 10 sustainable development domains (p.  12–15), 
confirming the capacity of NTL data to bridge macroscale statistical 
indicators with microscale spatial processes. Given our research 
focus on population aging and its influencing factors encompassing 
four categories, we  specifically contextualize NTL’s applicability 
within three pertinent domains. The first type pertains to estimation 
or evaluation of economic indicators such as gross domestic 
product (GDP) growth rate (47), income (48), unemployment rates 
(49). The second type relates to population spatialization, for 
example, simulating population in 1-kilometer grid, informing 
statistical models to obtain long-term population spatialization 
results (50). And the third type is about exploring urban functional 
zones (51), identifying lighting characteristics of public space in 
urban functional areas (52). These contributions display NTL’s dual 
role as both a standalone spatial proxy and a synergistic data layer 
that enhances conventional socioeconomic measurements through 
geospatial contextualization.

Although aging issues have been extensively studied across China, 
the spatial pattern and influencing mechanism in multiscale of 
population in Shaanxi and Gansu provinces remain underexplored. 
Located in the underdeveloped northwestern China, Shaanxi and 
Gansu provinces have similar population structures (2) and represent 
the most aged populations among China’s five northwestern 
administrative units (alongside Qinghai, Tibet, and Xinjiang). Their 
selection as study areas is justified by three distinctive attributes. From 
the geographical aspect, both provinces demonstrate pronounced 
intraregional diversity: Shaanxi’s “Loess Plateau (north)–Guanzhong 
Plain (central)–Qinba Mountain Area” (south) structure (53) contrasts 
with Gansu’s “Hexi Corridor (northwest)–Loess Plateau (central and 
east)–Qinba Mountain Area (south)–Gannan Plateau (southwest)” 
configuration (54). Such spatial stratification likely generates 
subprovincial disparities in aging severity and policy responsiveness. 
From the political perspective, their strategic roles diverge 
significantly, Shaanxi functions as the operational core of the Western 
Development Strategy (55) and anchors the Guanzhong Plain urban 
agglomeration, while Gansu serves as the critical terrestrial corridor 
of the Belt and Road Initiative (56). These contrasting national 
positions may differentially influence resource allocation for older 
adult care systems. In socioecological aspect, two compounding 
factors emerge: first, the two provinces both have concentrated ethnic 
minority settlements, and policies need to consider ethnic factors, 
which increase the complexity of aging governance; and second, the 
soil erosion area of the Loess Plateau in northern Shaanxi and arid 
area of the Hexi Corridor in Gansu have fragile ecological capacity 
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(57), which drive youth outmigration so that the proportion of left 
behind older adult is increasing.

The remainder of this research is organized as follows. Section 2 
outlines materials and methods, including data collection and 
preprocessing, spatial autocorrelation (SA) analysis, and multiscale 
geographical weighted regression (MGWR). Section 3 presents the 
globe and local spatial patterns of aging rates in the Shaanxi-Gansu 
region for the years 2010 and 2020. Section 4 explores and visualizes 
the multiscale impacts of demographic, economic, healthcare, and 
natural environmental factors on aging. Finally, section 5 concludes 
with a summary of the findings and discusses their 
policy implications.

2 Materials and methods

2.1 Study area

Shaanxi and Gansu provinces are located in the northwestern 
China, with Shaanxi in the middle reaches of the Yellow River and 
Gansu to its west, they also feature complex geographical 
environments, including the Loess Plateau and Qinling Mountains. 
Since there were no significant changes in county-level administrative 
divisions between 2010 and 2020, this study uses counties as the basic 
unit of analysis, totaling 194 units. As illustrated in Figure  2, the 
prefecture-level administrative divisions are outlined with solid black 
lines, while the county-level administrative divisions within each 
prefecture are marked with solid yellow lines.

2.2 Data and variables

This study utilized population and influencing factors datasets 
derived from the sixth (2010) and seventh (2020) national population 
censuses, as well as the “Shaanxi Statistical Yearbook” and “Gansu 
Statistical Yearbook” (2010 and 2020).

The focus of this research was the aging rate, defined as the 
percentage of the population aged 65 years and older, which served 
as the primary variable of interest. According to the United Nations 
(58) (p.  7), a country or region is considered “aged” when the 
proportion of individuals aged 65 and above exceeds 7% of the total 
population. Organisation for Economic Co-operation and 
Development (OECD)/World Health Organization (WHO) (59) 
further classified aging levels based on the aging rate: 7–14% is 
considered “mild aging,” 14–21% “moderate aging,” and over 21% 
“severe aging.”

Population aging is influenced by various, including 
demographic (60), economic (61), healthcare (62), and natural 
environmental factors (30). This study analyzed the impact of 
these four categories of factors on aging rates. We  originally 
collected 11 variables across these categories: demographic factors 
(birth rate, mortality rate, and proportion of permanent 
population); economic factors (GDP, per capita GDP, per capita 
disposable income of urban residents, and net income of rural 
residents); healthcare factors (number of health institutions and 
number of community service institutions and facilities); natural 
environmental factors: (days of good air quality and per capita 
park green area).

FIGURE 2

The Shaanxi-Gansu region.
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2.3 Research methods

2.3.1 Data processing
This study employed county-level administrative units as the 

fundamental research scale. Although comprehensive datasets were 
collected for demographic variables (i.e., birth rate, mortality rate, 
proportion of permanent population) and economic indicators (i.e., 
GDP, per capita GDP), partial missing values were identified in the 
records of health institutions and community healthcare facilities. 
To address these data gaps, we leveraged night time light (NTL) 
data as a supplementary proxy based on their proven ability to 
reflect the intensity of human activities (63) including economic 
activities. Empirical evidence demonstrates that NTL intensity has 
medium to strong positive correlation with enterprise density and 
income levels (64), and serves as a reliable substitute for 
conventional economic indicators in countries and regions with 
very poor quality or missing data (65). Given the established 
positive relationship between economic development level and 
healthcare services supply (66) and healthcare expenditure (67), 
we  hypothesize a correlation chain: NTL intensity → economic 
development level → healthcare service provision. This principle 
justifies utilizing NTL data to impute missing values for the two 
variables: the number of health institutions (NoHI) and the number 
of community service institutions and facilities (NoCSIF). The 
imputation procedure incorporated NTL datasets from the 
DMSP-OLS and NPP-VIIRS (2010–2020) corrected by Zhong et al. 
(68) through tree operational steps.

Step  1, Spatial aggregation: NTL values in grid cells were 
aggregated to counties and prefecture-level cities by summing all NTL 
values within each county and prefecture-level city.

Step  2, Weight coefficient derivation: County-specific NTL 
weights were computed as the ratio of individual county NTL intensity 
to total prefecture-level city NTL intensity.

Step 3, Missing value estimation: For counties with missing NoHI/
NoCSIF records, values were imputed by multiplying reported 
prefecture-level city totals by corresponding county NTL weights.

To ensure the independence of variables, we  conducted a 
multicollinearity analysis (results are summarized in 
Supplementary Table S1) and retained only those with variance 
inflation factors (VIF) less than 9. Table 1 lists the eight variables 
included in the final model.

2.3.2 Spatial autocorrelation analysis
Spatial autocorrelation analysis consists of global and local 

autocorrelation methods. In this study, we  employed the global 
Moran’s I index (69) and Getis-Ord iG∗ index (70) to examine the 
spatial clustering patterns of population aging in the Shaanxi-
Gansu region.

The Moran’s I index typically ranges from −1 to 1. A value 
between 0 and 1 indicates positive spatial autocorrelation, meaning 
similar values are more likely to cluster together. A value between −1 
and 0 indicates negative spatial autocorrelation, implying dissimilar 
values are more likely to be  spatially adjacent. A value close to 0 
suggests a random spatial distribution with no discernible 
spatial pattern.

The local indicator of spatial association, specifically the standardized 
Getis-Ord iG∗ index (70) used in this paper, identifies local spatial clusters 
of high or low values. A significant positive iG∗ indicates that both the 

focal region and its surrounding areas have high attribute values, forming 
a “hot spot” or high–high cluster. Conversely, a significant negative iG∗ 
value suggests that both the focal region and its surrounding areas have 
low attribute values, forming a “cold spot” or a low–low cluster.

2.3.3 Multiscale geographically weighted 
regression (MGWR)

As an upgraded version of the geographical weighted regression 
(GWR) model (71) which furnishes different estimations for the 
coefficients of the same independent variable across the research areas, 
the MGWR (72) can identify the specific spatial range within which 
each explanatory variable exerts its influence, and the ranges varies 
with variables, which implies that the independent variables affect the 
dependent variable in multi-scales.

The MGWR model is represented as:

 
( ) ( )0

, , ,
ki bw i i bw i i ik i

k
y u v u v xβ β ε= + +∑

where 
kbwβ  represents the bandwidth of the kth variable, iy  is the 

ith observation of the dependent variable, ikx  is the ith observation of 
the kth explanatory variable, ( ),i iu v  is the spatial coordinate of location 
i, ( )0

,bw i iu vβ  is the intercept term and ( ),
kbw i iu vβ  is the regression 

coefficient of unit i, and iε  is an error term that follows a normal 
distribution. We employed the MGWR model not only to explore the 
different intensities of a variable impacting on different areas, but also 
to explore the impacting ranges of different variables on aging rates.

3 Results and analysis

3.1 The spatiotemporal pattern of 
population aging

From 2010 to 2020, Shaanxi and Gansu provinces experienced 
notable increases in population aging, as shown in Table  2. In 
Shaanxi, the average population aging rate rose from 8.53 to 13.32%, 
while in Gansu, it increased from 8.23 to 12.58%. Additionally, the 
range of aging rates expanded in both provinces: from 6.74 to 15.88% 
in Shaanxi and from 6.99 to 12.55% in Gansu. These trends highlight 
a significant acceleration in population aging over the decade, 

TABLE 1 Influencing factors of population aging employed in model.

Types Name Representation 
in model

Demographic 

factors

Birth Rate BIR

Mortality Rate MOR

Proportion of Permanent 

Population
PoPP

Economic factors per capita GDP pcGDP

Healthcare factors

Number of Health Institutions NoHI

Number of Community Service 

Institutions and Facilities
NoCSIF

Environmental 

factors

Days of Good Air Quality DoGAQ

per capita Park Green Area pcPGA
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accompanied by growing inter-regional disparities in the 
aging process.

3.1.1 The global spatial pattern
The Moran’s I values, measuring global clustering of the aging 

rates in Shaanxi and Gansu in 2010 and 2020, are shown in Table 3, 
and all values indicate moderate spatial autocorrelation. More 
specifically, the Moran’s I values for the aging rates in Shaanxi province 
in 2010 and 2020 are 0.405 and 0.430, respectively, indicating 
significant global spatial clustering characteristics. The Moran’s I 
values for the aging rates in Gansu province are 0.318 and 0.402, 
respectively, which are slightly lower than those of Shaanxi province, 
but also show significant global spatial clusters.

Figure 3 illustrates the spatial distribution of aging rates in the 
Shaanxi-Gansu region, revealing significant moderate spatial 
autocorrelation. The spatial pattern of aging rates aligns closely with 
the geographical features of the two provinces: those relatively low 
aging areas are predominantly distributed in northwestern Gansu, 
northern Shaanxi, and the ethnic gathering places in southwestern 
Gansu; while high aging clusters are in southern Shaanxi and Gansu 
within the Qinba mountain where experiences substantial 
youth outmigration.

Figure 3 also shows a rapid increase in aging rates across the 
Shaanxi-Gansu region from 2010 to 2020, accompanied by widening 
regional disparities. Notably, some counties in central (e.g., Fufeng 
and Qishan counties in Baoji) and northern (e.g., Jia county in Yulin) 
Shaanxi, and central (e.g., Minqin county in Wuwei) Gansu 
experienced significantly higher growth rates of aging than other 
areas. In contrast, Ethnic minority areas (e.g., Hezuo and Maqu 
counties in the Gannan Tibetan Autonomous Prefecture, Guanghe 
county in the Linxia Hui Autonomous Prefecture) in southwest 
Gansu, and central areas in Shaanxi (e.g., Lianhu and Baqiao districts 
in Xi’an) exhibited significantly lower aging rates.

Except the ethnic gathering places in southwestern Gansu, almost 
all areas’ aging rates had passed the internation threshold 7% by 2020, 
and some areas had even entered a moderately aged society. These 
include southern areas (e.g., Hanzhong, Ankang) and part central 
(Weinan) and northern areas (southeastern Yulin) of Shaanxi, 
Similarly, some central and eastern regions (Dingxi, Pingliang, 
Tianshui, Lanzhou) in Gansu have also transitioned into a moderately 
aged society.

3.1.2 The local spatial pattern
Figure  4 presents the spatiotemporal evolution of aging rate 

clusters in the Shaanxi-Gansu region during 2010–2020 using the iG∗ 
statistics. The iG∗ values are categorized into seven significant levels: 
cold spots with three levels of significance (99, 95, and 90%), hot 
spots with three levels of significance (99, 95, and 90%), and 
insignificant areas. For clarity, these categories are simplified as: cold 
spots (99%), moderate-cold spots (95%), sub-cold spots (90%), 
insignificant zones, sub-hot spots (90%), moderate-hot spots (95%), 
and hot spots (99%). Spatial patterns reveal distinct clustering 
dynamics: low-aging clusters (blue) predominantly occupy 
northwestern Gansu and Shaanxi, and southwestern Gansu; while 
high-aging clusters (red) concentrate in southern areas, particularly 
the Qinba mountains, exhibiting persistence of youth outmigration 
across the decade.

Between 2010 and 2020, notable changes occurred in the 
distribution of hot spots and cold spots. In areas with low-aging rate 
clusters, some cold spots and sub-cold spots in northwestern Gansu 
(Jiuquan and Zhangye) disappeared. In contrast, cold and sub-cold 
spots in partly southwestern (Gannan Zang Autonomous Prefecture) 
Gansu expanded and spread to neighboring areas. Meanwhile, cold 
spots in northwestern Shaanxi (Yanan) and eastern Gansu (Qingyang) 
remained largely unchanged, a small sub-cold spot emerged in Xi’an. 
The shrink of low-aging clusters in northwestern Gansu presents the 
decreased fertility intension with urbanization in these areas; the 
nearly unchanged low-aging clusters are located in the Loess Plateau 
between boundaries of the two provinces where people still have 
traditional fertility concept; the expanded low-aging areas in ethnic 
minority areas of southwestern Gansu and districts in Xi’an (Lianhu, 
Xincheng, Yanta) may be  the results of the relaxation of fertility 
policy issued in 2015 which have limited impacts on Han 
population (73).

In regions with high-aging rate clusters, southern areas of both 
provinces have little changes, middle-hot spots and sub-hot spots 
appeared in some central areas (Weinan and Baoji) of Shaanxi, and 
the southeastern Yulin which locates in northern Shaanxi experienced 
an expansion of hot spots. High-aging areas in southern Shaanxi-
Gansu are located in Qinba mountain areas where young population 
consistently out-migrated; those newly emerged high-aging areas are 
largely located in regions experienced rapid urbanization 
progress (74).

In summary, most areas in southern Shaanxi-Gansu located 
within Qinba moutains continue experiencing rapid population aging 
because of sustained youth outmigration, while emerging high-aging 
areas in parts of central and northern Shaanxi and the diminished 

TABLE 2 Some summary statistics of aging rates of Shaanxi and Gansu 
provinces from 2010 to 2020.

Province Statistics Aging 
rates of 

2010

Aging 
rates of 

2020

Shaanxi province

Max 12.01 23.42

Min 5.27 7.54

Range* 6.74 15.88

Mean 8.53 13.32

Gansu province

Max 10.63 18.03

Min 3.64 5.48

Range 6.99 12.55

Mean 8.23 12.58

*Range = Max − Min.

TABLE 3 Global Moran’s I estimation of aging rates in the Shaanxi-Gansu 
region in 2010 and 2020.

Region Year Moran’s I Z-score p-value

Shaanxi 

province

2010 0.405 6.969 0.000***

2020 0.430 7.415 0.000***

Gansu 

province

2010 0.318 4.605 0.000***

2020 0.402 5.772 0.000***

Shaanxi-Gansu 

region

2010 0.385 8.920 0.000***

2020 0.442 10.220 0.000***

Significance level: *0.1, **0.05, ***0.01.
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low-aging areas in northwestern Gansu experienced accelerated 
urbanization. In contrast, low-aging areas are mainly concentrated in 
ethnic minority gathering areas in southwestern Gansu and some 
districts in Xi’an city.

3.2 Modeling the relationship between 
population aging and its influential factors

In this section, we employed five modeling techniques—Ordinary 
Least Squares (OLS), spatial lag model (SLM) (75), spatial error model 
(SEM) (75), Geographically Weighted Regression (GWR), and 
Multiscale Geographically Weighted Regression (MGWR)—to 
examine the factors influencing population aging. OLS is the baseline 
model, SLM and SEM are global spatial regression models, while 
GWR and MGWR are local spatial regression models. We compared 
these models based on goodness of fit, residual autocorrelation 
and normality.

3.2.1 The comparison of goodness-of-fit
As shown in Table 4, the MGWR model exhibited the lowest 

residual sum of squares (RSS) and Akaike information criterion 
corrected (AICc) values, along with the highest R2 and adjusted R2 
among the five models. These results indicate that the MGWR model 
provides the best fit.

3.2.2 The comparison of residuals
The spatial autocorrelation of model residuals is a crucial indicator 

for model validity. As presented in Table  5, the MGWR model 
produced non-significant or lowest values for residuals, while OLS, 
SLM, and GWR present the significant SA values for residuals. The 
residuals of SEM are non-significant because the model includes spatial 
autocorrelation in the error term in the modeling process. These results 
suggest that the residuals generated by the MGWR most conform to 
the independent assumption of the error term of the regression model.

Table 6 presents the results of residual normality test. The analysis 
reveals that SLM, SEM, and MGWR produced normal or approximate 

FIGURE 3

Distribution of aging rates in the Shaanxi-Gansu region: (a) spatial distribution of aging rates in 2010; and (b) spatial distribution of aging rates in 2020.

FIGURE 4

Evolution of the local spatial pattern of population aging in the Shaanxi-Gansu region: (a) local clusters of aging rates in 2010; and (b) local clusters of 
aging rates in 2020.
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normal distribution. In contrast, the p-values for the OLS and GWR 
models suggest rejection of the null hypothesis of residual normality.

In summary, MGWR model presents the best performances. The 
global model constructed using the OLS, SLM, and SEM failed to 
adequately address the spatial heterogeneity of aging patterns, which 
is coincident with the results in subsection 3.1.2 that the aging in 
Shaanxi-Gansu region have spatial heterogeneity. Although the GWR 
model accounts for spatial heterogeneity in population aging, its use 
of a uniform bandwidth for analyzing influencing factors overlooks 
the inherent differences among these factors, and thus also failed to 
describe the data generating process. In contrast, the MGWR model 
offers significant advantages over the GWR model: it not only enables 
spatial heterogeneity in parameter estimation but also generates 
distinct optimal bandwidth values for the relationships between the 
response variable and each predictor variable. This capability enables 
the simulation of spatial processes operating at different scales (72).

4 Discussion

This section discusses both the intensity and spatial extent of 
factors affecting aging rates. Table 7 presents descriptive statistics of 
the estimated model coefficients, while Figure 5 visualizes the optimal 
bandwidths derived from the MGWR and GWR models. In Figure 5, 
orange bars represent the standard deviations of MGWR parameter 
estimates, and the black dotted line indicates the GWR optimal 
bandwidths. Variables with larger bandwidths exhibit broad-scale 
spatial effects and lower spatial heterogeneity, resulting in smaller 
standard deviations in parameter estimates. In contrast, variables with 
smaller bandwidths reflect localized effects, leading to greater 
variability in local parameter estimates.

Figure 5 shows that in 2010, demographic factors such as birth 
rate, mortality rate, and proportion of permanent population exhibited 
global-scale effects on population aging, indicating consistent impacts 
across counties and districts. In contrast, per capita GDP demonstrated 
local-scale influences, suggesting significant spatial heterogeneity in 
economic effects. Medical factors displayed mixed patterns: the 
number of health institutions (NoHI) had global effects, while the 
number of community service institutions and facilities (NoCSIF) 
showed local variations, highlighting the uneven impacts of 
community service development across counties and districts. 
Environmental factors operated at a regional scale, demonstrating 
moderate spatial heterogeneity in their influence on aging patterns.

By 2020, notable shifts in spatial patterns emerged. While the 
proportion of permanent population continued to exert a global effect 
on aging, birth and mortality rates shifted to local scale influences, 
reflecting increased population mobility and growing demographic 

diversity across areas. The influence of per capita GDP expanded to a 
regional scale, suggesting economic spillover effects among adjacent 
districts and counties. Medical factors maintained their global impact, 
likely due to the standardization of healthcare and welfare facilities 
across areas. Among environmental factors, per capita park green area 
(pcPGA) exhibited reduced spatial influence, whereas days of good 
air quality (DoGAQ) demonstrated broader regional consistency. This 
indicates that air quality effects became more uniform across regions, 
contrasting with the localized and spatially heterogeneous impacts of 
urban greening on aging patterns. The influencing intensities of each 
factor are shown in Figure 6. The successive subsections demonstrate 
how factors influence aging and their policy implications.

4.1 Multiscale spatial heterogeneity of 
demographic factors’ impacts on 
population aging

Figure  6a presents a violin plot of MGWR coefficients for 
demographic factors, with the 2010 and 2020 coefficients 
corresponding to the left and right vertical axes, respectively. Among 
these factors, birth rate (BIR) exhibited the largest variation in 
coefficient, followed by mortality rate (MOR). In 2010, the coefficients 
for BIR and proportion of permanent population (PoPP) were similar, 
both between −0.5 and −0.4 and showing distinctly negative effects, 
while MOR which ranged from 0.1 to 0.2 exhibited positive effects. By 
2020, BIR coefficients showed conspicuous variability with some 
shifting to positive values, showing that BIR were positively correlated 
with aging rates in some areas. MOR coefficients, although partially 
negative, predominantly clustered around 0.15, while PoPP coefficients 
remained stable around −0.5, showing minimal change from 2010.

TABLE 4 Fitting comparisons of OLS, SLM, SEM, GWR, and MGWR models.

2010 2020

Models OLS GWR SLM SEM MGWR OLS GWR SLM SEM MGWR

RSS 106.24 52.86 193.99 165.75 47.76 102.47 49.97 622.04 499.58 37.55

AICc 454.93 401.53 581.50 561.18 375.19 447.93 362.63 811.29 785.38 332.07

R2 0.45 0.73 0.57 0.63 0.75 0.47 0.74 0.64 0.71 0.81

Adj. R2 0.43 0.66 0.55 0.61 0.70 0.45 0.69 0.62 0.70 0.76

The bold values mean the best model fitting.

TABLE 5 Residual spatial autocorrelation of five regressive models.

Year Models Moran’s I Z-score p-value

2010

OLS 0.315 7.308 0.000***

GWR 0.089 2.161 0.031**

SLM 0.089 2.008 0.022**

SEM −0.021 −0.336 0.632

MGWR 0.062 1.543 0.123

2020

OLS 0.349 8.092 0.000***

GWR 0.140 3.310 0.001***

SLM 0.105 2.337 0.009***

SEM 0.016 0.443 0.329

MGWR 0.079 1.919 0.055*

Significance level: *0.1, **0.05, ***0.01.
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4.1.1 The impact of birth rate (BIR)
The BIR predominantly shows a negative correlation with 

population aging. In 2010, BIR exhibited global-scale effects on aging 
(Figure 5), with particularly strong negative impacts observed in 
southwestern (Gannan Tibetan and Linxia Hui Autonomous 
Prefecture), and central-southern (Dingxi and Longnan) Gansu 
(Figure  7a1). By 2020, BIR’s influence shifted to a local scale 
(Figure  5), becoming more pronounced in central and southern 
Gansu province. However, in northern Shaanxi province, BIR’s effect 
reversed from negative to positive, though with reduced intensity 
(Figure 7b1).

4.1.2 Mortality rate (MOR)
The MOR shifted from a global-scale impact in 2010 to a local-

scale influence by 2020 (Figure 5). In 2010, MOR exhibited strong 
effect in northern Shaanxi (Yulin and Yan’an), while its influence was 
relatively weak in northern-central Gansu (particularly in Zhangye, 
Wuwei, Lanzhou), and the two ethnic minority autonomous 
prefectures in southwestern Gansu (Figure  7a2). By 2020, MOR’s 
impact became negative in northern and southern Shaanxi, while its 
influence positively intensified in the northwestern Gansu (Jiuquan, 
Jiayuguan, Zhangye, Figure 7b2). This shift highlights an increasing 
regionalization of MOR’s impact on aging.

4.1.3 Proportion of permanent population (PoPP)
The PoPP consistently exerted a negative, global-scale 

influence on population aging in both 2010 and 2020 (Figure 5). 
In 2010, PoPP had strong effects across Shaanxi province, while 
its influence was relatively weaker in most areas of Gansu 
province, except eastern (Qingyang, Pingliang) and southern 
(Tianshui, Longnan) areas in Gansu which are neighboring to 
Shaanxi (Figure  7a3). By 2020, the overall intensity of Popp’s 
impact increased, with particularly notable growth in 
northwestern (Jiuquan, Jiayuguan, Zhangye) and the two ethnic 
minority autonomous prefectures Gansu.

The relationships between demographical factors and aging rates 
reveal two key implications. First, the aging rate in Gansu 
demonstrates greater sensitivity to birth rate fluctuations compared 
to Shaanxi. Specifically, a 1% increase in birth rate would yield a 
more substantial reduction in aging rate in Gansu than in its 
neighboring province. This differential responsiveness suggests that 

policy interventions aimed at incentivizing childbirth may generate 
more significant demographic dividends in Gansu. Second, the 
proportion of permanent population has exerted consistently global 
negative effects on aging rates across Shaanxi-Gansu region through 
the study period. This persistent pattern underscores the necessity 
for sustained policy efforts to enhance regional attractiveness to 
younger migrants through improved living conditions and 
employment opportunities.

4.2 Multiscale spatial heterogeneity of 
economic factor’s impacts on population 
aging

Figure 6b displays a violin plot MGWR coefficients of the 
economic factor. In 2010, per capita GDP (pcGDP) coefficients 
exhibited significant variation, encompassing both positive and 
negative values. The distribution showed two distinct clusters: 
positive coefficients centered around 0.25 and negative 
coefficients around −0.45, highlighting pronounced economic 
disparities among cities and counties and their contrasting effects 
on aging. By 2020, the coefficient distribution narrowed 
considerably, primarily falling between 0.00 and 0.25, suggesting 
a substantial reduction in inter-regional economic disparities over 
the decade.

The spatial influence of pcGDP shifted from a local scale in 2010 
to a regional scale by 2020 (Figure 5). In 2010, Northern Shaanxi 
(Yan’an and Yulin) and eastern Gansu (Qingyang) displayed notably 
stronger negative pcGDP effects on aging compared to other areas 
(Figure 7a4). By 2020, the overall regional influencing intensity (in 
absolute value) of pcGDP on aging rate weakened (Figure 7b4).

With the economic development, aging rates became 
progressively insensitive to pcGDP across areas, and the range of 
economic effects on aging extended geographically. According to 

TABLE 7 Descriptive statistical results of the MGWR model.

Year Variable Mean STD Min Median Max

2010 BIR −0.470 0.004 −0.477 −0.470 −0.457

MOR 0.160 0.005 0.141 0.162 0.170

PoPP −0.469 0.025 −0.491 −0.484 −0.412

PcGDP −0.134 0.352 −0.798 −0.167 0.355

NoHI 0.095 0.043 0.064 0.074 0.250

NoCSIF 0.100 0.322 −0.505 0.004 0.656

DoGAQ 0.243 0.146 0.024 0.349 0.371

PcPGA −0.100 0.184 −0.380 −0.104 0.165

2020 BIR −0.273 0.400 −0.831 −0.260 0.409

MOR 0.136 0.115 −0.269 0.151 0.371

PoPP −0.508 0.005 −0.519 −0.510 −0.495

PcGDP 0.032 0.086 −0.157 0.032 0.145

NoHI −0.052 0.008 −0.071 −0.048 −0.045

NoCSIF −0.077 0.010 −0.106 −0.072 −0.068

DoGAQ 0.131 0.007 0.125 0.128 0.153

PcPGA −0.105 0.200 −0.455 −0.130 0.404

TABLE 6 The results of residual normality test.

Year Models W p-value

2010

OLS 0.945 0.000***

GWR 0.971 0.036**

SLM 0.990 0.224

SEM 0.987 0.082*

MGWR 0.991 0.277

2020

OLS 0.961 0.000***

GWR 0.985 0.044**

SLM 0.994 0.632

SEM 0.992 0.373

MGWR 0.993 0.342

Significance level: *0.1, **0.05, ***0.01.
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the influencing trend of economic development on aging rate in the 
two provinces, with each 1% increment of pcGDP, expenditures on 
aging care and services may be more allocated to central-southern 
Gansu, followed by northern areas of Gansu. Concurrently, eastern 
Gansu and Shaanxi (particularly those northern areas) require 
proactive fiscal preparedness to address imminent aging-induced 
demographic pressures.

4.3 Multiscale spatial heterogeneity of 
medical factors’ impacts on population 
aging

Figure  6c displays a violin plot of MGWR coefficients for 
medical factors, with 2010 coefficients referenced to the left vertical 
axis and 2020 coefficients to the right. Between 2010 and 2020, 

FIGURE 5

The optimal bandwidth generated by MGWR and GWR and the standard deviation of MGWR parameter estimates (The horizontal axis represents the 
selected variables, the vertical axis on the left represents the bandwidth of MGWR, and the vertical axis on the right represents the standard deviation of 
parameter estimation generated by the MGWR): (a) the bar chart of 2010, and (b) the bar chart of 2020.

FIGURE 6

Violin plot of MGWR coefficients of influencing factors. For subfigures (a–d), the coefficients of 2010 correspond to the left vertical axis, and the 
coefficients of 2020 correspond to the right vertical axis.
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FIGURE 7 (Continued)
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FIGURE 7

Impacting ranges and intensities of four types of factors: (a1-b3) demographic factors; (a4-b4) the economic factor; (a5-b6) medical factors; (a7-b8) 
environmental factors.
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significant changes occurred in the coefficients for both NoHI and 
NoCSIF, particularly for NoHI. In 2010, the two factors exhibited 
distinct coefficient distributions: NoHI coefficients were centered 
around 0.1, while NoCSIF coefficients were widely dispersed, 
spanning both positive and negative values. By 2020, NoHI 
coefficients shifted entirely from positive to negative, indicating a 
fundamental shift in its relationship with aging. Meanwhile, NoCSIF 
coefficients became more narrowly distributed and uniformly 
negative, and significantly weaker in magnitude compared to their 
2010 levels.

4.3.1 Number of health institutions (NoHI)
The NoHI maintained a global-scale influence in both 2010 and 

2020, but its directional impact completely reversed during this 
period, transforming from totally positive to totally negative 
(Figure 5). In 2010, NoHI exhibited the strongest positive effects in 
northwestern Gansu (Jiuquan, Jiayuguan, and Zhangye), while its 
influence was notably weak across Shaanxi province (Figure 7a5). By 
2020, the intensity of its influence decreased across all regions, with 
the most pronounced decreases observed in Gansu province, 
particularly in northwestern Gansu (Jiuquan, Jiayuguan, Zhangye, 
Jinchang, and Wuwei) (Figure 7b5).

4.3.2 Number of community service institutions 
and facilities (NoCSIF)

The NoCSIF exhibited a spatial influence shift from a local scale 
in 2010 to a global scale by 2020 (Figure 5). In 2010, its impact on 
aging included both positive and negative effects, with the strongest 
influence concentrated in the intersected areas of central-eastern-
southern Shaanxi (Xianyang, Weinan, Tongchuan, and Xi’an). Areas 
with weak influence were widely distributed across both provinces 
(Figure 7a6). By 2020, NoCSIF’s influence became uniformly negative, 
with a substantial decrease in intensity across all regions. A notable 
shift from positive to negative influence was observed in most areas 
in Shaanxi province. Similarly, central-southwestern-southern Gansu 
(Dingxi, Ganan, Tianshui, and Longnan) experienced significant 
reductions in influence intensity (Figure 7b6).

From 2010 to 2020, both provinces demonstrated substantial growth 
in healthcare infrastructure, with Gansu experiencing 156 and 498% 
increases in the number of health institutions (NoHI) and community 
service institutions and facilities (NoCSIF) respectively, while Shaanxi 
recorded 152 and 421% growth for these same metrics. The dramatic 
NoCSIF expansion across Gansu-Shaanxi region facilitated more 
equitable spatial distribution of community healthcare resources, 
suggesting a scale transition in their demographic influence—from 
localized to global-level impacts on aging patterns. In contrast, NoHI 
maintained consistent global-scale effects throughout the study period. 
Despite quantitative improvements, the diminished efficacy of these 
facilities in impacting aging rates underscores the necessity for local 
governments to optimize allocations over mere numerical expansion.

4.4 Multiscale spatial heterogeneity of 
environmental factors’ impacts on 
population aging

Figure  6d presents a violin plot of MGWR coefficients for 
environmental factors, highlighting significant changes of DoGAQ 

between 2010 and 2020. In 2010, DoGAQ coefficients displayed 
bimodal distribution with primary concentrations around 0.05 and 
0.35, and also with some negative values, indicating both positive and 
negative influences on aging. The pcPGA coefficients were clustered 
around 0.1 and −0.3, indicating a bidirectional impact pattern. By 
2020, DoGAQ coefficients shifted to exclusively positive values with 
reduced intensity, while pcPGA coefficients became more dispersed, 
predominantly within the negative range.

4.4.1 Days of good air quality (DoGAQ)
The DoGAQ consistently exerted a positive influence on aging in 

both 2010 and 2020, with its spatial influence expanding from a regional 
to a global scale (Figure  5). In 2010, Shaanxi province experienced 
predominantly high-intensity impacts, in contrast to the generally 
low-intensity effects observed across most areas in Gansu province 
(Figure 7a7). By 2020, although the overall impact intensity decreased 
significantly, certain regions displayed localized intensity increases. 
Notably, northwestern Gansu (Jiuquan, Jiayuguan, Zhangye, and 
Jinchang) showed strengthened aging effects, whereas Shaanxi province 
experienced a widespread reduction in impact intensity (Figure 7b7).

4.4.2 Per capita park green area (pcPGA)
The pcPGA exhibited influence patterns distinctly different from 

DoGAQ, showing both positive and negative effects while shifting 
from a regional to a local spatial influence (Figure 5). In 2010, high-
intensity negative impacts were concentrated in northwestern Gansu 
(Jiuquan, Jiayuguan, and Zhangye), whereas positive effects were 
observed in northern-central-eastern-southeastern Shaanxi (Yulin, 
Yan’an, Tongchuan, Weinan, and Shangluo) (Figure 7a8). By 2020, the 
overall impact intensity increased but became more localized. 
Specifically, northwestern Gansu (Jiuquan and Jiayuguan), 
southwestern Shaanxi (Baoji and Hanzhong) experienced intensified 
negative impacts, while northern Shaanxi (Yulin) continued exhibiting 
positive effects. Unlike the relatively stratified pattern observed in 
2010, the 2020 spatial distribution of pcPGA impacts showed notably 
increased heterogeneity (Figure 7b8).

Environmental factors analyzed in this study comprise two 
categories: natural conditions represented by annual days of good air 
quality (DoGAQ) and human-modified environments quantified 
through per capita park green area (pcPGA). While DoGAQ exhibited 
spatially uniform associations with aging rates throughout the study 
period, pcPGA demonstrated geographically heterogeneous impacts. 
Notably, pcPGA emerges as a more readily modifiable parameter than 
DoGAQ for short-term policy interventions. Our regression analysis 
reveals that a 1% increase in pcPGA corresponds with the most 
substantial reductions in aging rates across three distinct regions: (i) 
northwestern Gansu (Jiuquan, Jiayuguan, Zhangye), (ii) eastern Gansu 
(Baiyin), and (iii) southwestern Shaanxi, followed by moderate effects 
in northern-central Gansu (Jinchang, Wuwei, Lanzhou, Linxia, Dingxi, 
Pingliang). These findings underscore the strategic value of prioritizing 
green infrastructure investments in identified high-response zones, 
particularly as enhanced urban greenery may concurrently improve 
living conditions to attract younger demographics.

To clarify the complex mechanisms by which variables influence 
aging rates in the Shaanxi-Gansu region, Table  8 offers a 
comprehensive summary of these relationships.

This section examines how four categorical factors 
(demographic, economic, healthcare, and natural environmental) 
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influence aging rates across multiple spatial scales, while deriving 
corresponding policy recommendations. Two notable limitations 
warrant further investigation. First, while out-migration 
represents a significant demographic phenomenon in both 
Shaanxi and Gansu provinces, this variable was excluded from our 
regression models due to data limitations. Future studies could 
develop systematic out-migration datasets for these regions to 
investigate its multi-scale relationships with population aging. 
Second, missing healthcare facility data were imputed using NTL 
data. This approach is based on the premise that NTL intensity 
positively correlates with the level of economic development, 
which subsequently associates with healthcare service provision. 
Although NTL datasets are often integrated with complementary 
data sources like point of interest (POI) records and mobile phone 
signaling data to enhance spatial accuracy, such multimodal 
integration was not feasible in this study due to data availability 
constraints. Nevertheless, the development of integrated 
methodologies leveraging multi-source datasets for healthcare 
infrastructure estimation remains an underexplored research 
frontier with substantial methodological potential.

5 Conclusion

This study investigated the multiscale spatial heterogeneity of 
population aging and its determinants, using Shaanxi-Gansu region 
in northwestern China as a case study. The analysis produced the 
following key findings.

 1. Accelerating aging: The Shaanxi-Gansu region had already 
entered an aging society phase since 2010, with a significant 
acceleration in demographic aging by 2020. And by 2020, 
the proportion of the population aged 65 and above reached 
13.32% in Shaanxi province and 12.58% in Gansu province, 
far exceeding the internationally recognized aging society 
threshold of 7%.

 2. Spatial–temporal heterogeneity of aging: The Shaanxi-Gansu 
region exhibited distinct spatio-temporal heterogeneity in 
aging patterns. In 2010, lower aging rates were concentrated 
in northwestern (Jiuquan and Zhangye) and southwestern 
(Gannan Tibetan Autonomous Prefecture) Gansu, and areas 
in northern (Yulin) Shaanxi. By 2020, the low-aging clusters 

TABLE 8 Summary of the influence factors.

Factors Variables Impacting range Areas impacted most strongly Areas impacted most weakly

2010 2020 2010 2020 2010 2020

Demographic factors

BIR Global Local

Gannan

Linxia

Dingxi

…

Zhangye

Jinchang

Wuwei

…

Jiuquan

Jiayuguan

Zhangye

Xianyang

Xi'an

Weinan

…

MOR Global Local
Yulin

Yan'an

Jiuquan

Jiayuguan

Zhangye

Jinchang

Lanzhou

…

Hanzhong

Ankang

Shangluo

PoPP Global Global

Tongchuan

Weinan

Xi'an

…

Yulin

Zhangye

Jinchang

Wuwei

…

Linxia

Gannan

Economic factor pcGDP Local Regional Yan'an

Wuwei

Baiyin

Lanzhou

Ankang

Tianshui

Xianyang

Xi'an

Ankang

Medical factors

NoHI Global Global

Jiuquan

Jiayuguan

Zhangye

Zhangye

Jinchang

Wuwei

…

Yulin

Yan'an

Tongchuan

…

Xianyang

Xi'an

Weinan

…

NoCSIF Local Global Tongchuan

Jiuquan

Jiayuguan

Jinchang

…

Baoji

Ankang

Xi'an

Weinan

Shangluo

…

Environmental factors

DoGAQ Regional Global

Xianyang

Xi'an

Weinan

…

Jiuquan

Jiayuguan

Zhangye

…

Jinchang

Wuwei

Lanzhou

…

Weinan

Xi'an

Shangluo

…

pcPGA Regional Local
Jiuquan

Jiayuguan

Jiuquan

Jiayuguan

Baoji

Xianyang
Longnan

Shangluo
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in ethnic areas of southwestern Gannan expanded, while some 
in northwestern Gansu (e.g., Zhangye) diminished. High-
aging clusters also shifted significantly. In 2010, these clusters 
were predominantly located in southern Shaanxi (Hanzhong 
and Ankang) and parts of southern Gansu (Longnan). By 
2020, new high-aging clusters emerged in Xi’an metropolitan 
area, while the southern clusters contracted.

 3. Spatial–temporal heterogeneity of influencing factors: The 
MGWR analysis revealed distinct patterns of heterogeneity in 
both magnitude and scale of various factors influencing aging. 
Which can be summarized as follows:

 i. Demographic factors: The effects of BIR and MOR shifted 
from global in 2010 to local in 2020. BIR’s influence intensified 
in central areas of Gansu, and shifted from negative to positive 
impacts in northeastern Shaanxi. MOR’s influence changed 
from positive to negative in areas of southern Gansu and 
Shaanxi as well as several areas in northeastern Shaanxi. PoPP 
maintained relatively stable influence intensities.

 ii. Economic factor: PcGDP transitioned from local to regional 
effect between 2010 and 2020, with its overall influence 
intensity showing a declining trend across most regions.

 iii. Medical factors: The impacts of NoCSIF transferred from a 
local-scale to a global-scale, while the impact of NoHI 
remained global-scale, and both factors shifted from (partly) 
positive to negative, with overall decreased influence intensity.

 iv. Environmental factors: In 2010, environmental factors 
exhibited regional effects, but by 2020, divergent patterns 
emerged. DoGAQ expanded to global-scale effects, while 
pcPGA transitioned to localized impacts.

The empirical findings yield four targeted policy recommendations 
for addressing regional aging disparities.

 i. Demographic dividend maximation: Policy interventions 
aimed at incentivizing childbirth may generate more significant 
demographic dividends in Gansu. Concurrently, implement 
sustained place-making strategies to enhance regional 
competitiveness to younger migrants through improved living 
conditions and employment opportunities.

 ii. Tiered aging expenditure: Expenditures on aging care and 
services may be more allocated to central-southern Gansu, 
followed by northern areas of Gansu. Concurrently, eastern 
Gansu and Shaanxi (particularly those northern areas) require 
proactive fiscal preparedness to address imminent aging-
induced demographic pressures.

 iii. Healthcare spatial optimization: Despite quantitative 
improvements, local governments may need to optimize 
allocations of healthcare institutions and facilities through 
accessibility modeling.

 iv. Green infrastructure leverage: Prioritize green infrastructure 
investments in identified high-response zones (section 4.4) to 
enhance urban greenery so that improved living conditions can 
attract younger demographics.

This geographically stratified policy framework enables the 
development of locally tailored strategies to address population aging 
and promotes sustainable regional development.
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